Spaces:
Runtime error
Runtime error
Update scripts/main.py
Browse files- scripts/main.py +2 -384
scripts/main.py
CHANGED
@@ -17,8 +17,7 @@ import gradio as gr
|
|
17 |
from PIL import Image, PngImagePlugin
|
18 |
import torch
|
19 |
|
20 |
-
scheduler = LCMScheduler.from_pretrained(
|
21 |
-
"charliebaby2023/cybrpny", subfolder="scheduler")
|
22 |
|
23 |
pipe = LatentConsistencyModelPipeline.from_pretrained(
|
24 |
"charliebaby2023/cybrpny", scheduler = scheduler, safety_checker = None)
|
@@ -129,223 +128,8 @@ def generate(
|
|
129 |
return paths, seed
|
130 |
|
131 |
|
132 |
-
def generate_i2i(
|
133 |
-
prompt: str,
|
134 |
-
image: PipelineImageInput = None,
|
135 |
-
strength: float = 0.8,
|
136 |
-
seed: int = 0,
|
137 |
-
guidance_scale: float = 8.0,
|
138 |
-
num_inference_steps: int = 4,
|
139 |
-
num_images: int = 4,
|
140 |
-
randomize_seed: bool = False,
|
141 |
-
use_fp16: bool = True,
|
142 |
-
use_torch_compile: bool = False,
|
143 |
-
use_cpu: bool = False,
|
144 |
-
progress=gr.Progress(track_tqdm=True),
|
145 |
-
width: Optional[int] = 512,
|
146 |
-
height: Optional[int] = 512,
|
147 |
-
) -> Image.Image:
|
148 |
-
seed = randomize_seed_fn(seed, randomize_seed)
|
149 |
-
torch.manual_seed(seed)
|
150 |
-
|
151 |
-
selected_device = 'cuda'
|
152 |
-
if use_cpu:
|
153 |
-
selected_device = "cpu"
|
154 |
-
if use_fp16:
|
155 |
-
use_fp16 = False
|
156 |
-
print("LCM warning: running on CPU, overrode FP16 with FP32")
|
157 |
-
global pipe, scheduler
|
158 |
-
pipe = LatentConsistencyModelImg2ImgPipeline(
|
159 |
-
vae= pipe.vae,
|
160 |
-
text_encoder = pipe.text_encoder,
|
161 |
-
tokenizer = pipe.tokenizer,
|
162 |
-
unet = pipe.unet,
|
163 |
-
scheduler = None, #scheduler,
|
164 |
-
safety_checker=None, # Disable NSFW filter
|
165 |
-
feature_extractor = pipe.feature_extractor,
|
166 |
-
requires_safety_checker = False,
|
167 |
-
)
|
168 |
-
# pipe = LatentConsistencyModelImg2ImgPipeline.from_pretrained(
|
169 |
-
# "SimianLuo/LCM_Dreamshaper_v7", safety_checker = None)
|
170 |
-
|
171 |
-
if use_fp16:
|
172 |
-
pipe.to(torch_device=selected_device, torch_dtype=torch.float16)
|
173 |
-
else:
|
174 |
-
pipe.to(torch_device=selected_device, torch_dtype=torch.float32)
|
175 |
-
|
176 |
-
# Windows does not support torch.compile for now
|
177 |
-
if os.name != 'nt' and use_torch_compile:
|
178 |
-
pipe.unet = torch.compile(pipe.unet, mode='max-autotune')
|
179 |
-
|
180 |
-
width, height = image.size
|
181 |
-
|
182 |
-
start_time = time.time()
|
183 |
-
result = pipe(
|
184 |
-
prompt=prompt,
|
185 |
-
image=image,
|
186 |
-
strength=strength,
|
187 |
-
width=width,
|
188 |
-
height=height,
|
189 |
-
guidance_scale=guidance_scale,
|
190 |
-
num_inference_steps=num_inference_steps,
|
191 |
-
num_images_per_prompt=num_images,
|
192 |
-
original_inference_steps=50,
|
193 |
-
output_type="pil",
|
194 |
-
device = selected_device
|
195 |
-
).images
|
196 |
-
paths = save_images(result, metadata={"prompt": prompt, "seed": seed, "width": width,
|
197 |
-
"height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps})
|
198 |
-
|
199 |
-
elapsed_time = time.time() - start_time
|
200 |
-
print("LCM inference time: ", elapsed_time, "seconds")
|
201 |
-
return paths, seed
|
202 |
-
|
203 |
-
import cv2
|
204 |
-
|
205 |
-
def video_to_frames(video_path):
|
206 |
-
# Open the video file
|
207 |
-
cap = cv2.VideoCapture(video_path)
|
208 |
-
|
209 |
-
# Check if the video opened successfully
|
210 |
-
if not cap.isOpened():
|
211 |
-
print("Error: LCM Could not open video.")
