Spaces:
Running
Running
File size: 34,685 Bytes
a04c9e9 819adf9 a04c9e9 04e78e6 a04c9e9 04e78e6 819adf9 04e78e6 819adf9 a04c9e9 819adf9 04e78e6 a04c9e9 04e78e6 819adf9 a04c9e9 04e78e6 a04c9e9 819adf9 a04c9e9 819adf9 a04c9e9 819adf9 a04c9e9 819adf9 a04c9e9 819adf9 a04c9e9 819adf9 a04c9e9 819adf9 a04c9e9 819adf9 a04c9e9 819adf9 a04c9e9 04e78e6 a04c9e9 04e78e6 a04c9e9 819adf9 a04c9e9 04e78e6 a04c9e9 819adf9 a04c9e9 819adf9 a04c9e9 04e78e6 a04c9e9 819adf9 a04c9e9 819adf9 04e78e6 a04c9e9 04e78e6 a04c9e9 04e78e6 a04c9e9 04e78e6 a04c9e9 04e78e6 a04c9e9 04e78e6 a04c9e9 04e78e6 a04c9e9 04e78e6 819adf9 a04c9e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 |
from __future__ import annotations
import math
import re
import logging
import functools
from pathlib import Path
from typing import Dict, List, Tuple, Optional, Union, Mapping, Sequence
from brand_to_generic import brand_lookup
import csv
import json
try:
import pandas as pd
except ImportError:
pd = None
__all__ = [
"load_reference",
"load_all_routes_reference",
"load_patient_meds",
"calculate_dbi",
"print_report",
"detect_route_from_text",
"detect_combination_drug",
"split_combination_drug_simple",
"dbi_mcp",
"dbi_mcp_mixed_routes",
"dbi_mcp_with_combinations",
]
PatientInput = Union[
Path,
Sequence[Tuple[str, float]],
Mapping[str, float],
]
# Combination drug detection patterns
COMBINATION_PATTERNS = [
r'\bco-?\w+\b', # co- prefix with optional hyphen (co-codamol, cocodamol)
r'\b\w+[-/]\w+\b', # hyphen or slash separated (paracetamol-codeine, aspirin/caffeine)
r'\b\w+\s*\+\s*\w+\b', # plus sign (aspirin + caffeine)
r'\b\w+\s*with\s+\w+\b', # "with" combinations
r'\b\w+\s*and\s+\w+\b', # "and" combinations
]
# Route detection patterns
ROUTE_PATTERNS = {
'transdermal': [
r'\bpatch(es)?\b',
r'\btransdermal\b',
r'\bmcg/hr\b',
r'\bμg/hr\b',
r'\bmicrograms?/hr\b',
r'\bmicrograms?/hour\b',
],
'parenteral': [
r'\binjection\b',
r'\biv\b',
r'\bim\b',
r'\bsc\b',
r'\bsubcut\b',
r'\bsubcutaneous\b',
r'\bintravenous\b',
r'\bintramuscular\b',
r'\bparenteral\b',
],
'sublingual_buccal': [
r'\bsublingual\b',
r'\bbuccal\b',
r'\bsl\b',
r'\bunder.?tongue\b',
],
'oral': [
r'\btab(let)?s?\b',
r'\bcap(sule)?s?\b',
r'\boral\b',
r'\bpo\b',
r'\bby.?mouth\b',
r'\bliquid\b',
r'\bsyrup\b',
r'\bsolution\b',
r'\bsuspension\b',
]
}
def _normalise_name(name: str) -> str:
"""Strip/-lower a drug name for key matching."""
return name.strip().lower()
def detect_route_from_text(text: str) -> str:
"""
Detect the most likely route of administration from medication text.
Returns the detected route or 'oral' as default.
"""
text_lower = text.lower()
# Check each route pattern
for route, patterns in ROUTE_PATTERNS.items():
for pattern in patterns:
if re.search(pattern, text_lower):
return route
# Default to oral if no specific route detected
return 'oral'
def detect_combination_drug(drug_name: str) -> bool:
"""
Detect if a drug name appears to be a combination drug.
