Update src/layers_cache.py
Browse files- src/layers_cache.py +367 -367
src/layers_cache.py
CHANGED
@@ -1,368 +1,368 @@
|
|
1 |
-
import inspect
|
2 |
-
import math
|
3 |
-
from typing import Callable, List, Optional, Tuple, Union
|
4 |
-
from einops import rearrange
|
5 |
-
import torch
|
6 |
-
from torch import nn
|
7 |
-
import torch.nn.functional as F
|
8 |
-
from torch import Tensor
|
9 |
-
from diffusers.models.attention_processor import Attention
|
10 |
-
|
11 |
-
class LoRALinearLayer(nn.Module):
|
12 |
-
def __init__(
|
13 |
-
self,
|
14 |
-
in_features: int,
|
15 |
-
out_features: int,
|
16 |
-
rank: int = 4,
|
17 |
-
network_alpha: Optional[float] = None,
|
18 |
-
device: Optional[Union[torch.device, str]] =
|
19 |
-
dtype: Optional[torch.dtype] = None,
|
20 |
-
cond_width=512,
|
21 |
-
cond_height=512,
|
22 |
-
number=0,
|
23 |
-
n_loras=1
|
24 |
-
):
|
25 |
-
super().__init__()
|
26 |
-
self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
|
27 |
-
self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
|
28 |
-
# This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
|
29 |
-
# See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
|
30 |
-
self.network_alpha = network_alpha
|
31 |
-
self.rank = rank
|
32 |
-
self.out_features = out_features
|
33 |
-
self.in_features = in_features
|
34 |
-
|
35 |
-
nn.init.normal_(self.down.weight, std=1 / rank)
|
36 |
-
nn.init.zeros_(self.up.weight)
|
37 |
-
|
38 |
-
self.cond_height = cond_height
|
39 |
-
self.cond_width = cond_width
|
40 |
-
self.number = number
|
41 |
-
self.n_loras = n_loras
|
42 |
-
|
43 |
-
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
44 |
-
orig_dtype = hidden_states.dtype
|
45 |
-
dtype = self.down.weight.dtype
|
46 |
-
|
47 |
-
####
|
48 |
-
batch_size = hidden_states.shape[0]
|
49 |
-
cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
|
50 |
-
block_size = hidden_states.shape[1] - cond_size * self.n_loras
|
51 |
-
shape = (batch_size, hidden_states.shape[1], 3072)
|
52 |
-
mask = torch.ones(shape, device=hidden_states.device, dtype=dtype)
|
53 |
-
mask[:, :block_size+self.number*cond_size, :] = 0
|
54 |
-
mask[:, block_size+(self.number+1)*cond_size:, :] = 0
|
55 |
-
hidden_states = mask * hidden_states
|
56 |
-
####
|
57 |
-
|
58 |
-
down_hidden_states = self.down(hidden_states.to(dtype))
|
59 |
-
up_hidden_states = self.up(down_hidden_states)
|
60 |
-
|
61 |
-
if self.network_alpha is not None:
|
62 |
-
up_hidden_states *= self.network_alpha / self.rank
|
63 |
-
|
64 |
-
return up_hidden_states.to(orig_dtype)
|
65 |
-
|
66 |
-
|
67 |
-
class MultiSingleStreamBlockLoraProcessor(nn.Module):
|
68 |
-
def __init__(self, dim: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, cond_width=512, cond_height=512, n_loras=1):
|
69 |
-
super().__init__()
|
70 |
-
# Initialize a list to store the LoRA layers
|
71 |
-
self.n_loras = n_loras
|
72 |
-
self.cond_width = cond_width
|
73 |
-
self.cond_height = cond_height
|
74 |
-
|
75 |
-
self.q_loras = nn.ModuleList([
|
76 |
-
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
77 |
-
for i in range(n_loras)
|
78 |
-
])
|
79 |
-
self.k_loras = nn.ModuleList([
|
80 |
-
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
