Spaces:
Running
Running
Chris McMaster
commited on
Commit
·
819adf9
1
Parent(s):
04e78e6
Improved drug parsing and generic matching
Browse files- .gitignore +14 -0
- app.py +74 -53
- brand_to_generic.py +63 -100
- dbi_mcp.py +401 -10
- requirements.txt +4 -2
.gitignore
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
inputs.json
|
| 2 |
+
/venv/
|
| 3 |
+
/.venv/
|
| 4 |
+
|
| 5 |
+
# Standard python project gitignore
|
| 6 |
+
__pycache__/
|
| 7 |
+
*.pyc
|
| 8 |
+
*.pyo
|
| 9 |
+
*.pyd
|
| 10 |
+
*.pyw
|
| 11 |
+
*.pyz
|
| 12 |
+
*.pywz
|
| 13 |
+
*.pyzw
|
| 14 |
+
*.pyzwz
|
app.py
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from typing import Dict, Any
|
| 3 |
-
from datetime import datetime
|
| 4 |
|
| 5 |
-
from brand_to_generic import brand_lookup
|
| 6 |
from dbi_mcp import dbi_mcp, dbi_mcp_mixed_routes
|
| 7 |
from clinical_calculators import (
|
| 8 |
cockcroft_gault_creatinine_clearance,
|
|
@@ -33,6 +33,64 @@ from adr_analysis import (
|
|
| 33 |
)
|
| 34 |
import time
|
| 35 |
import sys
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
|
| 38 |
@with_error_handling
|
|
@@ -47,10 +105,7 @@ def _brand_lookup_gradio(brand_name: str, prefer_countries_str: str = ""):
|
|
| 47 |
return standardize_response(result, "brand_to_generic")
|
| 48 |
|
| 49 |
|
| 50 |
-
|
| 51 |
-
def _dbi_mcp_gradio(text_block: str, route: str = "oral"):
|
| 52 |
-
result = dbi_mcp(text_block, route=route, ref_csv="dbi_reference_by_route.csv")
|
| 53 |
-
return standardize_response(result, "dbi_calculator")
|
| 54 |
|
| 55 |
|
| 56 |
@with_error_handling
|
|
@@ -224,45 +279,28 @@ def drug_livertox_summary_mcp(drug_name: str) -> str:
|
|
| 224 |
|
| 225 |
|
| 226 |
@with_error_handling
|
| 227 |
-
def brand_to_generic_lookup_mcp(brand_name: str
|
| 228 |
"""
|
| 229 |
Look up generic drug information from brand names.
|
| 230 |
|
| 231 |
Args:
|
| 232 |
brand_name (str): Brand name to look up
|
| 233 |
-
prefer_countries (str): Comma-separated ISO country codes (e.g., "US,CA")
|
| 234 |
|
| 235 |
Returns:
|
| 236 |
str: JSON string with generic drug information and country-specific data
|
| 237 |
"""
|
| 238 |
-
result = _brand_lookup_gradio(brand_name
|
| 239 |
-
return format_json_output(result)
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
@with_error_handling
|
| 243 |
-
def calculate_drug_burden_index_mcp(drug_list: str, route: str = "oral") -> str:
|
| 244 |
-
"""
|
| 245 |
-
Calculate Drug Burden Index (DBI) from a list of medications.
|
| 246 |
-
|
| 247 |
-
Args:
|
| 248 |
-
drug_list (str): Drug list (one per line, include dose and frequency - also write "prn" if the drug is a PRN medication)
|
| 249 |
-
route (str): Route of administration (default: "oral")
|
| 250 |
-
|
| 251 |
-
Returns:
|
| 252 |
-
str: JSON string with DBI calculation results and individual drug contributions
|
| 253 |
-
"""
|
| 254 |
-
result = _dbi_mcp_gradio(drug_list, route)
|
| 255 |
return format_json_output(result)
|
| 256 |
|
| 257 |
|
| 258 |
@with_error_handling
|
| 259 |
-
def
|
| 260 |
"""
|
| 261 |
Calculate Drug Burden Index (DBI) from a list of medications with automatic route detection.
|
| 262 |
|
| 263 |
-
This
|
| 264 |
(oral, transdermal patches, parenteral injections, etc.) and uses the appropriate reference
|
| 265 |
-
data for each route. Perfect for
|
| 266 |
|
| 267 |
Args:
|
| 268 |
drug_list (str): Drug list (one per line, include dose and frequency - also write "prn" if the drug is a PRN medication)
|
|
@@ -278,6 +316,9 @@ def calculate_drug_burden_index_mixed_routes_mcp(drug_list: str) -> str:
|
|
| 278 |
return format_json_output(result)
|
| 279 |
|
| 280 |
|
|
|
|
|
|
|
|
|
|
| 281 |
@with_error_handling
|
| 282 |
def calculate_creatinine_clearance_mcp(
|
| 283 |
age: str, weight_kg: str, serum_creatinine: str, is_female: str
|
|
@@ -746,10 +787,6 @@ brand_generic_ui = gr.Interface(
|
|
| 746 |
fn=brand_to_generic_lookup_mcp,
|
| 747 |
inputs=[
|
| 748 |
gr.Text(label="Brand Name"),
|
| 749 |
-
gr.Text(
|
| 750 |
-
label="Preferred Countries (comma-separated ISO codes, e.g., US,CA)",
|
| 751 |
-
value="US",
|
| 752 |
-
),
|
| 753 |
],
|
| 754 |
outputs=gr.JSON(label="Output"),
|
| 755 |
title="Brand to Generic",
|
|
@@ -759,22 +796,6 @@ brand_generic_ui = gr.Interface(
|
|
| 759 |
|
| 760 |
dbi_calculator_ui = gr.Interface(
|
| 761 |
fn=calculate_drug_burden_index_mcp,
|
| 762 |
-
inputs=[
|
| 763 |
-
gr.Textbox(
|
| 764 |
-
label="Drug List (one per line, include dose and frequency)",
|
| 765 |
-
lines=10,
|
| 766 |
-
placeholder="e.g., Aspirin 100mg daily\nFurosemide 40mg PRN",
|
| 767 |
-
),
|
| 768 |
-
gr.Text(label="Route of Administration", value="oral"),
|
| 769 |
-
],
|
| 770 |
-
outputs=gr.JSON(label="DBI Calculation"),
|
| 771 |
-
title="DBI Calculator (Single Route)",
|
| 772 |
-
api_name="dbi_calculator",
|
| 773 |
-
description="Calculate Drug Burden Index (DBI) from a list of medications. Supports PRN and various dose formats.",
|
| 774 |
-
)
|
| 775 |
-
|
| 776 |
-
dbi_mixed_routes_ui = gr.Interface(
|
| 777 |
-
fn=calculate_drug_burden_index_mixed_routes_mcp,
|
| 778 |
inputs=[
|
| 779 |
gr.Textbox(
|
| 780 |
label="Drug List (one per line, include dose and frequency)",
|
|
@@ -783,11 +804,13 @@ dbi_mixed_routes_ui = gr.Interface(
|
|
| 783 |
),
|
| 784 |
],
|
| 785 |
outputs=gr.JSON(label="DBI Calculation with Route Detection"),
|
| 786 |
-
title="DBI Calculator
|
| 787 |
-
api_name="
|
| 788 |
-
description="
|
| 789 |
)
|
| 790 |
|
|
|
|
|
|
|
| 791 |
cockcroft_gault_ui = gr.Interface(
|
| 792 |
fn=calculate_creatinine_clearance_mcp,
|
| 793 |
inputs=[
|
|
@@ -894,7 +917,6 @@ demo = gr.TabbedInterface(
|
|
| 894 |
livertox_ui,
|
| 895 |
brand_generic_ui,
|
| 896 |
dbi_calculator_ui,
|
| 897 |
-
dbi_mixed_routes_ui,
|
| 898 |
cockcroft_gault_ui,
|
| 899 |
ckd_epi_ui,
|
| 900 |
child_pugh_ui,
|
|
@@ -913,7 +935,6 @@ demo = gr.TabbedInterface(
|
|
| 913 |
"LiverTox",
|
| 914 |
"Brand to Generic",
|
| 915 |
"DBI Calculator",
|
| 916 |
-
"DBI Mixed Routes",
|
| 917 |
"Creatinine CL",
|
| 918 |
"eGFR",
|
| 919 |
"Child-Pugh",
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from typing import Dict, Any
|
| 3 |
+
from datetime import datetime, timedelta
|
| 4 |
|
| 5 |
+
from brand_to_generic import brand_lookup, set_pbs_data
|
| 6 |
from dbi_mcp import dbi_mcp, dbi_mcp_mixed_routes
|
| 7 |
from clinical_calculators import (
|
| 8 |
cockcroft_gault_creatinine_clearance,
|
|
|
|
| 33 |
)
|
| 34 |
import time
|
| 35 |
import sys
|
| 36 |
+
import logging
|
| 37 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
| 38 |
+
import pandas as pd
|
| 39 |
+
|
| 40 |
+
try:
|
| 41 |
+
from datasets import load_dataset
|
| 42 |
+
HAVE_DATASETS = True
|
| 43 |
+
except ImportError:
|
| 44 |
+
HAVE_DATASETS = False
|
| 45 |
+
|
| 46 |
+
# Setup logging
|
| 47 |
+
logging.basicConfig(level=logging.INFO)
|
| 48 |
+
logger = logging.getLogger(__name__)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def load_pbs_data():
|
| 52 |
+
"""Load PBS data from Hugging Face Hub, with fallback to previous month."""