"""
drug_name_lower = drug_name.lower()
for pattern in COMBINATION_PATTERNS:
if re.search(pattern, drug_name_lower):
return True
# Check for multiple doses in parentheses (e.g., "500mg-9.6mg")
if re.search(r'\d+(?:\.\d+)?\s*mg\s*[-/]\s*\d+(?:\.\d+)?\s*mg', drug_name_lower):
return True
return False
def split_combination_drug_simple(drug_text: str) -> List[Tuple[str, str, str]]:
"""
Simple rule-based splitting for common combination patterns.
Returns list of (component_name, original_text, notes).
"""
components = []
drug_text_lower = drug_text.lower()
# Handle common combinations
known_combinations = {
'co-codamol': [('paracetamol', 'paracetamol component of co-codamol'),
('codeine', 'codeine component of co-codamol')],
'cocodamol': [('paracetamol', 'paracetamol component of co-codamol'),
('codeine', 'codeine component of co-codamol')],
'co-trimoxazole': [('trimethoprim', 'trimethoprim component of co-trimoxazole'),
('sulfamethoxazole', 'sulfamethoxazole component of co-trimoxazole')],
'cotrimoxazole': [('trimethoprim', 'trimethoprim component of co-trimoxazole'),
('sulfamethoxazole', 'sulfamethoxazole component of co-trimoxazole')],
'paracetamol-codeine': [('paracetamol', 'paracetamol component'),
('codeine', 'codeine component')],
'aspirin-caffeine': [('aspirin', 'aspirin component'),
('caffeine', 'caffeine component')],
'tylenol-codeine': [('paracetamol', 'paracetamol component'),
('codeine', 'codeine component')],
# Brand name combinations
'vytorin': [('ezetimibe', 'ezetimibe component of Vytorin'),
('simvastatin', 'simvastatin component of Vytorin')],
'exforge': [('amlodipine', 'amlodipine component of Exforge'),
('valsartan', 'valsartan component of Exforge')],
'caduet': [('amlodipine', 'amlodipine component of Caduet'),
('atorvastatin', 'atorvastatin component of Caduet')],
'janumet': [('sitagliptin', 'sitagliptin component of Janumet'),
('metformin', 'metformin component of Janumet')],
'combigan': [('brimonidine', 'brimonidine component of Combigan'),
('timolol', 'timolol component of Combigan')],
}
# Check for known combinations
for combo_name, combo_components in known_combinations.items():
if combo_name in drug_text_lower:
for comp_name, note in combo_components:
components.append((comp_name, drug_text, note))
return components
# Try to split hyphenated/slashed combinations
if '-' in drug_text or '/' in drug_text:
# Extract the drug name part (before dosing info)
drug_name_part = re.split(r'\d+', drug_text)[0].strip()
separators = ['-', '/', '+']
for sep in separators:
if sep in drug_name_part:
parts = [part.strip() for part in drug_name_part.split(sep)]
if len(parts) == 2:
for part in parts:
if part and len(part) > 2: # Avoid single letters
components.append((part, drug_text, f'Component of combination drug'))
return components
return components
def needs_llm_splitting(drug_text: str) -> bool:
"""
Determine if a combination drug needs LLM assistance for splitting.
"""
if not detect_combination_drug(drug_text):
return False
# Try simple splitting first
simple_components = split_combination_drug_simple(drug_text)
# If simple splitting failed or returned unclear results, use LLM
if not simple_components:
return True
# If components are too short or unclear, use LLM
for comp_name, _, _ in simple_components:
if len(comp_name) < 3 or comp_name.isdigit():
return True
return False
def load_reference(
ref_path: Path,
*,
route: str = "oral",
use_pandas: bool | None = None,
) -> Dict[str, Tuple[float, str]]:
"""Return mapping **generic → (δ<sub>route</sub>, drug_class)**.
If a drug lacks the requested route it is silently skipped. Callers may
retry with ``route=None`` to get the *first* available dose instead.
