|
import inspect |
|
import math |
|
from typing import Callable, List, Optional, Tuple, Union |
|
from einops import rearrange |
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
from torch import Tensor |
|
from diffusers.models.attention_processor import Attention |
|
|
|
class LoRALinearLayer(nn.Module): |
|
def __init__( |
|
self, |
|
in_features: int, |
|
out_features: int, |
|
rank: int = 4, |
|
network_alpha: Optional[float] = None, |
|
device: Optional[Union[torch.device, str]] = "cpu", |
|
dtype: Optional[torch.dtype] = None, |
|
cond_width=512, |
|
cond_height=512, |
|
number=0, |
|
n_loras=1 |
|
): |
|
super().__init__() |
|
self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype) |
|
self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype) |
|
|
|
|
|
self.network_alpha = network_alpha |
|
self.rank = rank |
|
self.out_features = out_features |
|
self.in_features = in_features |
|
|
|
nn.init.normal_(self.down.weight, std=1 / rank) |
|
nn.init.zeros_(self.up.weight) |
|
|
|
self.cond_height = cond_height |
|
self.cond_width = cond_width |
|
self.number = number |
|
self.n_loras = n_loras |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
orig_dtype = hidden_states.dtype |
|
dtype = self.down.weight.dtype |
|
|
|
|
|
batch_size = hidden_states.shape[0] |
|
cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64 |
|
block_size = hidden_states.shape[1] - cond_size * self.n_loras |
|
shape = (batch_size, hidden_states.shape[1], 3072) |
|
mask = torch.ones(shape, device=hidden_states.device, dtype=dtype) |
|
mask[:, :block_size+self.number*cond_size, :] = 0 |
|
mask[:, block_size+(self.number+1)*cond_size:, :] = 0 |
|
hidden_states = mask * hidden_states |
|
|
|
|
|
down_hidden_states = self.down(hidden_states.to(dtype)) |
|
up_hidden_states = self.up(down_hidden_states) |
|
|
|
if self.network_alpha is not None: |
|
up_hidden_states *= self.network_alpha / self.rank |
|
|
|
return up_hidden_states.to(orig_dtype) |
|
|
|
|
|
class MultiSingleStreamBlockLoraProcessor(nn.Module): |
|
def __init__(self, dim: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, cond_width=512, cond_height=512, n_loras=1): |
|
super().__init__() |
|
|
|
self.n_loras = n_loras |
|
self.cond_width = cond_width |
|
self.cond_height = cond_height |
|
|
|
self.q_loras = nn.ModuleList([ |
|
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras) |
|
for i in range(n_loras) |
|
]) |
|
self.k_loras = nn.ModuleList([ |
|
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras) |
|
for i in range(n_loras) |
|
]) |
|
self.v_loras = nn.ModuleList([ |
|
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras) |
|
for i in range(n_loras) |
|
]) |
|
self.lora_weights = lora_weights |
|
self.bank_attn = None |
|
self.bank_kv = [] |
|
|
|
|
|
def __call__(self, |
|
attn: Attention, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
image_rotary_emb: Optional[torch.Tensor] = None, |
|
use_cond = False |
|
) -> torch.FloatTensor: |
|
|
|
batch_size, seq_len, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
scaled_seq_len = hidden_states.shape[1] |
|
cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64 |
|
block_size = scaled_seq_len - cond_size * self.n_loras |
|
scaled_cond_size = cond_size |
|
scaled_block_size = block_size |
|
|
|
if len(self.bank_kv)== 0: |
|
cache = True |
|
else: |
|
cache = False |
|
|
|
if cache: |
|
query = attn.to_q(hidden_states) |
|
key = attn.to_k(hidden_states) |
|
value = attn.to_v(hidden_states) |
|
for i in range(self.n_loras): |
|
query = query + self.lora_weights[i] * self.q_loras[i](hidden_states) |
|
key = key + self.lora_weights[i] * self.k_loras[i](hidden_states) |
|
value = value + self.lora_weights[i] * self.v_loras[i](hidden_states) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