81 |
-
for i in range(n_loras)
|
82 |
-
])
|
83 |
-
self.v_loras = nn.ModuleList([
|
84 |
-
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
85 |
-
for i in range(n_loras)
|
86 |
-
])
|
87 |
-
self.lora_weights = lora_weights
|
88 |
-
self.bank_attn = None
|
89 |
-
self.bank_kv = []
|
90 |
-
|
91 |
-
|
92 |
-
def __call__(self,
|
93 |
-
attn: Attention,
|
94 |
-
hidden_states: torch.FloatTensor,
|
95 |
-
encoder_hidden_states: torch.FloatTensor = None,
|
96 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
97 |
-
image_rotary_emb: Optional[torch.Tensor] = None,
|
98 |
-
use_cond = False
|
99 |
-
) -> torch.FloatTensor:
|
100 |
-
|
101 |
-
batch_size, seq_len, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
102 |
-
scaled_seq_len = hidden_states.shape[1]
|
103 |
-
cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
|
104 |
-
block_size = scaled_seq_len - cond_size * self.n_loras
|
105 |
-
scaled_cond_size = cond_size
|
106 |
-
scaled_block_size = block_size
|
107 |
-
|
108 |
-
if len(self.bank_kv)== 0:
|
109 |
-
cache = True
|
110 |
-
else:
|
111 |
-
cache = False
|
112 |
-
|
113 |
-
if cache:
|
114 |
-
query = attn.to_q(hidden_states)
|
115 |
-
key = attn.to_k(hidden_states)
|
116 |
-
value = attn.to_v(hidden_states)
|
117 |
-
for i in range(self.n_loras):
|
118 |
-
query = query + self.lora_weights[i] * self.q_loras[i](hidden_states)
|
119 |
-
key = key + self.lora_weights[i] * self.k_loras[i](hidden_states)
|
120 |
-
value = value + self.lora_weights[i] * self.v_loras[i](hidden_states)
|
121 |
-
|
122 |
-
inner_dim = key.shape[-1]
|
123 |
-
head_dim = inner_dim // attn.heads
|
124 |
-
|
125 |
-
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
126 |
-
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
127 |
-
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
128 |
-
|
129 |
-
self.bank_kv.append(key[:, :, scaled_block_size:, :])
|
130 |
-
self.bank_kv.append(value[:, :, scaled_block_size:, :])
|
131 |
-
|
132 |
-
if attn.norm_q is not None:
|
133 |
-
query = attn.norm_q(query)
|
134 |
-
if attn.norm_k is not None:
|
135 |
-
key = attn.norm_k(key)
|
136 |
-
|
137 |
-
if image_rotary_emb is not None:
|
138 |
-
from diffusers.models.embeddings import apply_rotary_emb
|
139 |
-
query = apply_rotary_emb(query, image_rotary_emb)
|
140 |
-
key = apply_rotary_emb(key, image_rotary_emb)
|
141 |
-
|
142 |
-
num_cond_blocks = self.n_loras
|
143 |
-
mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device)
|
144 |
-
mask[ :scaled_block_size, :] = 0 # First block_size row
|
145 |
-
for i in range(num_cond_blocks):
|
146 |
-
start = i * scaled_cond_size + scaled_block_size
|
147 |
-
end = (i + 1) * scaled_cond_size + scaled_block_size
|
148 |
-
mask[start:end, start:end] = 0 # Diagonal blocks
|
149 |
-
mask = mask * -1e10
|
150 |
-
mask = mask.to(query.dtype)
|
151 |
-
|
152 |
-
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask)
|
153 |
-
self.bank_attn = hidden_states[:, :, scaled_block_size:, :]
|
154 |
-
|
155 |
-
else:
|
156 |
-
query = attn.to_q(hidden_states)
|
157 |
-
key = attn.to_k(hidden_states)
|
158 |
-
value = attn.to_v(hidden_states)
|
159 |
-
|
160 |
-
inner_dim = query.shape[-1]