"""
if use_pandas is None:
use_pandas = pd is not None
ref: Dict[str, Tuple[float, str]] = {}
if use_pandas:
df = pd.read_csv(ref_path)
df = df[df["route"].str.lower() == route.lower()]
for _, row in df.iterrows():
ref[_normalise_name(row["generic_name"])] = (
float(row["min_daily_dose_mg"]),
row["drug_class"].strip().lower(),
)
else:
with ref_path.open(newline="") as f:
rdr = csv.DictReader(f)
for row in rdr:
if row["route"].strip().lower() != route.lower():
continue
ref[_normalise_name(row["generic_name"])] = (
float(row["min_daily_dose_mg"]),
row["drug_class"].strip().lower(),
)
return ref
def load_all_routes_reference(
ref_path: Path,
*,
use_pandas: bool | None = None,
) -> Dict[str, Dict[str, Tuple[float, str]]]:
"""
Load reference data for all routes.
Returns mapping: route → {generic → (δ, drug_class)}
"""
if use_pandas is None:
use_pandas = pd is not None
all_routes: Dict[str, Dict[str, Tuple[float, str]]] = {}
if use_pandas:
df = pd.read_csv(ref_path)
for _, row in df.iterrows():
route = row["route"].strip().lower()
generic = _normalise_name(row["generic_name"])
if route not in all_routes:
all_routes[route] = {}
all_routes[route][generic] = (
float(row["min_daily_dose_mg"]),
row["drug_class"].strip().lower(),
)
else:
with ref_path.open(newline="") as f:
rdr = csv.DictReader(f)
for row in rdr:
route = row["route"].strip().lower()
generic = _normalise_name(row["generic_name"])
if route not in all_routes:
all_routes[route] = {}
all_routes[route][generic] = (
float(row["min_daily_dose_mg"]),
row["drug_class"].strip().lower(),
)
return all_routes
def calculate_dbi(
patient_meds: Mapping[str, float],
reference: Mapping[str, Tuple[float, str]],
) -> Tuple[float, List[Tuple[str, float, float, float]]]:
"""Return ``(total, details)`` where *details* is a list of
``(generic_name, dose_mg, δ_mg, DBI_i)``.
"""
details: List[Tuple[str, float, float, float]] = []
total = 0.0
for drug, dose in patient_meds.items():
ref = reference.get(drug)
if not ref:
continue # unknown or route-mismatch
delta, drug_class = ref
if drug_class not in {"anticholinergic", "sedative", "both"}:
continue
dbi_i = dose / (delta + dose)
details.append((drug, dose, delta, dbi_i))
total += dbi_i
return total, details
logger = logging.getLogger(__name__)
UNIT_PAT = re.compile(r"(?P<val>\d+(?:[.,]\d+)?)(?:\s*)(?P<unit>mcg|μg|mg|g|iu|units?|micrograms?|mmol)\b", re.I)
PATCH_PAT = re.compile(r"(?P<val>\d+(?:[.,]\d+)?)(?:\s*)(mcg|μg|microg)\s*/\s*hr", re.I)
PERCENT_PAT = re.compile(r"\b(?P<percent>\d+(?:\.\d+)?)\s*%\b")
CONC_PAT = re.compile(r"(?P<drug_val>\d+(?:[.,]\d+)?)(?:\s*)(?P<drug_unit>mcg|μg|mg|g|iu|units?)\s*/\s*(?P<vol_val>\d+(?:[.,]\d+)?)(?:\s*)m ?l", re.I)
VOL_PAT = re.compile(r"(?P<voldose>\d+(?:[.,]\d+)?)(?:\s*)m ?l", re.I)
QTY_PAT = re.compile(r"(?<!\d)(?P<qty>\d+(?:\s*-\s*\d+)?)\s*(?:tab|caps?|puff|spray|patch|patches|sachet|tube|inhalation|drop)s?\b", re.I)
FREQ_PAT = re.compile(r"\b(q\d{1,2}h|qd|od|daily|once daily|bid|bd|twice daily|tid|tds|three times daily|qid|four times daily|nocte|mane|am|pm)\b", re.I)
EVERY_HOURS_PAT = re.compile(r"q(\d{1,2})h", re.I)
_FREQ_MAP = {
"qd": 1, "od": 1, "daily": 1, "once daily": 1,
"bid": 2, "bd": 2, "twice daily": 2,
"tid": 3, "tds": 3, "three times daily": 3,
"qid": 4, "four times daily": 4,
"nocte": 1, "pm": 1,
"mane": 1, "am": 1,
}
def _unit_to_mg(val: float, unit: str) -> float:
unit = unit.lower().removesuffix('s')
if unit == "mg":
return val