|
212 |
-
return
|
213 |
-
|
214 |
-
# Read frames from the video
|
215 |
-
pil_images = []
|
216 |
-
while True:
|
217 |
-
ret, frame = cap.read()
|
218 |
-
if not ret:
|
219 |
-
break
|
220 |
-
|
221 |
-
# Convert BGR to RGB (OpenCV uses BGR by default)
|
222 |
-
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
223 |
-
|
224 |
-
# Convert numpy array to PIL Image
|
225 |
-
pil_image = Image.fromarray(rgb_frame)
|
226 |
-
|
227 |
-
# Append the PIL Image to the list
|
228 |
-
pil_images.append(pil_image)
|
229 |
-
|
230 |
-
# Release the video capture object
|
231 |
-
cap.release()
|
232 |
-
|
233 |
-
return pil_images
|
234 |
-
|
235 |
-
def frames_to_video(pil_images, output_path, fps):
|
236 |
-
if not pil_images:
|
237 |
-
print("Error: No images to convert.")
|
238 |
-
return
|
239 |
-
|
240 |
-
img_array = []
|
241 |
-
for pil_image in pil_images:
|
242 |
-
img_array.append(np.array(pil_image))
|
243 |
-
|
244 |
-
height, width, layers = img_array[0].shape
|
245 |
-
size = (width, height)
|
246 |
-
|
247 |
-
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, size)
|
248 |
-
for i in range(len(img_array)):
|
249 |
-
out.write(cv2.cvtColor(img_array[i], cv2.COLOR_RGB2BGR))
|
250 |
-
out.release()
|
251 |
-
|
252 |
-
def generate_v2v(
|
253 |
-
prompt: str,
|
254 |
-
video: any = None,
|
255 |
-
strength: float = 0.8,
|
256 |
-
seed: int = 0,
|
257 |
-
guidance_scale: float = 8.0,
|
258 |
-
num_inference_steps: int = 4,
|
259 |
-
randomize_seed: bool = False,
|
260 |
-
use_fp16: bool = True,
|
261 |
-
use_torch_compile: bool = False,
|
262 |
-
use_cpu: bool = False,
|
263 |
-
fps: int = 10,
|
264 |
-
save_frames: bool = False,
|
265 |
-
# progress=gr.Progress(track_tqdm=True),
|
266 |
-
width: Optional[int] = 512,
|
267 |
-
height: Optional[int] = 512,
|
268 |
-
num_images: Optional[int] = 1,
|
269 |
-
) -> Image.Image:
|
270 |
-
seed = randomize_seed_fn(seed, randomize_seed)
|
271 |
-
torch.manual_seed(seed)
|
272 |
-
|
273 |
-
selected_device = 'cuda'
|
274 |
-
if use_cpu:
|
275 |
-
selected_device = "cpu"
|
276 |
-
if use_fp16:
|
277 |
-
use_fp16 = False
|
278 |
-
print("LCM warning: running on CPU, overrode FP16 with FP32")
|
279 |
-
global pipe, scheduler
|
280 |
-
pipe = LatentConsistencyModelImg2ImgPipeline(
|
281 |
-
vae= pipe.vae,
|
282 |
-
text_encoder = pipe.text_encoder,
|
283 |
-
tokenizer = pipe.tokenizer,
|
284 |
-
unet = pipe.unet,
|
285 |
-
scheduler = None,
|
286 |
-
safety_checker=None, # Disable NSFW filter
|
287 |
-
feature_extractor = pipe.feature_extractor,
|
288 |
-
requires_safety_checker = False,
|
289 |
-
)
|
290 |
-
# pipe = LatentConsistencyModelImg2ImgPipeline.from_pretrained(
|
291 |
-
# "SimianLuo/LCM_Dreamshaper_v7", safety_checker = None)
|