|
| 53 |
+
if not HAVE_DATASETS:
|
| 54 |
+
logger.warning("`datasets` library not installed. Skipping PBS data load.")
|
| 55 |
+
set_pbs_data(pd.DataFrame())
|
| 56 |
+
return
|
| 57 |
+
|
| 58 |
+
today = datetime.now()
|
| 59 |
+
current_month_str = today.strftime("%Y-%m")
|
| 60 |
+
|
| 61 |
+
first_day_current_month = today.replace(day=1)
|
| 62 |
+
last_day_last_month = first_day_current_month - timedelta(days=1)
|
| 63 |
+
last_month_str = last_day_last_month.strftime("%Y-%m")
|
| 64 |
+
|
| 65 |
+
loaded = False
|
| 66 |
+
for month_str in [current_month_str, last_month_str]:
|
| 67 |
+
try:
|
| 68 |
+
logger.info(f"Attempting to load PBS data for {month_str}")
|
| 69 |
+
ds = load_dataset("cmcmaster/pbs_items", month_str, trust_remote_code=True)
|
| 70 |
+
if 'train' in ds:
|
| 71 |
+
pbs_df = ds['train'].to_pandas()
|
| 72 |
+
set_pbs_data(pbs_df)
|
| 73 |
+
logger.info(f"Successfully loaded PBS data for {month_str}. Shape: {pbs_df.shape}")
|
| 74 |
+
loaded = True
|
| 75 |
+
break
|
| 76 |
+
else:
|
| 77 |
+
logger.error(f"No 'train' split found in dataset for month {month_str}")
|
| 78 |
+
|
| 79 |
+
except Exception as e:
|
| 80 |
+
logger.warning(f"Failed to load PBS data for {month_str}: {e}")
|
| 81 |
+
|
| 82 |
+
if not loaded:
|
| 83 |
+
logger.error(f"Failed to load PBS data for both {current_month_str} and {last_month_str}. PBS lookups will be disabled.")
|
| 84 |
+
set_pbs_data(pd.DataFrame())
|
| 85 |
+
|
| 86 |
+
# Initial load on startup
|
| 87 |
+
logger.info("Performing initial load of PBS data...")
|
| 88 |
+
load_pbs_data()
|
| 89 |
+
|
| 90 |
+
# Schedule daily refresh
|
| 91 |
+
scheduler = BackgroundScheduler(daemon=True)
|
| 92 |
+
scheduler.add_job(load_pbs_data, 'interval', days=1)
|
| 93 |
+
scheduler.start()
|
| 94 |
|
| 95 |
|
| 96 |
@with_error_handling
|
|
|
|
| 105 |
return standardize_response(result, "brand_to_generic")
|
| 106 |
|
| 107 |
|
| 108 |
+
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
|
| 111 |
@with_error_handling
|
|
|
|
| 279 |
|
| 280 |
|
| 281 |
@with_error_handling
|
| 282 |
+
def brand_to_generic_lookup_mcp(brand_name: str) -> str:
|
| 283 |
"""
|
| 284 |
Look up generic drug information from brand names.
|
| 285 |
|
| 286 |
Args:
|
| 287 |
brand_name (str): Brand name to look up
|
|
|
|
| 288 |
|
| 289 |
Returns:
|
| 290 |
str: JSON string with generic drug information and country-specific data
|
| 291 |
"""
|
| 292 |
+
result = _brand_lookup_gradio(brand_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
return format_json_output(result)
|
| 294 |
|
| 295 |
|
| 296 |
@with_error_handling
|
| 297 |
+
def calculate_drug_burden_index_mcp(drug_list: str) -> str:
|
| 298 |
"""
|
| 299 |
Calculate Drug Burden Index (DBI) from a list of medications with automatic route detection.
|
| 300 |
|
| 301 |
+
This intelligent version automatically detects the route of administration for each medication
|
| 302 |
(oral, transdermal patches, parenteral injections, etc.) and uses the appropriate reference
|
| 303 |
+
data for each route. Perfect for real-world medication lists with mixed formulations.
|
| 304 |
|
| 305 |
Args:
|
| 306 |
drug_list (str): Drug list (one per line, include dose and frequency - also write "prn" if the drug is a PRN medication)
|
|
|
|
| 316 |
return format_json_output(result)
|
| 317 |
|
| 318 |
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
|
| 322 |
@with_error_handling
|
| 323 |
def calculate_creatinine_clearance_mcp(
|
| 324 |
age: str, weight_kg: str, serum_creatinine: str, is_female: str
|
|
|
|
| 787 |
fn=brand_to_generic_lookup_mcp,
|
| 788 |
inputs=[
|
| 789 |
gr.Text(label="Brand Name"),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 790 |
],
|
| 791 |
outputs=gr.JSON(label="Output"),
|
| 792 |
title="Brand to Generic",
|
|
|
|
| 796 |
|
| 797 |
dbi_calculator_ui = gr.Interface(
|
| 798 |
fn=calculate_drug_burden_index_mcp,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 799 |
inputs=[
|
| 800 |
gr.Textbox(
|
| 801 |
label="Drug List (one per line, include dose and frequency)",
|
|
|
|
| 804 |
),
|
| 805 |
],
|
| 806 |
outputs=gr.JSON(label="DBI Calculation with Route Detection"),
|
| 807 |
+
title="DBI Calculator",
|
| 808 |
+
api_name="dbi_calculator",
|
| 809 |
+
description="Intelligent DBI calculator that automatically detects routes (oral, patches, injections, etc.) and uses appropriate reference data for each medication.",
|
| 810 |
)
|
| 811 |
|
| 812 |
+
|
| 813 |
+
|
| 814 |
cockcroft_gault_ui = gr.Interface(
|
| 815 |
fn=calculate_creatinine_clearance_mcp,
|
| 816 |
inputs=[
|
|
|
|
| 917 |
livertox_ui,
|
| 918 |
brand_generic_ui,
|
| 919 |
dbi_calculator_ui,
|
|
|
|
| 920 |
cockcroft_gault_ui,
|
| 921 |
ckd_epi_ui,
|
| 922 |
child_pugh_ui,
|
|
|
|
| 935 |
"LiverTox",
|
| 936 |
"Brand to Generic",
|
| 937 |
"DBI Calculator",
|
|
|
|
| 938 |
"Creatinine CL",
|
| 939 |
"eGFR",
|
| 940 |
"Child-Pugh",
|
brand_to_generic.py
CHANGED
|
@@ -9,6 +9,10 @@ from typing import Dict, List, Optional
|
|
| 9 |
import requests
|
| 10 |
import csv
|
| 11 |
from io import StringIO
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
logger = logging.getLogger(__name__)
|
| 14 |
|
|
@@ -18,6 +22,28 @@ _session = requests.Session()
|
|
| 18 |
DEFAULT_TIMEOUT = 5 # Reduced from 10
|
| 19 |
FAST_TIMEOUT = 3 # For quick checks
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
class _Throttle:
|
| 23 |
"""Simple host-level throttle (~1 rps)."""