if unit == "g":
return val * 1_000
if unit in {"mcg", "μg", "microgram"}:
return val / 1_000
if unit in {"iu", "unit", "mmol"}:
logger.debug("Cannot reliably convert '%s' to mg. Returning 0.", unit)
return 0.0
return math.nan
def _freq_to_per_day(token: str) -> float:
token = token.lower()
if token in _FREQ_MAP:
return _FREQ_MAP[token]
m = EVERY_HOURS_PAT.fullmatch(token)
if m:
hrs = int(m.group(1))
return 24 / hrs if hrs else 1
return 1
Parsed = Tuple[str, float, bool, str] # (name, mg_day, is_prn, route)
ParsedCombination = Tuple[str, float, bool, str, bool, List[Tuple[str, str, str]]] # (name, mg_day, is_prn, route, is_combination, components)
@functools.lru_cache(maxsize=2048)
def _parse_line(line: str) -> Optional[Parsed]:
original = line.strip()
if not original:
return None
is_prn = "prn" in original.lower()
detected_route = detect_route_from_text(original)
m_patch = PATCH_PAT.search(original)
if m_patch:
mcg_hr = float(m_patch.group("val").replace(",", "."))
mg_day = (mcg_hr * 24) / 1_000 # µg/hr → mg/day
name_part = PATCH_PAT.sub("", original).split()[0]
# Override route detection for patches
return (name_part, mg_day, is_prn, "transdermal")
# Try parsing percentage-based topicals/solutions before standard units
m_percent = PERCENT_PAT.search(original)
if m_percent:
percent_val = float(m_percent.group("percent"))
# For liquids where volume is given (e.g., 2% solution, 10mL dose)
m_vol = VOL_PAT.search(original)
if m_vol:
voldose_ml = float(m_vol.group("voldose").replace(",", "."))
# Assume % is g/100mL for liquids
strength_g_per_100ml = percent_val
mg_per_dose = (strength_g_per_100ml * 1000) * (voldose_ml / 100)
freq = 1.0
m_freq = FREQ_PAT.search(original)
if m_freq:
freq = _freq_to_per_day(m_freq.group(0))
mg_day = mg_per_dose * freq
name_part = original[:m_percent.start()].strip()
name_part = re.sub(r"[^A-Za-z0-9\s-]", " ", name_part).strip()
return (name_part, mg_day, is_prn, detected_route)
# Handle drops with percentage strength
if 'drop' in original.lower():
# Assume 20 drops/mL for ophthalmic solutions
g_per_100ml = percent_val
mg_per_ml = g_per_100ml * 10 # 1% -> 1g/100mL -> 10mg/mL
qty = 1.0
m_qty = QTY_PAT.search(original) # QTY_PAT now includes 'drop'
if m_qty:
qty_str = m_qty.group("qty").split('-')[-1].strip() # Use upper end of range
try:
qty = float(qty_str)
except ValueError:
qty = 1.0
# Dose in mg = (number of drops / 20 drops_per_mL) * mg_per_mL
mg_per_dose = (qty / 20.0) * mg_per_ml
freq = 1.0
m_freq = FREQ_PAT.search(original)
if m_freq:
freq = _freq_to_per_day(m_freq.group(0))
mg_day = mg_per_dose * freq
name_part = original[:m_percent.start()].strip()
name_part = re.sub(r"[^A-Za-z0-9\s-]", " ", name_part).strip()
return (name_part, mg_day, is_prn, detected_route)
# For cases with 'application' or 'drop' (e.g., 0.05% cream, 1 application)
if 'application' in original.lower() or 'ointment' in original.lower():
# Can't calculate mg dose, but we can parse the drug name.
name_part = original[:m_percent.start()].strip()
name_part = re.sub(r"[^A-Za-z0-9\s-]", " ", name_part).strip()
logger.debug("Parsed %%-based item but cannot quantify mg/day: %s", original)
return (name_part, 0.0, is_prn, detected_route)
m_conc = CONC_PAT.search(original)
m_vol = VOL_PAT.search(original)
if m_conc and m_vol:
drug_val = _unit_to_mg(float(m_conc.group("drug_val").replace(",", ".")), m_conc.group("drug_unit"))
vol_val = float(m_conc.group("vol_val").replace(",", "."))
