File size: 5,959 Bytes
f56ede2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import sys
import subprocess
import gradio as gr
import torch
import random

# Add the project root directory to the Python path
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))

from src.controlnet_image_generator.infer import infer

def run_setup_script():
    setup_script = os.path.join(os.path.dirname(__file__), "gradio_app", "setup_scripts.py")
    try:
        result = subprocess.run(["python", setup_script], capture_output=True, text=True, check=True)
        return result.stdout
    except subprocess.CalledProcessError as e:
        print(f"Setup script failed with error: {e.stderr}")
        return f"Setup script failed: {e.stderr}"

def run_inference(

    input_image,

    prompt,

    negative_prompt,

    num_steps,

    seed,

    width,

    height,

    guidance_scale,

    controlnet_conditioning_scale,

    use_random_seed=False,

):
    config_path = "configs/model_ckpts.yaml"
    
    if use_random_seed:
        seed = random.randint(0, 2 ** 32)
    
    try:
        result = infer(
            config_path=config_path,
            input_image=input_image,
            image_url=None,
            prompt=prompt,
            negative_prompt=negative_prompt,
            num_steps=num_steps,
            seed=seed,
            width=width,
            height=height,
            guidance_scale=guidance_scale,
            controlnet_conditioning_scale=float(controlnet_conditioning_scale),
        )
        result = list(result)[0]
        return result, "Inference completed successfully"
    except Exception as e:
        return [], f"Error during inference: {str(e)}"

def stop_app():
    """Function to stop the Gradio app."""
    try:
        gr.Interface.close_all()  # Attempt to close all running Gradio interfaces
        return "Application stopped successfully."
    except Exception as e:
        return f"Error stopping application: {str(e)}"

def create_gui():
    cuscustom_css = open("apps/gradio_app/static/style.css").read()
    with gr.Blocks(css=cuscustom_css) as demo:
        gr.Markdown("# ControlNet Image Generation with Pose Detection")
        
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(type="filepath", label="Input Image")
                prompt = gr.Textbox(
                    label="Prompt",
                    value="a man is doing yoga"
                )
                negative_prompt = gr.Textbox(
                    label="Negative Prompt",
                    value="monochrome, lowres, bad anatomy, worst quality, low quality"
                )
                
                with gr.Row():
                    width = gr.Slider(
                        minimum=256,
                        maximum=1024,
                        value=512,
                        step=64,
                        label="Width"
                    )
                    height = gr.Slider(
                        minimum=256,
                        maximum=1024,
                        value=512,
                        step=64,
                        label="Height"
                    )
                
                with gr.Accordion("Advanced Settings", open=False):
                    num_steps = gr.Slider(
                        minimum=1,
                        maximum=100,
                        value=30,
                        step=1,
                        label="Number of Inference Steps"
                    )
                    use_random_seed = gr.Checkbox(label="Use Random Seed", value=False)
                    seed = gr.Slider(
                        minimum=0,
                        maximum=2**32,
                        value=42,
                        step=1,
                        label="Random Seed",
                        visible=True
                    )
                    
                    guidance_scale = gr.Slider(
                        minimum=1.0,
                        maximum=20.0,
                        value=7.5,
                        step=0.1,
                        label="Guidance Scale"
                    )
                    controlnet_conditioning_scale = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=1.0,
                        step=0.1,
                        label="ControlNet Conditioning Scale"
                    )  
            
            with gr.Column():
                output_images = gr.Image(label="Generated Images")
                output_message = gr.Textbox(label="Status")
                
                # with gr.Row():
                submit_button = gr.Button("Generate Images", elem_classes="submit-btn")
                stop_button = gr.Button("Stop Application", elem_classes="stop-btn")

        def update_seed_visibility(use_random):
            return gr.update(visible=not use_random)
        
        use_random_seed.change(
            fn=update_seed_visibility,
            inputs=use_random_seed,
            outputs=seed
        )
        
        submit_button.click(
            fn=run_inference,
            inputs=[
                input_image,
                prompt,
                negative_prompt,
                num_steps,
                seed,
                width,
                height,
                guidance_scale,
                controlnet_conditioning_scale,
                use_random_seed,
            ],
            outputs=[output_images, output_message]
        )
        
        stop_button.click(
            fn=stop_app,
            inputs=[],
            outputs=[output_message]
        )

    return demo

if __name__ == "__main__":
    run_setup_script()
    demo = create_gui()
    demo.launch(share=True)