|
161 |
-
head_dim = inner_dim // attn.heads
|
162 |
-
|
163 |
-
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
164 |
-
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
165 |
-
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
166 |
-
|
167 |
-
key = torch.concat([key[:, :, :scaled_block_size, :], self.bank_kv[0]], dim=-2)
|
168 |
-
value = torch.concat([value[:, :, :scaled_block_size, :], self.bank_kv[1]], dim=-2)
|
169 |
-
|
170 |
-
if attn.norm_q is not None:
|
171 |
-
query = attn.norm_q(query)
|
172 |
-
if attn.norm_k is not None:
|
173 |
-
key = attn.norm_k(key)
|
174 |
-
|
175 |
-
if image_rotary_emb is not None:
|
176 |
-
from diffusers.models.embeddings import apply_rotary_emb
|
177 |
-
query = apply_rotary_emb(query, image_rotary_emb)
|
178 |
-
key = apply_rotary_emb(key, image_rotary_emb)
|
179 |
-
|
180 |
-
query = query[:, :, :scaled_block_size, :]
|
181 |
-
|
182 |
-
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None)
|
183 |
-
hidden_states = torch.concat([hidden_states, self.bank_attn], dim=-2)
|
184 |
-
|
185 |
-
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
186 |
-
hidden_states = hidden_states.to(query.dtype)
|
187 |
-
|
188 |
-
cond_hidden_states = hidden_states[:, block_size:,:]
|
189 |
-
hidden_states = hidden_states[:, : block_size,:]
|
190 |
-
|
191 |
-
return hidden_states if not use_cond else (hidden_states, cond_hidden_states)
|
192 |
-
|
193 |
-
|
194 |
-
class MultiDoubleStreamBlockLoraProcessor(nn.Module):
|
195 |
-
def __init__(self, dim: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, cond_width=512, cond_height=512, n_loras=1):
|
196 |
-
super().__init__()
|
197 |
-
|
198 |
-
# Initialize a list to store the LoRA layers
|
199 |
-
self.n_loras = n_loras
|
200 |
-
self.cond_width = cond_width
|
201 |
-
self.cond_height = cond_height
|
202 |
-
self.q_loras = nn.ModuleList([
|
203 |
-
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
204 |
-
for i in range(n_loras)
|
205 |
-
])
|
206 |
-
self.k_loras = nn.ModuleList([
|
207 |
-
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
208 |
-
for i in range(n_loras)
|
209 |
-
])
|
210 |
-
self.v_loras = nn.ModuleList([
|
211 |
-
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
212 |
-
for i in range(n_loras)
|
213 |
-
])
|
214 |
-
self.proj_loras = nn.ModuleList([
|
215 |
-
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
216 |
-
for i in range(n_loras)
|
217 |
-
])
|
218 |
-
self.lora_weights = lora_weights
|
219 |
-
self.bank_attn = None
|
220 |
-
self.bank_kv = []
|
221 |
-
|
222 |
-
|
223 |
-
def __call__(self,
|
224 |
-
attn: Attention,
|
225 |
-
hidden_states: torch.FloatTensor,
|
226 |
-
encoder_hidden_states: torch.FloatTensor = None,
|
227 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
228 |
-
image_rotary_emb: Optional[torch.Tensor] = None,
|
229 |
-
use_cond=False,
|
230 |
-
) -> torch.FloatTensor:
|
231 |
-
|
232 |
-
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
233 |
-
cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
|
234 |
-
block_size = hidden_states.shape[1] - cond_size * self.n_loras
|
235 |
-
scaled_seq_len = encoder_hidden_states.shape[1] + hidden_states.shape[1]