voldose = float(m_vol.group("voldose").replace(",", "."))
if vol_val == 0:
logger.warning("volume 0 in concentration parse – %s", original)
return None
mg_per_dose = drug_val * (voldose / vol_val)
qty = 1
freq = 1.0
m_freq = FREQ_PAT.search(original)
if m_freq:
freq = _freq_to_per_day(m_freq.group(0))
mg_day = mg_per_dose * freq
name_part = CONC_PAT.split(original)[0].strip()
return (name_part, mg_day, is_prn, detected_route)
m = UNIT_PAT.search(original)
if m:
strength_mg = _unit_to_mg(float(m.group("val").replace(",", ".")), m.group("unit"))
if math.isnan(strength_mg):
logger.debug("Unhandled unit '%s' in line: %s", m.group("unit"), original)
return None
qty = 1.0
m_qty = QTY_PAT.search(original)
if m_qty:
qty_str = m_qty.group("qty").split('-')[-1].strip()
try:
qty = float(qty_str)
except ValueError:
qty = 1.0
freq = 1.0
m_freq = FREQ_PAT.search(original)
if m_freq:
freq = _freq_to_per_day(m_freq.group(0))
mg_day = strength_mg * qty * freq
name_part = original[:m.start()].strip()
name_part = re.sub(r"[^A-Za-z0-9\s]", " ", name_part)
name_part = re.sub(r"\s+", " ", name_part).strip()
return (name_part, mg_day, is_prn, detected_route)
# Handle unitless doses like "..., 5, oral" or "..., 2.5-5, oral"
m_unitless = re.search(r"[,\(]\s*(?P<dose>\d+(?:\.\d+)?(?:\s*-\s*\d+(?:\.\d+)?)?)\s*,\s*(?:oral|sublingual|buccal)", original, re.I)
if m_unitless:
dose_str = m_unitless.group("dose").split('-')[-1].strip()
try:
strength_mg = float(dose_str) # Assume mg
freq = 1.0
m_freq = FREQ_PAT.search(original)
if m_freq:
freq = _freq_to_per_day(m_freq.group(0))
mg_day = strength_mg * freq
name_part = original[:m_unitless.start()].strip()
name_part = re.sub(r"\(.*?\)", "", name_part).strip() # Remove bracketed part of name
return (name_part, mg_day, is_prn, detected_route)
except ValueError:
pass # Could not convert to float
logger.debug("unhandled line: %s", original)
return None
def _parse_line_with_combinations(line: str) -> Optional[ParsedCombination]:
"""
Enhanced parsing that detects and handles combination drugs.
Returns (name, mg_day, is_prn, route, is_combination, components)
"""
# First try normal parsing
parsed = _parse_line(line)
if not parsed:
return None
name, mg_day, is_prn, route = parsed
# Check if this is a combination drug (check both the name and the full line)
is_combo_name = detect_combination_drug(name)
is_combo_line = detect_combination_drug(line)
if is_combo_name or is_combo_line:
# Try splitting with both the name and the full line
components = split_combination_drug_simple(name)
if not components:
components = split_combination_drug_simple(line)
if components:
logger.debug(f"Detected combination drug: {name} -> {[c[0] for c in components]}")
return (name, mg_day, is_prn, route, True, components)
else:
logger.debug(f"Combination drug detected but couldn't split: {name}")
# Mark as combination but with empty components (may need LLM splitting)
return (name, mg_day, is_prn, route, True, [])
# Not a combination drug
return (name, mg_day, is_prn, route, False, [])
def _smart_drug_lookup(raw_name: str, all_routes_reference: Dict[str, Dict[str, Tuple[float, str]]]) -> str:
"""
Smart drug name resolution that avoids unnecessary API calls.