292 |
|
293 |
-
|
294 |
-
pipe.to(torch_device=selected_device, torch_dtype=torch.float16)
|
295 |
-
else:
|
296 |
-
pipe.to(torch_device=selected_device, torch_dtype=torch.float32)
|
297 |
-
|
298 |
-
# Windows does not support torch.compile for now
|
299 |
-
if os.name != 'nt' and use_torch_compile:
|
300 |
-
pipe.unet = torch.compile(pipe.unet, mode='max-autotune')
|
301 |
-
|
302 |
-
frames = video_to_frames(video)
|
303 |
-
if frames is None:
|
304 |
-
print("Error: LCM could not convert video.")
|
305 |
-
return
|
306 |
-
width, height = frames[0].size
|
307 |
-
|
308 |
-
start_time = time.time()
|
309 |
-
|
310 |
-
results = []
|
311 |
-
for frame in frames:
|
312 |
-
result = pipe(
|
313 |
-
prompt=prompt,
|
314 |
-
image=frame,
|
315 |
-
strength=strength,
|
316 |
-
width=width,
|
317 |
-
height=height,
|
318 |
-
guidance_scale=guidance_scale,
|
319 |
-
num_inference_steps=num_inference_steps,
|
320 |
-
num_images_per_prompt=1,
|
321 |
-
original_inference_steps=50,
|
322 |
-
output_type="pil",
|
323 |
-
device = selected_device
|
324 |
-
).images
|
325 |
-
if save_frames:
|
326 |
-
paths = save_images(result, metadata={"prompt": prompt, "seed": seed, "width": width,
|
327 |
-
"height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps})
|
328 |
-
results.extend(result)
|
329 |
-
|
330 |
-
elapsed_time = time.time() - start_time
|
331 |
-
print("LCM vid2vid inference complete! Processing", len(frames), "frames took", elapsed_time, "seconds")
|
332 |
-
|
333 |
-
save_dir = './outputs/LCM-vid2vid/'
|
334 |
-
Path(save_dir).mkdir(exist_ok=True, parents=True)
|
335 |
-
unique_id = uuid.uuid4()
|
336 |
-
_, input_ext = os.path.splitext(video)
|
337 |
-
output_path = save_dir + f"{unique_id}-{seed}" + f"{input_ext}"
|
338 |
-
frames_to_video(results, output_path, fps)
|
339 |
-
return output_path
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
examples = [
|
344 |
-
"portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography",
|
345 |
-
"Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
|
346 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
347 |
-
"A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece",
|
348 |
-
]
|
349 |
|
350 |
with gr.Blocks() as lcm:
|
351 |
with gr.Tab("LCM txt2img"):
|
@@ -443,173 +227,7 @@ with gr.Blocks() as lcm:
|
|
443 |
outputs=[result, seed],
|
444 |
)
|
445 |
|
446 |
-
with gr.Tab("LCM img2img"):
|
447 |
-
with gr.Row():
|
448 |
-
prompt = gr.Textbox(label="Prompt",
|
449 |
-
show_label=False,
|
450 |
-
lines=3,
|
451 |
-
placeholder="Prompt",
|
452 |
-
elem_classes=["prompt"])
|
453 |
-
run_i2i_button = gr.Button("Run", scale=0)
|
454 |
-
with gr.Row():
|
455 |
-