|
236 |
-
scaled_cond_size = cond_size
|
237 |
-
scaled_block_size = scaled_seq_len - scaled_cond_size * self.n_loras
|
238 |
-
|
239 |
-
# `context` projections.
|
240 |
-
inner_dim = 3072
|
241 |
-
head_dim = inner_dim // attn.heads
|
242 |
-
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
243 |
-
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
244 |
-
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
245 |
-
|
246 |
-
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
247 |
-
batch_size, -1, attn.heads, head_dim
|
248 |
-
).transpose(1, 2)
|
249 |
-
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
250 |
-
batch_size, -1, attn.heads, head_dim
|
251 |
-
).transpose(1, 2)
|
252 |
-
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
253 |
-
batch_size, -1, attn.heads, head_dim
|
254 |
-
).transpose(1, 2)
|
255 |
-
|
256 |
-
if attn.norm_added_q is not None:
|
257 |
-
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
|
258 |
-
if attn.norm_added_k is not None:
|
259 |
-
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
|
260 |
-
|
261 |
-
if len(self.bank_kv)== 0:
|
262 |
-
cache = True
|
263 |
-
else:
|
264 |
-
cache = False
|
265 |
-
|
266 |
-
if cache:
|
267 |
-
|
268 |
-
query = attn.to_q(hidden_states)
|
269 |
-
key = attn.to_k(hidden_states)
|
270 |
-
value = attn.to_v(hidden_states)
|
271 |
-
for i in range(self.n_loras):
|
272 |
-
query = query + self.lora_weights[i] * self.q_loras[i](hidden_states)
|
273 |
-
key = key + self.lora_weights[i] * self.k_loras[i](hidden_states)
|
274 |
-
value = value + self.lora_weights[i] * self.v_loras[i](hidden_states)
|
275 |
-
|
276 |
-
inner_dim = key.shape[-1]
|
277 |
-
head_dim = inner_dim // attn.heads
|
278 |
-
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
279 |
-
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
280 |
-
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
281 |
-
|
282 |
-
|
283 |
-
self.bank_kv.append(key[:, :, block_size:, :])
|
284 |
-
self.bank_kv.append(value[:, :, block_size:, :])
|
285 |
-
|
286 |
-
if attn.norm_q is not None:
|
287 |
-
query = attn.norm_q(query)
|
288 |
-
if attn.norm_k is not None:
|
289 |
-
key = attn.norm_k(key)
|
290 |
-
|
291 |
-
# attention
|
292 |
-
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
293 |
-
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
294 |
-
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
295 |
-
|
296 |
-
if image_rotary_emb is not None:
|
297 |
-
from diffusers.models.embeddings import apply_rotary_emb
|
298 |
-
query = apply_rotary_emb(query, image_rotary_emb)
|
299 |
-
key = apply_rotary_emb(key, image_rotary_emb)
|
300 |
-
|
301 |
-
num_cond_blocks = self.n_loras
|
302 |
-
mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device)
|
303 |
-
mask[ :scaled_block_size, :] = 0 # First block_size row
|
304 |
-
for i in range(num_cond_blocks):
|
305 |
-
start = i * scaled_cond_size + scaled_block_size
|
306 |
-
end = (i + 1) * scaled_cond_size + scaled_block_size
|
307 |
-
mask[start:end, start:end] = 0 # Diagonal blocks
|
308 |
-
mask = mask * -1e10
|
309 |
-
mask = mask.to(query.dtype)
|
310 |
-
|
311 |
-
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask)
|
312 |
-
self.bank_attn = hidden_states[:, :, scaled_block_size:, :]
|
313 |
-
|
314 |
-
else:
|
315 |
-
query = attn.to_q(hidden_states)
|
316 |
-
key = attn.to_k(hidden_states)
|
317 |
-
value = attn.to_v(hidden_states)
|
318 |
-
|
319 |
-
inner_dim = query.shape[-1]
|
320 |
-
head_dim = inner_dim // attn.heads
|
321 |
-
|
322 |
-
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
323 |
-
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
324 |
-
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
325 |
-
|
326 |
-
key = torch.concat([key[:, :, :block_size, :], self.bank_kv[0]], dim=-2)
|
327 |
-
value = torch.concat([value[:, :, :block_size, :], self.bank_kv[1]], dim=-2)
|
328 |
-
|
329 |
-
if attn.norm_q is not None:
|
330 |
-
query = attn.norm_q(query)
|
331 |
-
if attn.norm_k is not None:
|
332 |
-
key = attn.norm_k(key)
|
333 |
-
|
334 |
-
# attention
|
335 |
-
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
336 |
-
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