|
|
@@ -58,6 +84,7 @@ _RX_RE_FMT = (
|
|
| 58 |
|
| 59 |
@functools.lru_cache(maxsize=512)
|
| 60 |
def _rxnorm_lookup(brand: str):
|
|
|
|
| 61 |
r = _get("https://rxnav.nlm.nih.gov/REST/rxcui.json", params={"name": brand})
|
| 62 |
if not r or not r.json().get("idGroup", {}).get("rxnormId"):
|
| 63 |
return []
|
|
@@ -89,6 +116,7 @@ _OPENFDA_NDC = "https://api.fda.gov/drug/ndc.json"
|
|
| 89 |
|
| 90 |
@functools.lru_cache(maxsize=512)
|
| 91 |
def _openfda_ndc(brand: str):
|
|
|
|
| 92 |
r = _get(_OPENFDA_NDC, params={"search": f'brand_name:"{brand}"', "limit": 20})
|
| 93 |
if not r:
|
| 94 |
return []
|
|
@@ -125,6 +153,7 @@ _DPD = "https://health-products.canada.ca/api/drug/drugproduct/"
|
|
| 125 |
|
| 126 |
@functools.lru_cache(maxsize=512)
|
| 127 |
def _dpd_lookup(brand: str):
|
|
|
|
| 128 |
r = _get(_DPD, params={"brandname": brand, "lang": "en", "type": "json"})
|
| 129 |
if not r:
|
| 130 |
return []
|
|
@@ -146,37 +175,12 @@ def _dpd_lookup(brand: str):
|
|
| 146 |
return out
|
| 147 |
|
| 148 |
|
| 149 |
-
_PBS_V3_BASE_URL = "https://data-api.health.gov.au/pbs/api/v3"
|
| 150 |
-
_PBS_SUBSCRIPTION_KEY = os.getenv(
|
| 151 |
-
"PBS_API_SUBSCRIPTION_KEY", "2384af7c667342ceb5a736fe29f1dc6b"
|
| 152 |
-
)
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
def _pbs_v3_get(
|
| 156 |
-
endpoint: str, params: Optional[Dict] = None, accept_type: str = "application/json"
|
| 157 |
-
):
|
| 158 |
-
"""Helper to make GET requests to PBS API v3 with auth and throttling."""
|
| 159 |
-
url = f"{_PBS_V3_BASE_URL}/{endpoint}"
|
| 160 |
-
headers = {"subscription-key": _PBS_SUBSCRIPTION_KEY, "Accept": accept_type}
|
| 161 |
-
host = requests.utils.urlparse(url).netloc
|
| 162 |
-
_Throttle.wait(host, gap=5.0) # PBS API specific throttle (1 req per 5 sec)
|
| 163 |
-
try:
|
| 164 |
-
r = _session.get(url, headers=headers, params=params, timeout=20)
|
| 165 |
-
r.raise_for_status()
|
| 166 |
-
return r
|
| 167 |
-
except Exception as exc:
|
| 168 |
-
logger.warning(
|
| 169 |
-
"PBS API v3 request failed for %s (params: %s): %s", url, params, exc
|
| 170 |
-
)
|
| 171 |
-
return None
|
| 172 |
-
|
| 173 |
-
|
| 174 |
def _parse_li_form(li_form_str: Optional[str]) -> Dict[str, Optional[str]]:
|
| 175 |
"""Parses strength and dosage form from an li_form string."""
|
| 176 |
if not li_form_str:
|
| 177 |
return {"strength": None, "dosage_form": None}
|
| 178 |
|
| 179 |
-
strength_regex = r"(
|
| 180 |
|
| 181 |
strength_match = re.search(strength_regex, li_form_str, re.IGNORECASE)
|
| 182 |
|
|
@@ -196,7 +200,7 @@ def _parse_li_form(li_form_str: Optional[str]) -> Dict[str, Optional[str]]:
|
|
| 196 |
extracted_form = form_after
|
| 197 |
|
| 198 |
if not extracted_form and not extracted_strength:
|
| 199 |
-
if not re.search(r"
|
| 200 |
extracted_form = li_form_str.strip()
|
| 201 |
else:
|
| 202 |
extracted_form = li_form_str.strip()
|
|
@@ -209,89 +213,48 @@ def _parse_li_form(li_form_str: Optional[str]) -> Dict[str, Optional[str]]:
|
|
| 209 |
|
| 210 |
@functools.lru_cache(maxsize=512)
|
| 211 |
def _pbs_lookup(brand: str):
|
| 212 |
-
|
| 213 |
-
|
| 214 |
return []
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
)
|
| 220 |
-
logger.warning(
|
| 221 |
-
"PBS API v3: Could not get schedule code from response: %s",
|
| 222 |
-
schedules_data,
|
| 223 |
-
)
|
| 224 |
-
return []
|
| 225 |
-
schedule_code = schedules_data["data"][0]["schedule_code"]
|
| 226 |
-
except (ValueError, IndexError, KeyError) as e:
|
| 227 |
-
logger.warning("PBS API v3: Error parsing schedules response: %s", e)
|
| 228 |
return []
|
| 229 |
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
accept_type="text/csv",
|
| 234 |
-
)
|
| 235 |
-
if not items_resp:
|
| 236 |
return []
|
| 237 |
|
| 238 |
out = []
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
query_params = {
|
| 258 |
-
"schedule_code": schedule_code,
|
| 259 |
-
"brand_name": requests.utils.quote(brand),
|
| 260 |
}
|
| 261 |
-
source_url_params = "&".join([f"{k}={v}" for k, v in query_params.items()])
|
| 262 |
-
source_url = f"{_PBS_V3_BASE_URL}/items?{source_url_params}"
|
| 263 |
-
|
| 264 |
-
out.append(
|
| 265 |
-
{
|
| 266 |
-
"generic_name": generic_name,
|
| 267 |
-
"strength": parsed_form_strength["strength"],
|
| 268 |
-
"dosage_form": parsed_form_strength["dosage_form"],
|
| 269 |
-
"route": row.get("manner_of_administration", "").strip() or None,
|
| 270 |
-
"country": "AU",
|
| 271 |
-
"source": "PBS API v3",
|
| 272 |
-
"ids": {"pbs_item_code": row.get("pbs_code", "").strip()},
|
| 273 |
-
"source_url": source_url,
|
| 274 |
-
}
|
| 275 |
-
)
|
| 276 |
-
except csv.Error as e:
|
| 277 |
-
logger.warning(
|
| 278 |
-
"PBS API v3: CSV parsing error for brand '%s': %s. CSV content: %s",
|
| 279 |
-
brand,
|
| 280 |
-
e,
|
| 281 |
-
csv_text[:500],
|
| 282 |
)
|
| 283 |
-
|
| 284 |
-
except Exception as e:
|
| 285 |
-
logger.exception(
|
| 286 |
-
"PBS API v3: Unexpected error processing items for brand '%s': %s", brand, e
|
| 287 |
-
)
|
| 288 |
-
return []
|
| 289 |
-
|
| 290 |
return out
|
| 291 |
|
| 292 |
|
| 293 |
@functools.lru_cache(maxsize=512)
|
| 294 |
def _pubchem_synonym_lookup(brand: str):
|
|
|
|
| 295 |
url = f"https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/{requests.utils.quote(brand)}/synonyms/JSON"
|
| 296 |
r = _get(url)
|
| 297 |
if not r:
|
|
@@ -333,9 +296,9 @@ def brand_lookup(
|
|
| 333 |
|
| 334 |
for fn in (
|
| 335 |
_pbs_lookup,
|
| 336 |
-
_rxnorm_lookup,
|
| 337 |
-
_openfda_ndc,
|
| 338 |
-
_dpd_lookup,
|
| 339 |
_pubchem_synonym_lookup,
|
| 340 |
):
|
| 341 |
try:
|
|
|
|
| 9 |
import requests
|
| 10 |
import csv
|
| 11 |
from io import StringIO
|
| 12 |
+
try:
|
| 13 |
+
import pandas as pd
|
| 14 |
+
except ImportError:
|
| 15 |
+
pd = None
|
| 16 |
|
| 17 |
logger = logging.getLogger(__name__)
|
| 18 |
|
|
|
|
| 22 |
DEFAULT_TIMEOUT = 5 # Reduced from 10
|
| 23 |
FAST_TIMEOUT = 3 # For quick checks
|
| 24 |
|
| 25 |
+
# Global to hold PBS data
|
| 26 |
+
pbs_data: Optional["pd.DataFrame"] = None
|
| 27 |
+
|
| 28 |
+
# Testing mode flag to disable external API calls
|
| 29 |
+
TESTING_MODE = False
|
| 30 |
+
|
| 31 |
+
def set_pbs_data(data: "pd.DataFrame"):
|
| 32 |
+
"""Sets the global PBS dataframe."""