self.bank_kv.append(key[:, :, scaled_block_size:, :]) |
|
self.bank_kv.append(value[:, :, scaled_block_size:, :]) |
|
|
|
if attn.norm_q is not None: |
|
query = attn.norm_q(query) |
|
if attn.norm_k is not None: |
|
key = attn.norm_k(key) |
|
|
|
if image_rotary_emb is not None: |
|
from diffusers.models.embeddings import apply_rotary_emb |
|
query = apply_rotary_emb(query, image_rotary_emb) |
|
key = apply_rotary_emb(key, image_rotary_emb) |
|
|
|
num_cond_blocks = self.n_loras |
|
mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device) |
|
mask[ :scaled_block_size, :] = 0 |
|
for i in range(num_cond_blocks): |
|
start = i * scaled_cond_size + scaled_block_size |
|
end = (i + 1) * scaled_cond_size + scaled_block_size |
|
mask[start:end, start:end] = 0 |
|
mask = mask * -1e10 |
|
mask = mask.to(query.dtype) |
|
|
|
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask) |
|
self.bank_attn = hidden_states[:, :, scaled_block_size:, :] |
|
|
|
else: |
|
query = attn.to_q(hidden_states) |
|
key = attn.to_k(hidden_states) |
|
value = attn.to_v(hidden_states) |
|
|
|
inner_dim = query.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = torch.concat([key[:, :, :scaled_block_size, :], self.bank_kv[0]], dim=-2) |
|
value = torch.concat([value[:, :, :scaled_block_size, :], self.bank_kv[1]], dim=-2) |
|
|
|
if attn.norm_q is not None: |
|
query = attn.norm_q(query) |
|
if attn.norm_k is not None: |
|
key = attn.norm_k(key) |
|
|
|
if image_rotary_emb is not None: |
|
from diffusers.models.embeddings import apply_rotary_emb |
|
query = apply_rotary_emb(query, image_rotary_emb) |
|
key = apply_rotary_emb(key, image_rotary_emb) |
|
|
|
query = query[:, :, :scaled_block_size, :] |
|
|
|
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None) |
|
hidden_states = torch.concat([hidden_states, self.bank_attn], dim=-2) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
cond_hidden_states = hidden_states[:, block_size:,:] |
|
hidden_states = hidden_states[:, : block_size,:] |
|
|
|
return hidden_states if not use_cond else (hidden_states, cond_hidden_states) |
|
|
|
|
|
class MultiDoubleStreamBlockLoraProcessor(nn.Module): |
|
def __init__(self, dim: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, cond_width=512, cond_height=512, n_loras=1): |
|
super().__init__() |
|
|
|
|
|
self.n_loras = n_loras |
|
self.cond_width = cond_width |
|
self.cond_height = cond_height |
|
self.q_loras = nn.ModuleList([ |
|
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras) |
|
for i in range(n_loras) |
|
]) |
|
self.k_loras = nn.ModuleList([ |
|
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras) |
|
for i in range(n_loras) |
|
]) |
|
self.v_loras = nn.ModuleList([ |
|
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras) |
|
for i in range(n_loras) |
|
]) |
|
self.proj_loras = nn.ModuleList([ |
|
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras) |
|
for i in range(n_loras) |
|
]) |
|
self.lora_weights = lora_weights |
|
self.bank_attn = None |
|
self.bank_kv = [] |
|
|
|
|
|
def __call__(self, |
|
attn: Attention, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
image_rotary_emb: Optional[torch.Tensor] = None, |
|
use_cond=False, |
|
) -> torch.FloatTensor: |
|
|
|
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64 |
|
block_size = hidden_states.shape[1] - cond_size * self.n_loras |
|
scaled_seq_len = encoder_hidden_states.shape[1] + hidden_states.shape[1] |
|
scaled_cond_size = cond_size |
|
scaled_block_size = scaled_seq_len - scaled_cond_size * self.n_loras |
|
|
|
|
|
inner_dim = 3072 |
|
head_dim = inner_dim // attn.heads |
|
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) |
|
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) |