337 |
-
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
338 |
-
|
339 |
-
if image_rotary_emb is not None:
|
340 |
-
from diffusers.models.embeddings import apply_rotary_emb
|
341 |
-
query = apply_rotary_emb(query, image_rotary_emb)
|
342 |
-
key = apply_rotary_emb(key, image_rotary_emb)
|
343 |
-
|
344 |
-
query = query[:, :, :scaled_block_size, :]
|
345 |
-
|
346 |
-
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None)
|
347 |
-
hidden_states = torch.concat([hidden_states, self.bank_attn], dim=-2)
|
348 |
-
|
349 |
-
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
350 |
-
hidden_states = hidden_states.to(query.dtype)
|
351 |
-
|
352 |
-
encoder_hidden_states, hidden_states = (
|
353 |
-
hidden_states[:, : encoder_hidden_states.shape[1]],
|
354 |
-
hidden_states[:, encoder_hidden_states.shape[1] :],
|
355 |
-
)
|
356 |
-
|
357 |
-
# Linear projection (with LoRA weight applied to each proj layer)
|
358 |
-
hidden_states = attn.to_out[0](hidden_states)
|
359 |
-
for i in range(self.n_loras):
|
360 |
-
hidden_states = hidden_states + self.lora_weights[i] * self.proj_loras[i](hidden_states)
|
361 |
-
# dropout
|
362 |
-
hidden_states = attn.to_out[1](hidden_states)
|
363 |
-
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
364 |
-
|
365 |
-
cond_hidden_states = hidden_states[:, block_size:,:]
|
366 |
-
hidden_states = hidden_states[:, :block_size,:]
|
367 |
-
|
368 |
return (hidden_states, encoder_hidden_states, cond_hidden_states) if use_cond else (encoder_hidden_states, hidden_states)
|
|
|
1 |
+
import inspect
|
2 |
+
import math
|
3 |
+
from typing import Callable, List, Optional, Tuple, Union
|
4 |
+
from einops import rearrange
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from torch import Tensor
|
9 |
+
from diffusers.models.attention_processor import Attention
|
10 |
+
|
11 |
+
class LoRALinearLayer(nn.Module):
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
in_features: int,
|
15 |
+
out_features: int,
|
16 |
+
rank: int = 4,
|
17 |
+
network_alpha: Optional[float] = None,
|
18 |
+
device: Optional[Union[torch.device, str]] = "cpu",
|
19 |
+
dtype: Optional[torch.dtype] = None,
|
20 |
+
cond_width=512,
|
21 |
+
cond_height=512,
|
22 |
+
number=0,
|
23 |
+
n_loras=1
|
24 |
+
):
|
25 |
+
super().__init__()
|
26 |
+
self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
|
27 |
+
self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
|
28 |
+
# This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
|
29 |
+
# See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
|
30 |
+
self.network_alpha = network_alpha
|
31 |
+
self.rank = rank
|
32 |
+
self.out_features = out_features
|
33 |
+
self.in_features = in_features
|
34 |
+
|
35 |
+
nn.init.normal_(self.down.weight, std=1 / rank)
|
36 |
+
nn.init.zeros_(self.up.weight)
|
37 |
+
|
38 |
+
self.cond_height = cond_height
|
39 |
+
self.cond_width = cond_width
|
40 |
+
self.number = number
|
41 |
+
self.n_loras = n_loras
|
42 |
+
|
43 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
44 |
+
orig_dtype = hidden_states.dtype
|
45 |
+
dtype = self.down.weight.dtype
|
46 |
+
|
47 |
+
####
|
48 |
+
batch_size = hidden_states.shape[0]
|
49 |
+
cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
|
50 |
+
block_size = hidden_states.shape[1] - cond_size * self.n_loras
|
51 |
+
shape = (batch_size, hidden_states.shape[1], 3072)
|
52 |
+
mask = torch.ones(shape, device=hidden_states.device, dtype=dtype)
|
53 |
+
mask[:, :block_size+self.number*cond_size, :] = 0
|
54 |
+
mask[:, block_size+(self.number+1)*cond_size:, :] = 0
|
55 |
+
hidden_states = mask * hidden_states
|
56 |
+
####
|
57 |
+
|
58 |
+
down_hidden_states = self.down(hidden_states.to(dtype))
|
59 |
+
up_hidden_states = self.up(down_hidden_states)
|
60 |
+
|
61 |
+
if self.network_alpha is not None:
|
62 |
+
up_hidden_states *= self.network_alpha / self.rank
|
63 |
+
|
64 |
+
return up_hidden_states.to(orig_dtype)
|
65 |
+
|
66 |
+
|
67 |
+
class MultiSingleStreamBlockLoraProcessor(nn.Module):
|
68 |
+
def __init__(self, dim: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, cond_width=512, cond_height=512, n_loras=1):
|
69 |
+
super().__init__()