|
| 33 |
+
global pbs_data
|
| 34 |
+
pbs_data = data
|
| 35 |
+
if pbs_data is not None:
|
| 36 |
+
logger.info(f"PBS data updated. Shape: {pbs_data.shape}")
|
| 37 |
+
else:
|
| 38 |
+
logger.info("PBS data cleared.")
|
| 39 |
+
|
| 40 |
+
def set_testing_mode(is_testing: bool):
|
| 41 |
+
"""Enable/disable testing mode to bypass external API calls."""
|
| 42 |
+
global TESTING_MODE
|
| 43 |
+
TESTING_MODE = is_testing
|
| 44 |
+
if TESTING_MODE:
|
| 45 |
+
logger.warning("Testing mode is enabled. External API calls will be bypassed.")
|
| 46 |
+
|
| 47 |
|
| 48 |
class _Throttle:
|
| 49 |
"""Simple host-level throttle (~1 rps)."""
|
|
|
|
| 84 |
|
| 85 |
@functools.lru_cache(maxsize=512)
|
| 86 |
def _rxnorm_lookup(brand: str):
|
| 87 |
+
if TESTING_MODE: return []
|
| 88 |
r = _get("https://rxnav.nlm.nih.gov/REST/rxcui.json", params={"name": brand})
|
| 89 |
if not r or not r.json().get("idGroup", {}).get("rxnormId"):
|
| 90 |
return []
|
|
|
|
| 116 |
|
| 117 |
@functools.lru_cache(maxsize=512)
|
| 118 |
def _openfda_ndc(brand: str):
|
| 119 |
+
if TESTING_MODE: return []
|
| 120 |
r = _get(_OPENFDA_NDC, params={"search": f'brand_name:"{brand}"', "limit": 20})
|
| 121 |
if not r:
|
| 122 |
return []
|
|
|
|
| 153 |
|
| 154 |
@functools.lru_cache(maxsize=512)
|
| 155 |
def _dpd_lookup(brand: str):
|
| 156 |
+
if TESTING_MODE: return []
|
| 157 |
r = _get(_DPD, params={"brandname": brand, "lang": "en", "type": "json"})
|
| 158 |
if not r:
|
| 159 |
return []
|
|
|
|
| 175 |
return out
|
| 176 |
|
| 177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
def _parse_li_form(li_form_str: Optional[str]) -> Dict[str, Optional[str]]:
|
| 179 |
"""Parses strength and dosage form from an li_form string."""
|
| 180 |
if not li_form_str:
|
| 181 |
return {"strength": None, "dosage_form": None}
|
| 182 |
|
| 183 |
+
strength_regex = r"(\d[\d.,\s]*(?:mg|mcg|g|mL|L|microlitres|nanograms|IU|%|mmol)(?:[\s\/][\d.,\s]*(?:mg|mcg|g|mL|L|microlitres|dose(?:s)?))?(?:\s*\(.*?\))?(?:\s+in\s+[\d.,\s]*(?:mL|L|g|mg))?)"
|
| 184 |
|
| 185 |
strength_match = re.search(strength_regex, li_form_str, re.IGNORECASE)
|
| 186 |
|
|
|
|
| 200 |
extracted_form = form_after
|
| 201 |
|
| 202 |
if not extracted_form and not extracted_strength:
|
| 203 |
+
if not re.search(r"\d", li_form_str):
|
| 204 |
extracted_form = li_form_str.strip()
|
| 205 |
else:
|
| 206 |
extracted_form = li_form_str.strip()
|
|
|
|
| 213 |
|
| 214 |
@functools.lru_cache(maxsize=512)
|
| 215 |
def _pbs_lookup(brand: str):
|
| 216 |
+
if pbs_data is None or pbs_data.empty:
|
| 217 |
+
logger.warning("PBS data not loaded or empty. Skipping PBS lookup for '%s'.", brand)
|
| 218 |
return []
|
| 219 |
+
|
| 220 |
+
brand_lower = brand.lower()
|
| 221 |
+
|
| 222 |
+
if 'brand_name' not in pbs_data.columns:
|
| 223 |
+
logger.error("PBS data does not contain 'brand_name' column. Skipping lookup.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
return []
|
| 225 |
|
| 226 |
+
results_df = pbs_data[pbs_data['brand_name'].str.lower() == brand_lower]
|
| 227 |
+
|
| 228 |
+
if results_df.empty:
|
|
|
|
|
|
|
|
|
|
| 229 |
return []
|
| 230 |
|
| 231 |
out = []
|
| 232 |
+
source_url = "https://huggingface.co/datasets/cmcmaster/pbs_items"
|
| 233 |
+
|
| 234 |
+
for _, row in results_df.iterrows():
|
| 235 |
+
li_form = row.get("li_form")
|
| 236 |
+
parsed_form_strength = _parse_li_form(li_form)
|
| 237 |
+
generic_name = row.get("drug_name", "").strip() or None
|
| 238 |
+
|
| 239 |
+
out.append(
|
| 240 |
+
{
|
| 241 |
+
"generic_name": generic_name,
|
| 242 |
+
"strength": parsed_form_strength["strength"],
|
| 243 |
+
"dosage_form": parsed_form_strength["dosage_form"],
|
| 244 |
+
"route": row.get("manner_of_administration", "").strip() or None,
|
| 245 |
+
"country": "AU",
|
| 246 |
+
"source": "PBS (via Hugging Face Dataset)",
|
| 247 |
+
"ids": {"pbs_item_code": row.get("pbs_code", "").strip()},
|
| 248 |
+
"source_url": source_url,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
)
|
| 251 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
return out
|
| 253 |
|
| 254 |
|
| 255 |
@functools.lru_cache(maxsize=512)
|
| 256 |
def _pubchem_synonym_lookup(brand: str):
|
| 257 |
+
if TESTING_MODE: return []
|
| 258 |
url = f"https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/{requests.utils.quote(brand)}/synonyms/JSON"
|
| 259 |
r = _get(url)
|
| 260 |
if not r:
|
|
|
|
| 296 |
|
| 297 |
for fn in (
|
| 298 |
_pbs_lookup,
|
| 299 |
+
# _rxnorm_lookup, These three fail, so skip them for now
|
| 300 |
+
# _openfda_ndc,
|
| 301 |
+
# _dpd_lookup,
|
| 302 |
_pubchem_synonym_lookup,
|
| 303 |
):
|
| 304 |
try:
|
dbi_mcp.py
CHANGED
|
@@ -10,6 +10,7 @@ from typing import Dict, List, Tuple, Optional, Union, Mapping, Sequence
|
|
| 10 |
from brand_to_generic import brand_lookup
|
| 11 |
|
| 12 |
import csv
|
|
|
|
| 13 |
|
| 14 |
try:
|
| 15 |
import pandas as pd
|
|
@@ -23,8 +24,11 @@ __all__ = [
|
|
| 23 |
"calculate_dbi",
|
| 24 |
"print_report",
|
| 25 |
"detect_route_from_text",
|
|
|
|
|
|
|
| 26 |
"dbi_mcp",
|
| 27 |
"dbi_mcp_mixed_routes",
|
|
|
|
| 28 |
]
|
| 29 |
|
| 30 |
PatientInput = Union[
|
|
@@ -33,6 +37,15 @@ PatientInput = Union[
|
|
| 33 |
Mapping[str, float],
|
| 34 |
]
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
# Route detection patterns
|
| 37 |
ROUTE_PATTERNS = {
|
| 38 |
'transdermal': [
|
|