Works with multi-route reference data.
1. First checks if the name (or close variant) exists in any route's reference data
2. Only calls brand_lookup API if not found in reference
3. Returns the best generic name match
"""
clean_name = raw_name.strip().lower()
# Check all routes for direct match
for route_data in all_routes_reference.values():
if clean_name in route_data:
logger.debug(f"Direct match found for '{raw_name}' in reference data")
return clean_name
# Check all routes for partial match
for route_data in all_routes_reference.values():
for ref_name in route_data.keys():
if len(clean_name) >= 4 and len(ref_name) >= 4:
if clean_name in ref_name or ref_name in clean_name:
logger.debug(f"Partial match found: '{raw_name}' -> '{ref_name}' in reference data")
return ref_name
common_variations = {
'acetaminophen': 'paracetamol',
'paracetamol': 'acetaminophen',
'hydrochlorothiazide': 'hctz',
'hctz': 'hydrochlorothiazide',
'furosemide': 'frusemide',
'frusemide': 'furosemide',
}
if clean_name in common_variations:
alt_name = common_variations[clean_name]
# Check all routes for the alternative name
for route_data in all_routes_reference.values():
if alt_name in route_data:
logger.debug(f"Found common variation: '{raw_name}' -> '{alt_name}' in reference data")
return alt_name
logger.debug(f"'{raw_name}' not found in reference data, trying brand lookup API")
try:
lookup = brand_lookup(raw_name)
if lookup["results"]:
generic_name = lookup["results"][0]["generic_name"].lower().strip()
logger.debug(f"Brand lookup successful: '{raw_name}' -> '{generic_name}'")
return generic_name
else:
logger.debug(f"Brand lookup returned no results for '{raw_name}'")
return clean_name
except Exception as e:
logger.warning(f"Brand lookup failed for '{raw_name}': {e}")
return clean_name
def dbi_mcp(text_block: str, *, ref_csv: Union[str, Path] = "dbi_reference_by_route.csv", route: str = "oral") -> dict:
"""End-to-end DBI calculator with dual PRN handling and smart drug name resolution."""
ref = load_reference(Path(ref_csv), route=route)
parsed: List[Parsed] = []
unmatched: List[str] = []
for ln in text_block.splitlines():
res = _parse_line(ln)
if res:
parsed.append(res)
else:
unmatched.append(ln)
meds_with: Dict[str, float] = {}
meds_without: Dict[str, float] = {}
# Load all routes for smart lookup (backward compatibility)
all_routes_ref = load_all_routes_reference(Path(ref_csv))
for raw_name, mg_day, is_prn, detected_route in parsed:
generic = _smart_drug_lookup(raw_name, all_routes_ref)
meds_with[generic] = meds_with.get(generic, 0.0) + mg_day
if not is_prn:
meds_without[generic] = meds_without.get(generic, 0.0) + mg_day
total_no, details_no = calculate_dbi(meds_without, ref)
total_with, details_with = calculate_dbi(meds_with, ref)
def _details_to_list(details):
return [dict(generic_name=g, dose_mg_day=d, delta_mg=delta, dbi_component=dbi) for g, d, delta, dbi in details]
return {
"route": route,
"dbi_without_prn": round(total_no, 2),
"dbi_with_prn": round(total_with, 2),
"details_without_prn": _details_to_list(details_no),
"details_with_prn": _details_to_list(details_with),
"unmatched_input": unmatched,
}
def dbi_mcp_mixed_routes(text_block: str, *, ref_csv: Union[str, Path] = "dbi_reference_by_route.csv") -> dict:
"""
Enhanced DBI calculator that handles mixed routes automatically.