|
70 |
+
# Initialize a list to store the LoRA layers
|
71 |
+
self.n_loras = n_loras
|
72 |
+
self.cond_width = cond_width
|
73 |
+
self.cond_height = cond_height
|
74 |
+
|
75 |
+
self.q_loras = nn.ModuleList([
|
76 |
+
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
77 |
+
for i in range(n_loras)
|
78 |
+
])
|
79 |
+
self.k_loras = nn.ModuleList([
|
80 |
+
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
81 |
+
for i in range(n_loras)
|
82 |
+
])
|
83 |
+
self.v_loras = nn.ModuleList([
|
84 |
+
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
85 |
+
for i in range(n_loras)
|
86 |
+
])
|
87 |
+
self.lora_weights = lora_weights
|
88 |
+
self.bank_attn = None
|
89 |
+
self.bank_kv = []
|
90 |
+
|
91 |
+
|
92 |
+
def __call__(self,
|
93 |
+
attn: Attention,
|
94 |
+
hidden_states: torch.FloatTensor,
|
95 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
96 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
97 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
98 |
+
use_cond = False
|
99 |
+
) -> torch.FloatTensor:
|
100 |
+
|
101 |
+
batch_size, seq_len, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
102 |
+
scaled_seq_len = hidden_states.shape[1]
|
103 |
+
cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
|
104 |
+
block_size = scaled_seq_len - cond_size * self.n_loras
|
105 |
+
scaled_cond_size = cond_size
|
106 |
+
scaled_block_size = block_size
|
107 |
+
|
108 |
+
if len(self.bank_kv)== 0:
|
109 |
+
cache = True
|
110 |
+
else:
|
111 |
+
cache = False
|
112 |
+
|
113 |
+
if cache:
|
114 |
+
query = attn.to_q(hidden_states)
|
115 |
+
key = attn.to_k(hidden_states)
|
116 |
+
value = attn.to_v(hidden_states)
|
117 |
+
for i in range(self.n_loras):
|
118 |
+
query = query + self.lora_weights[i] * self.q_loras[i](hidden_states)
|
119 |
+
key = key + self.lora_weights[i] * self.k_loras[i](hidden_states)
|
120 |
+
value = value + self.lora_weights[i] * self.v_loras[i](hidden_states)
|
121 |
+
|
122 |
+
inner_dim = key.shape[-1]
|
123 |
+
head_dim = inner_dim // attn.heads
|
124 |
+
|
125 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
126 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
127 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
128 |
+
|
129 |
+
self.bank_kv.append(key[:, :, scaled_block_size:, :])
|
130 |
+
self.bank_kv.append(value[:, :, scaled_block_size:, :])
|
131 |
+
|
132 |
+
if attn.norm_q is not None:
|
133 |
+
query = attn.norm_q(query)
|
134 |
+
if attn.norm_k is not None:
|
135 |
+
key = attn.norm_k(key)
|
136 |
+
|
137 |
+
if image_rotary_emb is not None:
|
138 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
139 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
140 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
141 |
+
|
142 |
+
num_cond_blocks = self.n_loras
|
143 |
+
mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device)
|
144 |
+
mask[ :scaled_block_size, :] = 0 # First block_size row
|
145 |
+
for i in range(num_cond_blocks):
|
146 |
+
start = i * scaled_cond_size + scaled_block_size
|
147 |
+
end = (i + 1) * scaled_cond_size + scaled_block_size
|
148 |
+
mask[start:end, start:end] = 0 # Diagonal blocks
|
149 |
+
mask = mask * -1e10
|
150 |
+
mask = mask.to(query.dtype)
|
151 |
+
|
152 |
+
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask)
|
153 |
+
self.bank_attn = hidden_states[:, :, scaled_block_size:, :]
|
154 |
+
|
155 |
+
else:
|
156 |
+
query = attn.to_q(hidden_states)
|
157 |
+
key = attn.to_k(hidden_states)
|
158 |
+
value = attn.to_v(hidden_states)
|
159 |
+
|
160 |
+
inner_dim = query.shape[-1]
|
161 |
+
head_dim = inner_dim // attn.heads
|
162 |
+
|
163 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
164 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
165 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
166 |
+
|
167 |
+
key = torch.concat([key[:, :, :scaled_block_size, :], self.bank_kv[0]], dim=-2)
|
168 |
+
value = torch.concat([value[:, :, :scaled_block_size, :], self.bank_kv[1]], dim=-2)
|
169 |
+
|
170 |
+
if attn.norm_q is not None:
|
171 |
+
query = attn.norm_q(query)
|
172 |
+
if attn.norm_k is not None:
|
173 |
+
key = attn.norm_k(key)
|
174 |
+
|
175 |
+