@@ -96,6 +109,107 @@ def detect_route_from_text(text: str) -> str:
|
|
| 96 |
return 'oral'
|
| 97 |
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
def load_reference(
|
| 100 |
ref_path: Path,
|
| 101 |
*,
|
|
@@ -204,15 +318,17 @@ def calculate_dbi(
|
|
| 204 |
|
| 205 |
logger = logging.getLogger(__name__)
|
| 206 |
|
| 207 |
-
UNIT_PAT = re.compile(r"(?P<val>\d+(?:[.,]\d+)?)(?:\s*)(?P<unit>mcg|μg|mg|g)\b", re.I)
|
| 208 |
|
| 209 |
-
PATCH_PAT = re.compile(r"(?P<val>\d+(?:[.,]\d+)?)(?:\s*)(mcg|μg)\s*/\s*hr", re.I)
|
| 210 |
|
| 211 |
-
|
|
|
|
|
|
|
| 212 |
|
| 213 |
VOL_PAT = re.compile(r"(?P<voldose>\d+(?:[.,]\d+)?)(?:\s*)m ?l", re.I)
|
| 214 |
|
| 215 |
-
QTY_PAT = re.compile(r"(?<!\d)(?P<qty>\d+)\s*(?:tab|caps?|puff|spray|patch|patches)s?\b", re.I)
|
| 216 |
|
| 217 |
FREQ_PAT = re.compile(r"\b(q\d{1,2}h|qd|od|daily|once daily|bid|bd|twice daily|tid|tds|three times daily|qid|four times daily|nocte|mane|am|pm)\b", re.I)
|
| 218 |
EVERY_HOURS_PAT = re.compile(r"q(\d{1,2})h", re.I)
|
|
@@ -227,13 +343,16 @@ _FREQ_MAP = {
|
|
| 227 |
}
|
| 228 |
|
| 229 |
def _unit_to_mg(val: float, unit: str) -> float:
|
| 230 |
-
unit = unit.lower()
|
| 231 |
if unit == "mg":
|
| 232 |
return val
|
| 233 |
-
if unit
|
| 234 |
return val * 1_000
|
| 235 |
-
if unit in {"mcg", "μg"}:
|
| 236 |
return val / 1_000
|
|
|
|
|
|
|
|
|
|
| 237 |
return math.nan
|
| 238 |
|
| 239 |
|
|
@@ -247,7 +366,8 @@ def _freq_to_per_day(token: str) -> float:
|
|
| 247 |
return 24 / hrs if hrs else 1
|
| 248 |
return 1
|
| 249 |
|
| 250 |
-
Parsed = Tuple[str, float, bool, str] #
|
|
|
|
| 251 |
|
| 252 |
@functools.lru_cache(maxsize=2048)
|
| 253 |
def _parse_line(line: str) -> Optional[Parsed]:
|
|
@@ -266,6 +386,65 @@ def _parse_line(line: str) -> Optional[Parsed]:
|
|
| 266 |
# Override route detection for patches
|
| 267 |
return (name_part, mg_day, is_prn, "transdermal")
|
| 268 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
m_conc = CONC_PAT.search(original)
|
| 270 |
m_vol = VOL_PAT.search(original)
|
| 271 |
if m_conc and m_vol:
|
|
@@ -288,10 +467,17 @@ def _parse_line(line: str) -> Optional[Parsed]:
|
|
| 288 |
m = UNIT_PAT.search(original)
|
| 289 |
if m:
|
| 290 |
strength_mg = _unit_to_mg(float(m.group("val").replace(",", ".")), m.group("unit"))
|
| 291 |
-
|
|
|
|
|
|
|
|
|
|
| 292 |
m_qty = QTY_PAT.search(original)
|
| 293 |
if m_qty:
|
| 294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
freq = 1.0
|
| 296 |
m_freq = FREQ_PAT.search(original)
|
| 297 |
if m_freq:
|
|
@@ -302,9 +488,61 @@ def _parse_line(line: str) -> Optional[Parsed]:
|
|
| 302 |
name_part = re.sub(r"\s+", " ", name_part).strip()
|
| 303 |
return (name_part, mg_day, is_prn, detected_route)
|
| 304 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
logger.debug("unhandled line: %s", original)
|
| 306 |
return None
|
| 307 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
def _smart_drug_lookup(raw_name: str, all_routes_reference: Dict[str, Dict[str, Tuple[float, str]]]) -> str:
|
| 309 |
"""
|
| 310 |
Smart drug name resolution that avoids unnecessary API calls.
|
|
@@ -514,6 +752,159 @@ def dbi_mcp_mixed_routes(text_block: str, *, ref_csv: Union[str, Path] = "dbi_re
|
|
| 514 |
}
|
| 515 |
|
| 516 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 517 |
if __name__ == "__main__":
|
| 518 |
import sys
|
| 519 |
import pprint
|
|
|
|
| 10 |
from brand_to_generic import brand_lookup
|
| 11 |
|
| 12 |
import csv
|
| 13 |
+
import json
|
| 14 |
|
| 15 |
try:
|
| 16 |
import pandas as pd
|
|
|
|
| 24 |
"calculate_dbi",
|
| 25 |
"print_report",
|
| 26 |
"detect_route_from_text",
|
| 27 |
+
"detect_combination_drug",
|
| 28 |
+
"split_combination_drug_simple",
|
| 29 |
"dbi_mcp",
|
| 30 |
"dbi_mcp_mixed_routes",
|
| 31 |
+
"dbi_mcp_with_combinations",
|
| 32 |
]
|
| 33 |
|
| 34 |
PatientInput = Union[
|
|
|
|
| 37 |
Mapping[str, float],
|
| 38 |
]
|
| 39 |
|
| 40 |
+
# Combination drug detection patterns
|
| 41 |
+
COMBINATION_PATTERNS = [
|
| 42 |
+
r'\bco-?\w+\b', # co- prefix with optional hyphen (co-codamol, cocodamol)
|
| 43 |
+
r'\b\w+[-/]\w+\b', # hyphen or slash separated (paracetamol-codeine, aspirin/caffeine)
|
| 44 |
+
r'\b\w+\s*\+\s*\w+\b', # plus sign (aspirin + caffeine)
|
| 45 |
+
r'\b\w+\s*with\s+\w+\b', # "with" combinations
|
| 46 |
+
r'\b\w+\s*and\s+\w+\b', # "and" combinations
|
| 47 |
+
]
|
| 48 |
+
|
| 49 |
# Route detection patterns
|
| 50 |
ROUTE_PATTERNS = {
|
| 51 |
'transdermal': [
|
|
|
|
| 109 |
return 'oral'
|
| 110 |
|
| 111 |
|
| 112 |
+
def detect_combination_drug(drug_name: str) -> bool:
|
| 113 |
+
"""
|
| 114 |
+
Detect if a drug name appears to be a combination drug.
|
| 115 |
+
"""
|
| 116 |
+
drug_name_lower = drug_name.lower()
|
| 117 |
+
|
| 118 |
+
for pattern in COMBINATION_PATTERNS:
|
| 119 |
+
if re.search(pattern, drug_name_lower):
|
| 120 |
+
return True
|
| 121 |
+
|
| 122 |
+
# Check for multiple doses in parentheses (e.g., "500mg-9.6mg")
|
| 123 |
+
if re.search(r'\d+(?:\.\d+)?\s*mg\s*[-/]\s*\d+(?:\.\d+)?\s*mg', drug_name_lower):
|
| 124 |
+
return True
|
| 125 |
+
|
| 126 |
+
return False
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def split_combination_drug_simple(drug_text: str) -> List[Tuple[str, str, str]]:
|
| 130 |
+
"""
|
| 131 |
+
Simple rule-based splitting for common combination patterns.
|
| 132 |
+
Returns list of (component_name, original_text, notes).