This function:
1. Detects the route for each medication from the text
2. Uses the appropriate reference data for each route
3. Provides detailed breakdown by route and medication
"""
all_routes_ref = load_all_routes_reference(Path(ref_csv))
parsed: List[Parsed] = []
unmatched: List[str] = []
route_stats: Dict[str, int] = {}
for ln in text_block.splitlines():
res = _parse_line(ln)
if res:
parsed.append(res)
route = res[3] # detected route
route_stats[route] = route_stats.get(route, 0) + 1
else:
unmatched.append(ln)
# Organize medications by route and PRN status
meds_by_route_with: Dict[str, Dict[str, float]] = {}
meds_by_route_without: Dict[str, Dict[str, float]] = {}
medication_details: List[Dict] = []
for raw_name, mg_day, is_prn, detected_route in parsed:
generic = _smart_drug_lookup(raw_name, all_routes_ref)
# Initialize route dictionaries if needed
if detected_route not in meds_by_route_with:
meds_by_route_with[detected_route] = {}
meds_by_route_without[detected_route] = {}
# Add to appropriate dictionaries
meds_by_route_with[detected_route][generic] = meds_by_route_with[detected_route].get(generic, 0.0) + mg_day
if not is_prn:
meds_by_route_without[detected_route][generic] = meds_by_route_without[detected_route].get(generic, 0.0) + mg_day
# Store medication details
medication_details.append({
"original_text": f"{raw_name} {mg_day}mg/day",
"generic_name": generic,
"dose_mg_day": mg_day,
"detected_route": detected_route,
"is_prn": is_prn
})
# Calculate DBI for each route
route_results = {}
total_dbi_with = 0.0
total_dbi_without = 0.0
all_details_with = []
all_details_without = []
for route in meds_by_route_with.keys():
if route in all_routes_ref:
route_ref = all_routes_ref[route]
# Calculate DBI for this route
dbi_with, details_with = calculate_dbi(meds_by_route_with[route], route_ref)
dbi_without, details_without = calculate_dbi(meds_by_route_without[route], route_ref)
total_dbi_with += dbi_with
total_dbi_without += dbi_without
# Format details
def _format_details(details, route_name):
formatted = []
for g, d, delta, dbi in details:
formatted.append({
"generic_name": g,
"dose_mg_day": d,
"delta_mg": delta,
"dbi_component": dbi,
"route": route_name
})
return formatted
route_details_with = _format_details(details_with, route)
route_details_without = _format_details(details_without, route)
all_details_with.extend(route_details_with)
all_details_without.extend(route_details_without)
route_results[route] = {
"dbi_with_prn": round(dbi_with, 2),
"dbi_without_prn": round(dbi_without, 2),
"details_with_prn": route_details_with,
"details_without_prn": route_details_without,
"medication_count": route_stats.get(route, 0)
}
return {
"mixed_routes": True,
"total_dbi_without_prn": round(total_dbi_without, 2),
"total_dbi_with_prn": round(total_dbi_with, 2),
"routes_detected": list(route_stats.keys()),
"route_statistics": route_stats,
"route_breakdown": route_results,
"all_details_without_prn": all_details_without,
"all_details_with_prn": all_details_with,
"medication_details": medication_details,
"unmatched_input": unmatched,
}
def dbi_mcp_with_combinations(text_block: str, *, ref_csv: Union[str, Path] = "dbi_reference_by_route.csv") -> dict:
"""
Enhanced DBI calculator that handles combination drugs automatically.
