ControlNet-Image-Generator / apps /old-gradio_app.py
danhtran2mind's picture
Upload 68 files
f56ede2 verified
raw
history blame
5.96 kB
import os
import sys
import subprocess
import gradio as gr
import torch
import random
# Add the project root directory to the Python path
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from src.controlnet_image_generator.infer import infer
def run_setup_script():
setup_script = os.path.join(os.path.dirname(__file__), "gradio_app", "setup_scripts.py")
try:
result = subprocess.run(["python", setup_script], capture_output=True, text=True, check=True)
return result.stdout
except subprocess.CalledProcessError as e:
print(f"Setup script failed with error: {e.stderr}")
return f"Setup script failed: {e.stderr}"
def run_inference(
input_image,
prompt,
negative_prompt,
num_steps,
seed,
width,
height,
guidance_scale,
controlnet_conditioning_scale,
use_random_seed=False,
):
config_path = "configs/model_ckpts.yaml"
if use_random_seed:
seed = random.randint(0, 2 ** 32)
try:
result = infer(
config_path=config_path,
input_image=input_image,
image_url=None,
prompt=prompt,
negative_prompt=negative_prompt,
num_steps=num_steps,
seed=seed,
width=width,
height=height,
guidance_scale=guidance_scale,
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
)
result = list(result)[0]
return result, "Inference completed successfully"
except Exception as e:
return [], f"Error during inference: {str(e)}"
def stop_app():
"""Function to stop the Gradio app."""
try:
gr.Interface.close_all() # Attempt to close all running Gradio interfaces
return "Application stopped successfully."
except Exception as e:
return f"Error stopping application: {str(e)}"
def create_gui():
cuscustom_css = open("apps/gradio_app/static/style.css").read()
with gr.Blocks(css=cuscustom_css) as demo:
gr.Markdown("# ControlNet Image Generation with Pose Detection")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="filepath", label="Input Image")
prompt = gr.Textbox(
label="Prompt",
value="a man is doing yoga"
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="monochrome, lowres, bad anatomy, worst quality, low quality"
)
with gr.Row():
width = gr.Slider(
minimum=256,
maximum=1024,
value=512,
step=64,
label="Width"
)
height = gr.Slider(
minimum=256,
maximum=1024,
value=512,
step=64,
label="Height"
)
with gr.Accordion("Advanced Settings", open=False):
num_steps = gr.Slider(
minimum=1,
maximum=100,
value=30,
step=1,
label="Number of Inference Steps"
)
use_random_seed = gr.Checkbox(label="Use Random Seed", value=False)
seed = gr.Slider(
minimum=0,
maximum=2**32,
value=42,
step=1,
label="Random Seed",
visible=True
)
guidance_scale = gr.Slider(
minimum=1.0,
maximum=20.0,
value=7.5,
step=0.1,
label="Guidance Scale"
)
controlnet_conditioning_scale = gr.Slider(
minimum=0.0,
maximum=1.0,
value=1.0,
step=0.1,
label="ControlNet Conditioning Scale"
)
with gr.Column():
output_images = gr.Image(label="Generated Images")
output_message = gr.Textbox(label="Status")
# with gr.Row():
submit_button = gr.Button("Generate Images", elem_classes="submit-btn")
stop_button = gr.Button("Stop Application", elem_classes="stop-btn")
def update_seed_visibility(use_random):
return gr.update(visible=not use_random)
use_random_seed.change(
fn=update_seed_visibility,
inputs=use_random_seed,
outputs=seed
)
submit_button.click(
fn=run_inference,
inputs=[
input_image,
prompt,
negative_prompt,
num_steps,
seed,
width,
height,
guidance_scale,
controlnet_conditioning_scale,
use_random_seed,
],
outputs=[output_images, output_message]
)
stop_button.click(
fn=stop_app,
inputs=[],
outputs=[output_message]
)
return demo
if __name__ == "__main__":
run_setup_script()
demo = create_gui()
demo.launch(share=True)