|
| 133 |
+
"""
|
| 134 |
+
components = []
|
| 135 |
+
drug_text_lower = drug_text.lower()
|
| 136 |
+
|
| 137 |
+
# Handle common combinations
|
| 138 |
+
known_combinations = {
|
| 139 |
+
'co-codamol': [('paracetamol', 'paracetamol component of co-codamol'),
|
| 140 |
+
('codeine', 'codeine component of co-codamol')],
|
| 141 |
+
'cocodamol': [('paracetamol', 'paracetamol component of co-codamol'),
|
| 142 |
+
('codeine', 'codeine component of co-codamol')],
|
| 143 |
+
'co-trimoxazole': [('trimethoprim', 'trimethoprim component of co-trimoxazole'),
|
| 144 |
+
('sulfamethoxazole', 'sulfamethoxazole component of co-trimoxazole')],
|
| 145 |
+
'cotrimoxazole': [('trimethoprim', 'trimethoprim component of co-trimoxazole'),
|
| 146 |
+
('sulfamethoxazole', 'sulfamethoxazole component of co-trimoxazole')],
|
| 147 |
+
'paracetamol-codeine': [('paracetamol', 'paracetamol component'),
|
| 148 |
+
('codeine', 'codeine component')],
|
| 149 |
+
'aspirin-caffeine': [('aspirin', 'aspirin component'),
|
| 150 |
+
('caffeine', 'caffeine component')],
|
| 151 |
+
'tylenol-codeine': [('paracetamol', 'paracetamol component'),
|
| 152 |
+
('codeine', 'codeine component')],
|
| 153 |
+
# Brand name combinations
|
| 154 |
+
'vytorin': [('ezetimibe', 'ezetimibe component of Vytorin'),
|
| 155 |
+
('simvastatin', 'simvastatin component of Vytorin')],
|
| 156 |
+
'exforge': [('amlodipine', 'amlodipine component of Exforge'),
|
| 157 |
+
('valsartan', 'valsartan component of Exforge')],
|
| 158 |
+
'caduet': [('amlodipine', 'amlodipine component of Caduet'),
|
| 159 |
+
('atorvastatin', 'atorvastatin component of Caduet')],
|
| 160 |
+
'janumet': [('sitagliptin', 'sitagliptin component of Janumet'),
|
| 161 |
+
('metformin', 'metformin component of Janumet')],
|
| 162 |
+
'combigan': [('brimonidine', 'brimonidine component of Combigan'),
|
| 163 |
+
('timolol', 'timolol component of Combigan')],
|
| 164 |
+
}
|
| 165 |
+
|
| 166 |
+
# Check for known combinations
|
| 167 |
+
for combo_name, combo_components in known_combinations.items():
|
| 168 |
+
if combo_name in drug_text_lower:
|
| 169 |
+
for comp_name, note in combo_components:
|
| 170 |
+
components.append((comp_name, drug_text, note))
|
| 171 |
+
return components
|
| 172 |
+
|
| 173 |
+
# Try to split hyphenated/slashed combinations
|
| 174 |
+
if '-' in drug_text or '/' in drug_text:
|
| 175 |
+
# Extract the drug name part (before dosing info)
|
| 176 |
+
drug_name_part = re.split(r'\d+', drug_text)[0].strip()
|
| 177 |
+
separators = ['-', '/', '+']
|
| 178 |
+
|
| 179 |
+
for sep in separators:
|
| 180 |
+
if sep in drug_name_part:
|
| 181 |
+
parts = [part.strip() for part in drug_name_part.split(sep)]
|
| 182 |
+
if len(parts) == 2:
|
| 183 |
+
for part in parts:
|
| 184 |
+
if part and len(part) > 2: # Avoid single letters
|
| 185 |
+
components.append((part, drug_text, f'Component of combination drug'))
|
| 186 |
+
return components
|
| 187 |
+
|
| 188 |
+
return components
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def needs_llm_splitting(drug_text: str) -> bool:
|
| 192 |
+
"""
|
| 193 |
+
Determine if a combination drug needs LLM assistance for splitting.
|
| 194 |
+
"""
|
| 195 |
+
if not detect_combination_drug(drug_text):
|
| 196 |
+
return False
|
| 197 |
+
|
| 198 |
+
# Try simple splitting first
|
| 199 |
+
simple_components = split_combination_drug_simple(drug_text)
|
| 200 |
+
|
| 201 |
+
# If simple splitting failed or returned unclear results, use LLM
|
| 202 |
+
if not simple_components:
|
| 203 |
+
return True
|
| 204 |
+
|
| 205 |
+
# If components are too short or unclear, use LLM
|
| 206 |
+
for comp_name, _, _ in simple_components:
|
| 207 |
+
if len(comp_name) < 3 or comp_name.isdigit():
|
| 208 |
+
return True
|
| 209 |
+
|
| 210 |
+
return False
|
| 211 |
+
|
| 212 |
+
|
| 213 |
def load_reference(
|
| 214 |
ref_path: Path,
|
| 215 |
*,
|
|
|
|
| 318 |
|
| 319 |
logger = logging.getLogger(__name__)
|
| 320 |
|
| 321 |
+
UNIT_PAT = re.compile(r"(?P<val>\d+(?:[.,]\d+)?)(?:\s*)(?P<unit>mcg|μg|mg|g|iu|units?|micrograms?|mmol)\b", re.I)
|
| 322 |
|
| 323 |
+
PATCH_PAT = re.compile(r"(?P<val>\d+(?:[.,]\d+)?)(?:\s*)(mcg|μg|microg)\s*/\s*hr", re.I)
|
| 324 |
|
| 325 |
+
PERCENT_PAT = re.compile(r"\b(?P<percent>\d+(?:\.\d+)?)\s*%\b")
|
| 326 |
+
|
| 327 |
+
CONC_PAT = re.compile(r"(?P<drug_val>\d+(?:[.,]\d+)?)(?:\s*)(?P<drug_unit>mcg|μg|mg|g|iu|units?)\s*/\s*(?P<vol_val>\d+(?:[.,]\d+)?)(?:\s*)m ?l", re.I)
|
| 328 |
|
| 329 |
VOL_PAT = re.compile(r"(?P<voldose>\d+(?:[.,]\d+)?)(?:\s*)m ?l", re.I)
|
| 330 |
|
| 331 |
+
QTY_PAT = re.compile(r"(?<!\d)(?P<qty>\d+(?:\s*-\s*\d+)?)\s*(?:tab|caps?|puff|spray|patch|patches|sachet|tube|inhalation|drop)s?\b", re.I)
|
| 332 |
|
| 333 |
FREQ_PAT = re.compile(r"\b(q\d{1,2}h|qd|od|daily|once daily|bid|bd|twice daily|tid|tds|three times daily|qid|four times daily|nocte|mane|am|pm)\b", re.I)
|
| 334 |
EVERY_HOURS_PAT = re.compile(r"q(\d{1,2})h", re.I)
|
|
|
|
| 343 |
}
|
| 344 |
|
| 345 |
def _unit_to_mg(val: float, unit: str) -> float:
|
| 346 |
+
unit = unit.lower().removesuffix('s')
|
| 347 |
if unit == "mg":
|
| 348 |
return val
|
| 349 |
+
if unit == "g":
|
| 350 |
return val * 1_000
|
| 351 |
+
if unit in {"mcg", "μg", "microgram"}:
|
| 352 |
return val / 1_000
|
| 353 |
+
if unit in {"iu", "unit", "mmol"}:
|
| 354 |
+
logger.debug("Cannot reliably convert '%s' to mg. Returning 0.", unit)
|
| 355 |
+
return 0.0
|
| 356 |
return math.nan
|
| 357 |
|
| 358 |
|
|
|
|
| 366 |
return 24 / hrs if hrs else 1
|
| 367 |
return 1
|
| 368 |
|
| 369 |
+
Parsed = Tuple[str, float, bool, str] # (name, mg_day, is_prn, route)
|
| 370 |
+
ParsedCombination = Tuple[str, float, bool, str, bool, List[Tuple[str, str, str]]] # (name, mg_day, is_prn, route, is_combination, components)
|
| 371 |
|
| 372 |
@functools.lru_cache(maxsize=2048)
|
| 373 |
def _parse_line(line: str) -> Optional[Parsed]:
|
|
|
|
| 386 |
# Override route detection for patches
|
| 387 |
return (name_part, mg_day, is_prn, "transdermal")
|
| 388 |
|
| 389 |
+
# Try parsing percentage-based topicals/solutions before standard units
|
| 390 |
+
m_percent = PERCENT_PAT.search(original)
|
| 391 |
+
if m_percent:
|
| 392 |
+
percent_val = float(m_percent.group("percent"))
|
| 393 |
+
|
| 394 |
+
# For liquids where volume is given (e.g., 2% solution, 10mL dose)
|
| 395 |
+
m_vol = VOL_PAT.search(original)
|
| 396 |
+
if m_vol:
|
| 397 |
+
voldose_ml = float(m_vol.group("voldose").replace(",", "."))