if image_rotary_emb is not None:
|
176 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
177 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
178 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
179 |
+
|
180 |
+
query = query[:, :, :scaled_block_size, :]
|
181 |
+
|
182 |
+
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None)
|
183 |
+
hidden_states = torch.concat([hidden_states, self.bank_attn], dim=-2)
|
184 |
+
|
185 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
186 |
+
hidden_states = hidden_states.to(query.dtype)
|
187 |
+
|
188 |
+
cond_hidden_states = hidden_states[:, block_size:,:]
|
189 |
+
hidden_states = hidden_states[:, : block_size,:]
|
190 |
+
|
191 |
+
return hidden_states if not use_cond else (hidden_states, cond_hidden_states)
|
192 |
+
|
193 |
+
|
194 |
+
class MultiDoubleStreamBlockLoraProcessor(nn.Module):
|
195 |
+
def __init__(self, dim: int, ranks=[], lora_weights=[], network_alphas=[], device=None, dtype=None, cond_width=512, cond_height=512, n_loras=1):
|
196 |
+
super().__init__()
|
197 |
+
|
198 |
+
# Initialize a list to store the LoRA layers
|
199 |
+
self.n_loras = n_loras
|
200 |
+
self.cond_width = cond_width
|
201 |
+
self.cond_height = cond_height
|
202 |
+
self.q_loras = nn.ModuleList([
|
203 |
+
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
204 |
+
for i in range(n_loras)
|
205 |
+
])
|
206 |
+
self.k_loras = nn.ModuleList([
|
207 |
+
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
208 |
+
for i in range(n_loras)
|
209 |
+
])
|
210 |
+
self.v_loras = nn.ModuleList([
|
211 |
+
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
212 |
+
for i in range(n_loras)
|
213 |
+
])
|
214 |
+
self.proj_loras = nn.ModuleList([
|
215 |
+
LoRALinearLayer(dim, dim, ranks[i],network_alphas[i], device=device, dtype=dtype, cond_width=cond_width, cond_height=cond_height, number=i, n_loras=n_loras)
|
216 |
+
for i in range(n_loras)
|
217 |
+
])
|
218 |
+
self.lora_weights = lora_weights
|
219 |
+
self.bank_attn = None
|
220 |
+
self.bank_kv = []
|
221 |
+
|
222 |
+
|
223 |
+
def __call__(self,
|
224 |
+
attn: Attention,
|
225 |
+
hidden_states: torch.FloatTensor,
|
226 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
227 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
228 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
229 |
+
use_cond=False,
|
230 |
+
) -> torch.FloatTensor:
|
231 |
+
|
232 |
+
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
233 |
+
cond_size = self.cond_width // 8 * self.cond_height // 8 * 16 // 64
|
234 |
+
block_size = hidden_states.shape[1] - cond_size * self.n_loras
|
235 |
+
scaled_seq_len = encoder_hidden_states.shape[1] + hidden_states.shape[1]
|
236 |
+
scaled_cond_size = cond_size
|
237 |
+
scaled_block_size = scaled_seq_len - scaled_cond_size * self.n_loras
|
238 |
+
|
239 |
+
# `context` projections.
|
240 |
+
inner_dim = 3072
|
241 |
+
head_dim = inner_dim // attn.heads
|
242 |
+
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
243 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
244 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
245 |
+
|
246 |
+
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
247 |
+
batch_size, -1, attn.heads, head_dim
|
248 |
+
).transpose(1, 2)
|
249 |
+
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
250 |
+
batch_size, -1, attn.heads, head_dim
|
251 |
+
).transpose(1, 2)
|
252 |
+
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
253 |
+
batch_size, -1, attn.heads, head_dim
|
254 |
+
).transpose(1, 2)
|
255 |
+
|
256 |
+
if attn.norm_added_q is not None:
|
257 |
+
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
|
258 |
+
if attn.norm_added_k is not None:
|
259 |
+
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
|
260 |
+
|
261 |
+
if len(self.bank_kv)== 0:
|
262 |
+
cache = True
|
263 |
+
else:
|
264 |
+
cache = False
|
265 |
+
|
266 |
+
if cache:
|
267 |
+
|
268 |
+
query = attn.to_q(hidden_states)
|
269 |
+
key = attn.to_k(hidden_states)
|
270 |
+
value = attn.to_v(hidden_states)
|
271 |
+
for i in range(self.n_loras):
|
272 |
+
query = query + self.lora_weights[i] * self.q_loras[i](hidden_states)
|
273 |
+