image_input = gr.Image(label="Upload your Image", type="pil")
|
456 |
-
result = gr.Gallery(
|
457 |
-
label="Generated images",
|
458 |
-
show_label=False,
|
459 |
-
elem_id="gallery",
|
460 |
-
preview=True
|
461 |
-
)
|
462 |
-
|
463 |
-
with gr.Accordion("Advanced options", open=False):
|
464 |
-
seed = gr.Slider(
|
465 |
-
label="Seed",
|
466 |
-
minimum=0,
|
467 |
-
maximum=MAX_SEED,
|
468 |
-
step=1,
|
469 |
-
value=0,
|
470 |
-
randomize=True
|
471 |
-
)
|
472 |
-
randomize_seed = gr.Checkbox(
|
473 |
-
label="Randomize seed across runs", value=True)
|
474 |
-
use_fp16 = gr.Checkbox(
|
475 |
-
label="Run LCM in fp16 (for lower VRAM)", value=False)
|
476 |
-
use_torch_compile = gr.Checkbox(
|
477 |
-
label="Run LCM with torch.compile (currently not supported on Windows)", value=False)
|
478 |
-
use_cpu = gr.Checkbox(label="Run LCM on CPU", value=True)
|
479 |
-
with gr.Row():
|
480 |
-
guidance_scale = gr.Slider(
|
481 |
-
label="Guidance scale for base",
|
482 |
-
minimum=2,
|
483 |
-
maximum=14,
|
484 |
-
step=0.1,
|
485 |
-
value=8.0,
|
486 |
-
)
|
487 |
-
num_inference_steps = gr.Slider(
|
488 |
-
label="Number of inference steps for base",
|
489 |
-
minimum=1,
|
490 |
-
maximum=8,
|
491 |
-
step=1,
|
492 |
-
value=4,
|
493 |
-
)
|
494 |
-
with gr.Row():
|
495 |
-
num_images = gr.Slider(
|
496 |
-
label="Number of images (batch count)",
|
497 |
-
minimum=1,
|
498 |
-
maximum=int(os.getenv("MAX_NUM_IMAGES")),
|
499 |
-
step=1,
|
500 |
-
value=1,
|
501 |
-
)
|
502 |
-
strength = gr.Slider(
|
503 |
-
label="Prompt Strength",
|
504 |
-
minimum=0.1,
|
505 |
-
maximum=1.0,
|
506 |
-
step=0.1,
|
507 |
-
value=0.5,
|
508 |
-
)
|
509 |
-
|
510 |
-
run_i2i_button.click(
|
511 |
-
fn=generate_i2i,
|
512 |
-
inputs=[
|
513 |
-
prompt,
|
514 |
-
image_input,
|
515 |
-
strength,
|
516 |
-
seed,
|
517 |
-
guidance_scale,
|
518 |
-
num_inference_steps,
|
519 |
-
num_images,
|
520 |
-
randomize_seed,
|
521 |
-
use_fp16,
|
522 |
-
use_torch_compile,
|
523 |
-
use_cpu
|
524 |
-
],
|
525 |
-
outputs=[result, seed],
|
526 |
-
)
|
527 |
|
528 |
-
|
529 |
-
with gr.Tab("LCM vid2vid"):
|
530 |
-
|
531 |
-
show_v2v = False if os.getenv("SHOW_VID2VID") == "NO" else True
|
532 |
-
gr.Markdown("Not recommended for use with CPU. Duplicate the space and modify SHOW_VID2VID to enable it. 🚫💻")
|
533 |
-
with gr.Tabs(visible=show_v2v) as tabs:
|
534 |
-
#with gr.Tab("", visible=show_v2v):
|
535 |
-
|
536 |
-
with gr.Row():
|
537 |
-
prompt = gr.Textbox(label="Prompt",
|
538 |
-
show_label=False,
|
539 |
-
lines=3,
|
540 |
-
placeholder="Prompt",
|
541 |
-
elem_classes=["prompt"])
|
542 |
-
run_v2v_button = gr.Button("Run", scale=0)
|
543 |
-
with gr.Row():
|
544 |
-
video_input = gr.Video(label="Source Video")
|
545 |