|
| 398 |
+
# Assume % is g/100mL for liquids
|
| 399 |
+
strength_g_per_100ml = percent_val
|
| 400 |
+
mg_per_dose = (strength_g_per_100ml * 1000) * (voldose_ml / 100)
|
| 401 |
+
|
| 402 |
+
freq = 1.0
|
| 403 |
+
m_freq = FREQ_PAT.search(original)
|
| 404 |
+
if m_freq:
|
| 405 |
+
freq = _freq_to_per_day(m_freq.group(0))
|
| 406 |
+
|
| 407 |
+
mg_day = mg_per_dose * freq
|
| 408 |
+
name_part = original[:m_percent.start()].strip()
|
| 409 |
+
name_part = re.sub(r"[^A-Za-z0-9\s-]", " ", name_part).strip()
|
| 410 |
+
return (name_part, mg_day, is_prn, detected_route)
|
| 411 |
+
|
| 412 |
+
# Handle drops with percentage strength
|
| 413 |
+
if 'drop' in original.lower():
|
| 414 |
+
# Assume 20 drops/mL for ophthalmic solutions
|
| 415 |
+
g_per_100ml = percent_val
|
| 416 |
+
mg_per_ml = g_per_100ml * 10 # 1% -> 1g/100mL -> 10mg/mL
|
| 417 |
+
|
| 418 |
+
qty = 1.0
|
| 419 |
+
m_qty = QTY_PAT.search(original) # QTY_PAT now includes 'drop'
|
| 420 |
+
if m_qty:
|
| 421 |
+
qty_str = m_qty.group("qty").split('-')[-1].strip() # Use upper end of range
|
| 422 |
+
try:
|
| 423 |
+
qty = float(qty_str)
|
| 424 |
+
except ValueError:
|
| 425 |
+
qty = 1.0
|
| 426 |
+
|
| 427 |
+
# Dose in mg = (number of drops / 20 drops_per_mL) * mg_per_mL
|
| 428 |
+
mg_per_dose = (qty / 20.0) * mg_per_ml
|
| 429 |
+
|
| 430 |
+
freq = 1.0
|
| 431 |
+
m_freq = FREQ_PAT.search(original)
|
| 432 |
+
if m_freq:
|
| 433 |
+
freq = _freq_to_per_day(m_freq.group(0))
|
| 434 |
+
|
| 435 |
+
mg_day = mg_per_dose * freq
|
| 436 |
+
name_part = original[:m_percent.start()].strip()
|
| 437 |
+
name_part = re.sub(r"[^A-Za-z0-9\s-]", " ", name_part).strip()
|
| 438 |
+
return (name_part, mg_day, is_prn, detected_route)
|
| 439 |
+
|
| 440 |
+
# For cases with 'application' or 'drop' (e.g., 0.05% cream, 1 application)
|
| 441 |
+
if 'application' in original.lower() or 'ointment' in original.lower():
|
| 442 |
+
# Can't calculate mg dose, but we can parse the drug name.
|
| 443 |
+
name_part = original[:m_percent.start()].strip()
|
| 444 |
+
name_part = re.sub(r"[^A-Za-z0-9\s-]", " ", name_part).strip()
|
| 445 |
+
logger.debug("Parsed %%-based item but cannot quantify mg/day: %s", original)
|
| 446 |
+
return (name_part, 0.0, is_prn, detected_route)
|
| 447 |
+
|
| 448 |
m_conc = CONC_PAT.search(original)
|
| 449 |
m_vol = VOL_PAT.search(original)
|
| 450 |
if m_conc and m_vol:
|
|
|
|
| 467 |
m = UNIT_PAT.search(original)
|
| 468 |
if m:
|
| 469 |
strength_mg = _unit_to_mg(float(m.group("val").replace(",", ".")), m.group("unit"))
|
| 470 |
+
if math.isnan(strength_mg):
|
| 471 |
+
logger.debug("Unhandled unit '%s' in line: %s", m.group("unit"), original)
|
| 472 |
+
return None
|
| 473 |
+
qty = 1.0
|
| 474 |
m_qty = QTY_PAT.search(original)
|
| 475 |
if m_qty:
|
| 476 |
+
qty_str = m_qty.group("qty").split('-')[-1].strip()
|
| 477 |
+
try:
|
| 478 |
+
qty = float(qty_str)
|
| 479 |
+
except ValueError:
|
| 480 |
+
qty = 1.0
|
| 481 |
freq = 1.0
|
| 482 |
m_freq = FREQ_PAT.search(original)
|
| 483 |
if m_freq:
|
|
|
|
| 488 |
name_part = re.sub(r"\s+", " ", name_part).strip()
|
| 489 |
return (name_part, mg_day, is_prn, detected_route)
|
| 490 |
|
| 491 |
+
# Handle unitless doses like "..., 5, oral" or "..., 2.5-5, oral"
|
| 492 |
+
m_unitless = re.search(r"[,\(]\s*(?P<dose>\d+(?:\.\d+)?(?:\s*-\s*\d+(?:\.\d+)?)?)\s*,\s*(?:oral|sublingual|buccal)", original, re.I)
|
| 493 |
+
if m_unitless:
|
| 494 |
+
dose_str = m_unitless.group("dose").split('-')[-1].strip()
|
| 495 |
+
try:
|
| 496 |
+
strength_mg = float(dose_str) # Assume mg
|
| 497 |
+
freq = 1.0
|
| 498 |
+
m_freq = FREQ_PAT.search(original)
|
| 499 |
+
if m_freq:
|
| 500 |
+
freq = _freq_to_per_day(m_freq.group(0))
|
| 501 |
+
|
| 502 |
+
mg_day = strength_mg * freq
|
| 503 |
+
name_part = original[:m_unitless.start()].strip()
|
| 504 |
+
name_part = re.sub(r"\(.*?\)", "", name_part).strip() # Remove bracketed part of name
|
| 505 |
+
return (name_part, mg_day, is_prn, detected_route)
|
| 506 |
+
except ValueError:
|
| 507 |
+
pass # Could not convert to float
|
| 508 |
+
|
| 509 |
logger.debug("unhandled line: %s", original)
|
| 510 |
return None
|
| 511 |
|
| 512 |
+
|
| 513 |
+
def _parse_line_with_combinations(line: str) -> Optional[ParsedCombination]:
|
| 514 |
+
"""
|
| 515 |
+
Enhanced parsing that detects and handles combination drugs.
|
| 516 |
+
Returns (name, mg_day, is_prn, route, is_combination, components)
|
| 517 |
+
"""
|
| 518 |
+
# First try normal parsing
|
| 519 |
+
parsed = _parse_line(line)
|
| 520 |
+
if not parsed:
|
| 521 |
+
return None
|
| 522 |
+
|
| 523 |
+
name, mg_day, is_prn, route = parsed
|
| 524 |
+
|
| 525 |
+
# Check if this is a combination drug (check both the name and the full line)
|
| 526 |
+
is_combo_name = detect_combination_drug(name)
|
| 527 |
+
is_combo_line = detect_combination_drug(line)
|
| 528 |
+
|
| 529 |
+
if is_combo_name or is_combo_line:
|
| 530 |
+
# Try splitting with both the name and the full line
|
| 531 |
+
components = split_combination_drug_simple(name)
|
| 532 |
+
if not components:
|
| 533 |
+
components = split_combination_drug_simple(line)
|
| 534 |
+
|
| 535 |
+
if components:
|
| 536 |
+
logger.debug(f"Detected combination drug: {name} -> {[c[0] for c in components]}")
|
| 537 |
+
return (name, mg_day, is_prn, route, True, components)
|
| 538 |
+
else:
|
| 539 |
+
logger.debug(f"Combination drug detected but couldn't split: {name}")
|
| 540 |
+
# Mark as combination but with empty components (may need LLM splitting)
|
| 541 |
+
return (name, mg_day, is_prn, route, True, [])
|
| 542 |
+
|
| 543 |
+
# Not a combination drug
|
| 544 |
+
return (name, mg_day, is_prn, route, False, [])
|
| 545 |
+
|
| 546 |
def _smart_drug_lookup(raw_name: str, all_routes_reference: Dict[str, Dict[str, Tuple[float, str]]]) -> str:
|
| 547 |
"""
|
| 548 |
Smart drug name resolution that avoids unnecessary API calls.
|
|
|
|
| 752 |
}
|
| 753 |
|
| 754 |
|
| 755 |
+
def dbi_mcp_with_combinations(text_block: str, *, ref_csv: Union[str, Path] = "dbi_reference_by_route.csv") -> dict:
|
| 756 |
+
"""
|
| 757 |
+
Enhanced DBI calculator that handles combination drugs automatically.