key = key + self.lora_weights[i] * self.k_loras[i](hidden_states)
|
274 |
+
value = value + self.lora_weights[i] * self.v_loras[i](hidden_states)
|
275 |
+
|
276 |
+
inner_dim = key.shape[-1]
|
277 |
+
head_dim = inner_dim // attn.heads
|
278 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
279 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
280 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
281 |
+
|
282 |
+
|
283 |
+
self.bank_kv.append(key[:, :, block_size:, :])
|
284 |
+
self.bank_kv.append(value[:, :, block_size:, :])
|
285 |
+
|
286 |
+
if attn.norm_q is not None:
|
287 |
+
query = attn.norm_q(query)
|
288 |
+
if attn.norm_k is not None:
|
289 |
+
key = attn.norm_k(key)
|
290 |
+
|
291 |
+
# attention
|
292 |
+
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
293 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
294 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
295 |
+
|
296 |
+
if image_rotary_emb is not None:
|
297 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
298 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
299 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
300 |
+
|
301 |
+
num_cond_blocks = self.n_loras
|
302 |
+
mask = torch.ones((scaled_seq_len, scaled_seq_len), device=hidden_states.device)
|
303 |
+
mask[ :scaled_block_size, :] = 0 # First block_size row
|
304 |
+
for i in range(num_cond_blocks):
|
305 |
+
start = i * scaled_cond_size + scaled_block_size
|
306 |
+
end = (i + 1) * scaled_cond_size + scaled_block_size
|
307 |
+
mask[start:end, start:end] = 0 # Diagonal blocks
|
308 |
+
mask = mask * -1e10
|
309 |
+
mask = mask.to(query.dtype)
|
310 |
+
|
311 |
+
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=mask)
|
312 |
+
self.bank_attn = hidden_states[:, :, scaled_block_size:, :]
|
313 |
+
|
314 |
+
else:
|
315 |
+
query = attn.to_q(hidden_states)
|
316 |
+
key = attn.to_k(hidden_states)
|
317 |
+
value = attn.to_v(hidden_states)
|
318 |
+
|
319 |
+
inner_dim = query.shape[-1]
|
320 |
+
head_dim = inner_dim // attn.heads
|
321 |
+
|
322 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
323 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
324 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
325 |
+
|
326 |
+
key = torch.concat([key[:, :, :block_size, :], self.bank_kv[0]], dim=-2)
|
327 |
+
value = torch.concat([value[:, :, :block_size, :], self.bank_kv[1]], dim=-2)
|
328 |
+
|
329 |
+
if attn.norm_q is not None:
|
330 |
+
query = attn.norm_q(query)
|
331 |
+
if attn.norm_k is not None:
|
332 |
+
key = attn.norm_k(key)
|
333 |
+
|
334 |
+
# attention
|
335 |
+
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
336 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
337 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
338 |
+
|
339 |
+
if image_rotary_emb is not None:
|
340 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
341 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
342 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
343 |
+
|
344 |
+
query = query[:, :, :scaled_block_size, :]
|
345 |
+
|
346 |
+
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None)
|
347 |
+
hidden_states = torch.concat([hidden_states, self.bank_attn], dim=-2)
|
348 |
+
|
349 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
350 |
+
hidden_states = hidden_states.to(query.dtype)
|
351 |
+
|
352 |
+
encoder_hidden_states, hidden_states = (
|
353 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
354 |
+
hidden_states[:, encoder_hidden_states.shape[1] :],
|
355 |
+
)
|
356 |
+
|
357 |
+
# Linear projection (with LoRA weight applied to each proj layer)
|
358 |
+
hidden_states = attn.to_out[0](hidden_states)
|
359 |
+
for i in range(self.n_loras):
|
360 |
+
hidden_states = hidden_states + self.lora_weights[i] * self.proj_loras[i](hidden_states)
|
361 |
+
# dropout
|
362 |
+
hidden_states = attn.to_out[1](hidden_states)
|
363 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
364 |
+
|
365 |
+
cond_hidden_states = hidden_states[:, block_size:,:]
|
366 |
+
hidden_states = hidden_states[:, :block_size,:]
|
367 |
+
|
368 |
return (hidden_states, encoder_hidden_states, cond_hidden_states) if use_cond else (encoder_hidden_states, hidden_states)
|