|
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) |
|
|
|
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
|
|
if attn.norm_added_q is not None: |
|
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) |
|
if attn.norm_added_k is not None: |
|
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) |
|
|
|
if len(self.bank_kv)== 0: |
|
cache = True |
|
else: |
|
cache = False |
|
|
|
if cache: |
|
|
|
query = attn.to_q(hidden_states) |
|
key = attn.to_k(hidden_states) |
|
value = attn.to_v(hidden_states) |
|
for i in range(self.n_loras): |
|
query = query + self.lora_weights[i] * self.q_loras[i](hidden_states) |
|
key = key + self.lora_weights[i] * self.k_loras[i](hidden_states) |
|
value = value + self.lora_weights[i] * self.v_loras[i](hidden_states) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
self.bank_kv.append(key[:, :, block_size:, :]) |
|
self.bank_kv.append(value[:, :, block_size:, :]) |
|
|
|
if attn.norm_q is not None: |
|
query = attn.norm_q(query) |
|
if attn.norm_k is not None: |
|
key = attn.norm_k(key) |
|
|
|
|
|
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) |
|
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) |
|
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) |
|
|
|
if image_rotary_emb is not None: |
|
from diffusers.models.embeddings import apply_rotary_emb |
|
query = apply_rotary_emb(query, image_rotary_emb) |
|
key = apply_rotary_emb(key, image_rotary_emb) |
|
|
|
num_cond_blocks = self.n_loras |
|
mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device) |
|
mask[ :scaled_block_size, :] = 0 |
|
for i in range(num_cond_blocks): |
|
start = i * scaled_cond_size + scaled_block_size |
|
end = (i + 1) * scaled_cond_size + scaled_block_size |
|
mask[start:end, start:end] = 0 |
|
mask = mask * -1e10 |
|
mask = mask.to(query.dtype) |
|
|
|
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask) |
|
self.bank_attn = hidden_states[:, :, scaled_block_size:, :] |
|
|
|
else: |
|
query = attn.to_q(hidden_states) |
|
key = attn.to_k(hidden_states) |
|
value = attn.to_v(hidden_states) |
|
|
|
inner_dim = query.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = torch.concat([key[:, :, :block_size, :], self.bank_kv[0]], dim=-2) |
|
value = torch.concat([value[:, :, :block_size, :], self.bank_kv[1]], dim=-2) |
|
|
|
if attn.norm_q is not None: |
|
query = attn.norm_q(query) |
|
if attn.norm_k is not None: |
|
key = attn.norm_k(key) |
|
|
|
|
|
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) |
|
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) |
|
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) |
|
|
|
if image_rotary_emb is not None: |
|
from diffusers.models.embeddings import apply_rotary_emb |
|
query = apply_rotary_emb(query, image_rotary_emb) |
|
key = apply_rotary_emb(key, image_rotary_emb) |
|
|
|
query = query[:, :, :scaled_block_size, :] |
|
|
|
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None) |
|
hidden_states = torch.concat([hidden_states, self.bank_attn], dim=-2) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
encoder_hidden_states, hidden_states = ( |
|
hidden_states[:, : encoder_hidden_states.shape[1]], |
|
hidden_states[:, encoder_hidden_states.shape[1] :], |
|
) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
for i in range(self.n_loras): |
|
hidden_states = hidden_states + self.lora_weights[i] * self.proj_loras[i](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
encoder_hidden_states = attn.to_add_out(encoder_hidden_states) |
|
|
|
cond_hidden_states = hidden_states[:, block_size:,:] |
|
hidden_states = hidden_states[:, :block_size,:] |
|
|
|
return (hidden_states, encoder_hidden_states, cond_hidden_states) if use_cond else (encoder_hidden_states, hidden_states) |