-
video_output = gr.Video(label="Generated Video")
|
546 |
-
|
547 |
-
with gr.Accordion("Advanced options", open=False):
|
548 |
-
seed = gr.Slider(
|
549 |
-
label="Seed",
|
550 |
-
minimum=0,
|
551 |
-
maximum=MAX_SEED,
|
552 |
-
step=1,
|
553 |
-
value=0,
|
554 |
-
randomize=True
|
555 |
-
)
|
556 |
-
randomize_seed = gr.Checkbox(
|
557 |
-
label="Randomize seed across runs", value=True)
|
558 |
-
use_fp16 = gr.Checkbox(
|
559 |
-
label="Run LCM in fp16 (for lower VRAM)", value=False)
|
560 |
-
use_torch_compile = gr.Checkbox(
|
561 |
-
label="Run LCM with torch.compile (currently not supported on Windows)", value=False)
|
562 |
-
use_cpu = gr.Checkbox(label="Run LCM on CPU", value=True)
|
563 |
-
save_frames = gr.Checkbox(label="Save intermediate frames", value=False)
|
564 |
-
with gr.Row():
|
565 |
-
guidance_scale = gr.Slider(
|
566 |
-
label="Guidance scale for base",
|
567 |
-
minimum=2,
|
568 |
-
maximum=14,
|
569 |
-
step=0.1,
|
570 |
-
value=8.0,
|
571 |
-
)
|
572 |
-
num_inference_steps = gr.Slider(
|
573 |
-
label="Number of inference steps for base",
|
574 |
-
minimum=1,
|
575 |
-
maximum=8,
|
576 |
-
step=1,
|
577 |
-
value=4,
|
578 |
-
)
|
579 |
-
with gr.Row():
|
580 |
-
fps = gr.Slider(
|
581 |
-
label="Output FPS",
|
582 |
-
minimum=1,
|
583 |
-
maximum=200,
|
584 |
-
step=1,
|
585 |
-
value=10,
|
586 |
-
)
|
587 |
-
strength = gr.Slider(
|
588 |
-
label="Prompt Strength",
|
589 |
-
minimum=0.1,
|
590 |
-
maximum=1.0,
|
591 |
-
step=0.05,
|
592 |
-
value=0.5,
|
593 |
-
)
|
594 |
-
|
595 |
-
run_v2v_button.click(
|
596 |
-
fn=generate_v2v,
|
597 |
-
inputs=[
|
598 |
-
prompt,
|
599 |
-
video_input,
|
600 |
-
strength,
|
601 |
-
seed,
|
602 |
-
guidance_scale,
|
603 |
-
num_inference_steps,
|
604 |
-
randomize_seed,
|
605 |
-
use_fp16,
|
606 |
-
use_torch_compile,
|
607 |
-
use_cpu,
|
608 |
-
fps,
|
609 |
-
save_frames
|
610 |
-
],
|
611 |
-
outputs=video_output,
|
612 |
-
)
|
613 |
|
614 |
if __name__ == "__main__":
|
615 |
lcm.queue().launch()
|
|
|
17 |
from PIL import Image, PngImagePlugin
|
18 |
import torch
|
19 |
|
20 |
+
scheduler = LCMScheduler.from_pretrained( "charliebaby2023/cybrpny", subfolder="scheduler")
|
|
|
21 |
|
22 |
pipe = LatentConsistencyModelPipeline.from_pretrained(
|
23 |
"charliebaby2023/cybrpny", scheduler = scheduler, safety_checker = None)
|
|
|
128 |
return paths, seed
|
129 |
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
+
examples = [ "" ]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
with gr.Blocks() as lcm:
|
135 |
with gr.Tab("LCM txt2img"):
|
|
|
227 |
outputs=[result, seed],
|
228 |
)
|
229 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
if __name__ == "__main__":
|
233 |
lcm.queue().launch()
|