|
| 758 |
+
|
| 759 |
+
This function:
|
| 760 |
+
1. Detects combination drugs (e.g., paracetamol-codeine, co-codamol)
|
| 761 |
+
2. Splits them into individual components
|
| 762 |
+
3. Calculates DBI for each relevant component
|
| 763 |
+
4. Provides detailed breakdown including combination drug handling
|
| 764 |
+
"""
|
| 765 |
+
all_routes_ref = load_all_routes_reference(Path(ref_csv))
|
| 766 |
+
|
| 767 |
+
parsed_combinations: List[ParsedCombination] = []
|
| 768 |
+
unmatched: List[str] = []
|
| 769 |
+
route_stats: Dict[str, int] = {}
|
| 770 |
+
combination_drugs: List[Dict] = []
|
| 771 |
+
|
| 772 |
+
for ln in text_block.splitlines():
|
| 773 |
+
res = _parse_line_with_combinations(ln)
|
| 774 |
+
if res:
|
| 775 |
+
parsed_combinations.append(res)
|
| 776 |
+
route = res[3] # detected route
|
| 777 |
+
route_stats[route] = route_stats.get(route, 0) + 1
|
| 778 |
+
else:
|
| 779 |
+
unmatched.append(ln)
|
| 780 |
+
|
| 781 |
+
# Organize medications by route and PRN status, handling combinations
|
| 782 |
+
meds_by_route_with: Dict[str, Dict[str, float]] = {}
|
| 783 |
+
meds_by_route_without: Dict[str, Dict[str, float]] = {}
|
| 784 |
+
medication_details: List[Dict] = []
|
| 785 |
+
|
| 786 |
+
for name, mg_day, is_prn, detected_route, is_combination, components in parsed_combinations:
|
| 787 |
+
|
| 788 |
+
if is_combination and components:
|
| 789 |
+
# Handle combination drug by processing each component
|
| 790 |
+
combination_info = {
|
| 791 |
+
"original_text": f"{name} {mg_day}mg/day",
|
| 792 |
+
"is_combination": True,
|
| 793 |
+
"components": [],
|
| 794 |
+
"detected_route": detected_route,
|
| 795 |
+
"is_prn": is_prn
|
| 796 |
+
}
|
| 797 |
+
|
| 798 |
+
for comp_name, original_text, note in components:
|
| 799 |
+
generic = _smart_drug_lookup(comp_name, all_routes_ref)
|
| 800 |
+
|
| 801 |
+
# Initialize route dictionaries if needed
|
| 802 |
+
if detected_route not in meds_by_route_with:
|
| 803 |
+
meds_by_route_with[detected_route] = {}
|
| 804 |
+
meds_by_route_without[detected_route] = {}
|
| 805 |
+
|
| 806 |
+
# Add to appropriate dictionaries
|
| 807 |
+
# Note: We use the full dose for each component - this may need refinement
|
| 808 |
+
# based on actual component ratios in the combination
|
| 809 |
+
meds_by_route_with[detected_route][generic] = meds_by_route_with[detected_route].get(generic, 0.0) + mg_day
|
| 810 |
+
if not is_prn:
|
| 811 |
+
meds_by_route_without[detected_route][generic] = meds_by_route_without[detected_route].get(generic, 0.0) + mg_day
|
| 812 |
+
|
| 813 |
+
combination_info["components"].append({
|
| 814 |
+
"component_name": comp_name,
|
| 815 |
+
"generic_name": generic,
|
| 816 |
+
"note": note,
|
| 817 |
+
"dose_mg_day": mg_day # This is simplified - real combinations need dose splitting
|
| 818 |
+
})
|
| 819 |
+
|
| 820 |
+
combination_drugs.append(combination_info)
|
| 821 |
+
medication_details.append(combination_info)
|
| 822 |
+
|
| 823 |
+
else:
|
| 824 |
+
# Handle single drug (or unresolved combination)
|
| 825 |
+
generic = _smart_drug_lookup(name, all_routes_ref)
|
| 826 |
+
|
| 827 |
+
# Initialize route dictionaries if needed
|
| 828 |
+
if detected_route not in meds_by_route_with:
|
| 829 |
+
meds_by_route_with[detected_route] = {}
|
| 830 |
+
meds_by_route_without[detected_route] = {}
|
| 831 |
+
|
| 832 |
+
# Add to appropriate dictionaries
|
| 833 |
+
meds_by_route_with[detected_route][generic] = meds_by_route_with[detected_route].get(generic, 0.0) + mg_day
|
| 834 |
+
if not is_prn:
|
| 835 |
+
meds_by_route_without[detected_route][generic] = meds_by_route_without[detected_route].get(generic, 0.0) + mg_day
|
| 836 |
+
|
| 837 |
+
# Store medication details
|
| 838 |
+
medication_details.append({
|
| 839 |
+
"original_text": f"{name} {mg_day}mg/day",
|
| 840 |
+
"generic_name": generic,
|
| 841 |
+
"dose_mg_day": mg_day,
|
| 842 |
+
"detected_route": detected_route,
|
| 843 |
+
"is_prn": is_prn,
|
| 844 |
+
"is_combination": is_combination,
|
| 845 |
+
"combination_note": "Detected as combination but couldn't split" if is_combination else None
|
| 846 |
+
})
|
| 847 |
+
|
| 848 |
+
# Calculate DBI for each route (same as before)
|
| 849 |
+
route_results = {}
|
| 850 |
+
total_dbi_with = 0.0
|
| 851 |
+
total_dbi_without = 0.0
|
| 852 |
+
all_details_with = []
|
| 853 |
+
all_details_without = []
|
| 854 |
+
|
| 855 |
+
for route in meds_by_route_with.keys():
|
| 856 |
+
if route in all_routes_ref:
|
| 857 |
+
route_ref = all_routes_ref[route]
|
| 858 |
+
|
| 859 |
+
# Calculate DBI for this route
|
| 860 |
+
dbi_with, details_with = calculate_dbi(meds_by_route_with[route], route_ref)
|
| 861 |
+
dbi_without, details_without = calculate_dbi(meds_by_route_without[route], route_ref)
|
| 862 |
+
|
| 863 |
+
total_dbi_with += dbi_with
|
| 864 |
+
total_dbi_without += dbi_without
|
| 865 |
+
|
| 866 |
+
# Format details
|
| 867 |
+
def _format_details(details, route_name):
|
| 868 |
+
formatted = []
|
| 869 |
+
for g, d, delta, dbi in details:
|
| 870 |
+
formatted.append({
|
| 871 |
+
"generic_name": g,
|
| 872 |
+
"dose_mg_day": d,
|
| 873 |
+
"delta_mg": delta,
|
| 874 |
+
"dbi_component": dbi,
|
| 875 |
+
"route": route_name
|
| 876 |
+
})
|
| 877 |
+
return formatted
|
| 878 |
+
|
| 879 |
+
route_details_with = _format_details(details_with, route)
|
| 880 |
+
route_details_without = _format_details(details_without, route)
|
| 881 |
+
|
| 882 |
+
all_details_with.extend(route_details_with)
|
| 883 |
+
all_details_without.extend(route_details_without)
|
| 884 |
+
|
| 885 |
+
route_results[route] = {
|
| 886 |
+
"dbi_with_prn": round(dbi_with, 2),
|
| 887 |
+
"dbi_without_prn": round(dbi_without, 2),
|
| 888 |
+
"details_with_prn": route_details_with,
|
| 889 |
+
"details_without_prn": route_details_without,
|
| 890 |
+
"medication_count": route_stats.get(route, 0)
|
| 891 |
+
}
|
| 892 |
+
|
| 893 |
+
return {
|
| 894 |
+
"combination_handling": True,
|
| 895 |
+
"total_dbi_without_prn": round(total_dbi_without, 2),
|
| 896 |
+
"total_dbi_with_prn": round(total_dbi_with, 2),
|
| 897 |
+
"routes_detected": list(route_stats.keys()),
|
| 898 |
+
"route_statistics": route_stats,
|
| 899 |
+
"route_breakdown": route_results,
|
| 900 |
+
"all_details_without_prn": all_details_without,
|
| 901 |
+
"all_details_with_prn": all_details_with,
|
| 902 |
+
"medication_details": medication_details,
|
| 903 |
+
"combination_drugs": combination_drugs,
|
| 904 |
+
"unmatched_input": unmatched,
|
| 905 |
+
}
|
| 906 |
+
|
| 907 |
+
|
| 908 |
if __name__ == "__main__":
|
| 909 |
import sys
|
| 910 |
import pprint
|
requirements.txt
CHANGED
|
@@ -1,5 +1,7 @@
|
|
| 1 |
-
gradio[mcp]
|
| 2 |
requests
|
|
|
|
|
|
|
| 3 |
datasets
|
|
|
|
| 4 |
beautifulsoup4
|
| 5 |
-
|
|
|
|
|
|
|
| 1 |
requests
|
| 2 |
+
pandas
|
| 3 |
+
gradio
|
| 4 |
datasets
|
| 5 |
+
apscheduler
|
| 6 |
beautifulsoup4
|
| 7 |
+
lxml
|