This function:
1. Detects combination drugs (e.g., paracetamol-codeine, co-codamol)
2. Splits them into individual components
3. Calculates DBI for each relevant component
4. Provides detailed breakdown including combination drug handling
"""
all_routes_ref = load_all_routes_reference(Path(ref_csv))
parsed_combinations: List[ParsedCombination] = []
unmatched: List[str] = []
route_stats: Dict[str, int] = {}
combination_drugs: List[Dict] = []
for ln in text_block.splitlines():
res = _parse_line_with_combinations(ln)
if res:
parsed_combinations.append(res)
route = res[3] # detected route
route_stats[route] = route_stats.get(route, 0) + 1
else:
unmatched.append(ln)
# Organize medications by route and PRN status, handling combinations
meds_by_route_with: Dict[str, Dict[str, float]] = {}
meds_by_route_without: Dict[str, Dict[str, float]] = {}
medication_details: List[Dict] = []
for name, mg_day, is_prn, detected_route, is_combination, components in parsed_combinations:
if is_combination and components:
# Handle combination drug by processing each component
combination_info = {
"original_text": f"{name} {mg_day}mg/day",
"is_combination": True,
"components": [],
"detected_route": detected_route,
"is_prn": is_prn
}
for comp_name, original_text, note in components:
generic = _smart_drug_lookup(comp_name, all_routes_ref)
# Initialize route dictionaries if needed
if detected_route not in meds_by_route_with:
meds_by_route_with[detected_route] = {}
meds_by_route_without[detected_route] = {}
# Add to appropriate dictionaries
# Note: We use the full dose for each component - this may need refinement
# based on actual component ratios in the combination
meds_by_route_with[detected_route][generic] = meds_by_route_with[detected_route].get(generic, 0.0) + mg_day
if not is_prn:
meds_by_route_without[detected_route][generic] = meds_by_route_without[detected_route].get(generic, 0.0) + mg_day
combination_info["components"].append({
"component_name": comp_name,
"generic_name": generic,
"note": note,
"dose_mg_day": mg_day # This is simplified - real combinations need dose splitting
})
combination_drugs.append(combination_info)
medication_details.append(combination_info)
else:
# Handle single drug (or unresolved combination)
generic = _smart_drug_lookup(name, all_routes_ref)
# Initialize route dictionaries if needed
if detected_route not in meds_by_route_with:
meds_by_route_with[detected_route] = {}
meds_by_route_without[detected_route] = {}
# Add to appropriate dictionaries
meds_by_route_with[detected_route][generic] = meds_by_route_with[detected_route].get(generic, 0.0) + mg_day
if not is_prn:
meds_by_route_without[detected_route][generic] = meds_by_route_without[detected_route].get(generic, 0.0) + mg_day
# Store medication details
medication_details.append({
"original_text": f"{name} {mg_day}mg/day",
"generic_name": generic,
"dose_mg_day": mg_day,
"detected_route": detected_route,
"is_prn": is_prn,
"is_combination": is_combination,
"combination_note": "Detected as combination but couldn't split" if is_combination else None
})
# Calculate DBI for each route (same as before)
route_results = {}
total_dbi_with = 0.0
total_dbi_without = 0.0
all_details_with = []
all_details_without = []
for route in meds_by_route_with.keys():
if route in all_routes_ref:
route_ref = all_routes_ref[route]
# Calculate DBI for this route
dbi_with, details_with = calculate_dbi(meds_by_route_with[route], route_ref)
dbi_without, details_without = calculate_dbi(meds_by_route_without[route], route_ref)
total_dbi_with += dbi_with
total_dbi_without += dbi_without
# Format details
def _format_details(details, route_name):
formatted = []
for g, d, delta, dbi in details:
formatted.append({
"generic_name": g,
"dose_mg_day": d,
"delta_mg": delta,
"dbi_component": dbi,
"route": route_name
})
return formatted
route_details_with = _format_details(details_with, route)
route_details_without = _format_details(details_without, route)
all_details_with.extend(route_details_with)
all_details_without.extend(route_details_without)
route_results[route] = {
"dbi_with_prn": round(dbi_with, 2),
"dbi_without_prn": round(dbi_without, 2),
"details_with_prn": route_details_with,
"details_without_prn": route_details_without,
"medication_count": route_stats.get(route, 0)
}
return {
"combination_handling": True,
"total_dbi_without_prn": round(total_dbi_without, 2),
"total_dbi_with_prn": round(total_dbi_with, 2),
"routes_detected": list(route_stats.keys()),
"route_statistics": route_stats,
"route_breakdown": route_results,
"all_details_without_prn": all_details_without,
"all_details_with_prn": all_details_with,
"medication_details": medication_details,
"combination_drugs": combination_drugs,
"unmatched_input": unmatched,
}
if __name__ == "__main__":
import sys
import pprint
text = sys.stdin.read() if not sys.stdin.isatty() else "\n".join(sys.argv[1:])
pprint.pp(dbi_mcp(text))
|