Spaces:
Runtime error
Runtime error
Update app_demo.py
Browse files- app_demo.py +3 -15
app_demo.py
CHANGED
@@ -27,12 +27,6 @@ executor = ThreadPoolExecutor()
|
|
27 |
model_cache = {}
|
28 |
|
29 |
model_id = "Lykon/dreamshaper-xl-v2-turbo"
|
30 |
-
#custom_pipe = DiffusionPipeline.from_pretrained(model_id, custom_pipeline="latent_consistency_txt2img", custom_revision="main")
|
31 |
-
pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_txt2img", custom_revision="main")
|
32 |
-
pipe.to(torch_device="cpu", torch_dtype=DTYPE)
|
33 |
-
pipe.safety_checker = None
|
34 |
-
#pipe = StableDiffusionPipeline.from_pretrained( model_id, safety_checker=None, torch_dtype=DTYPE, use_safetensors=True).to("cpu")
|
35 |
-
|
36 |
custom_pipe = DiffusionPipeline.from_pretrained(
|
37 |
model_id,
|
38 |
custom_pipeline="latent_consistency_txt2img",
|
@@ -40,23 +34,22 @@ custom_pipe = DiffusionPipeline.from_pretrained(
|
|
40 |
safety_checker=None,
|
41 |
feature_extractor=None
|
42 |
)
|
|
|
|
|
43 |
|
44 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
45 |
return random.randint(0, MAX_SEED) if randomize_seed else seed
|
46 |
|
47 |
-
|
48 |
def save_image(img, profile: gr.OAuthProfile | None, metadata: dict):
|
49 |
unique_name = str(uuid.uuid4()) + '.png'
|
50 |
img.save(unique_name)
|
51 |
gr_user_history.save_image(label=metadata["prompt"], image=img, profile=profile, metadata=metadata)
|
52 |
return unique_name
|
53 |
|
54 |
-
|
55 |
def save_images(image_array, profile: gr.OAuthProfile | None, metadata: dict):
|
56 |
with ThreadPoolExecutor() as executor:
|
57 |
return list(executor.map(save_image, image_array, [profile]*len(image_array), [metadata]*len(image_array)))
|
58 |
|
59 |
-
|
60 |
def generate(prompt: str, seed: int = 0, width: int = 512, height: int = 512,
|
61 |
guidance_scale: float = 8.0, num_inference_steps: int = 4,
|
62 |
num_images: int = 1, randomize_seed: bool = False,
|
@@ -75,7 +68,6 @@ def generate(prompt: str, seed: int = 0, width: int = 512, height: int = 512,
|
|
75 |
"num_inference_steps": num_inference_steps})
|
76 |
return paths, seed
|
77 |
|
78 |
-
|
79 |
def validate_and_list_models(hfuser):
|
80 |
try:
|
81 |
models = api.list_models(author=hfuser)
|
@@ -83,7 +75,6 @@ def validate_and_list_models(hfuser):
|
|
83 |
except Exception:
|
84 |
return []
|
85 |
|
86 |
-
|
87 |
def parse_user_model_dict(user_model_dict_str):
|
88 |
try:
|
89 |
data = ast.literal_eval(user_model_dict_str)
|
@@ -93,7 +84,6 @@ def parse_user_model_dict(user_model_dict_str):
|
|
93 |
except Exception:
|
94 |
return {}
|
95 |
|
96 |
-
|
97 |
def load_model(model_id):
|
98 |
if model_id in model_cache:
|
99 |
return f"{model_id} loaded from cache"
|
@@ -104,14 +94,12 @@ def load_model(model_id):
|
|
104 |
except Exception as e:
|
105 |
return f"{model_id} failed to load: {str(e)}"
|
106 |
|
107 |
-
|
108 |
def run_models(models, parallel):
|
109 |
if parallel:
|
110 |
futures = [executor.submit(load_model, m) for m in models]
|
111 |
return [f.result() for f in futures]
|
112 |
return [load_model(m) for m in models]
|
113 |
|
114 |
-
|
115 |
with gr.Blocks() as demo:
|
116 |
with gr.Row():
|
117 |
gr.HTML("""
|
@@ -175,4 +163,4 @@ with gr.Blocks() as demo:
|
|
175 |
fn=generate,
|
176 |
inputs=[prompt, seed, width, height, guidance_scale, num_inference_steps, num_images, randomize_seed],
|
177 |
outputs=[gallery, seed]
|
178 |
-
)
|
|
|
27 |
model_cache = {}
|
28 |
|
29 |
model_id = "Lykon/dreamshaper-xl-v2-turbo"
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
custom_pipe = DiffusionPipeline.from_pretrained(
|
31 |
model_id,
|
32 |
custom_pipeline="latent_consistency_txt2img",
|
|
|
34 |
safety_checker=None,
|
35 |
feature_extractor=None
|
36 |
)
|
37 |
+
custom_pipe.to(torch_device="cpu", torch_dtype=DTYPE)
|
38 |
+
pipe = custom_pipe
|
39 |
|
40 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
41 |
return random.randint(0, MAX_SEED) if randomize_seed else seed
|
42 |
|
|
|
43 |
def save_image(img, profile: gr.OAuthProfile | None, metadata: dict):
|
44 |
unique_name = str(uuid.uuid4()) + '.png'
|
45 |
img.save(unique_name)
|
46 |
gr_user_history.save_image(label=metadata["prompt"], image=img, profile=profile, metadata=metadata)
|
47 |
return unique_name
|
48 |
|
|
|
49 |
def save_images(image_array, profile: gr.OAuthProfile | None, metadata: dict):
|
50 |
with ThreadPoolExecutor() as executor:
|
51 |
return list(executor.map(save_image, image_array, [profile]*len(image_array), [metadata]*len(image_array)))
|
52 |
|
|
|
53 |
def generate(prompt: str, seed: int = 0, width: int = 512, height: int = 512,
|
54 |
guidance_scale: float = 8.0, num_inference_steps: int = 4,
|
55 |
num_images: int = 1, randomize_seed: bool = False,
|
|
|
68 |
"num_inference_steps": num_inference_steps})
|
69 |
return paths, seed
|
70 |
|
|
|
71 |
def validate_and_list_models(hfuser):
|
72 |
try:
|
73 |
models = api.list_models(author=hfuser)
|
|
|
75 |
except Exception:
|
76 |
return []
|
77 |
|
|
|
78 |
def parse_user_model_dict(user_model_dict_str):
|
79 |
try:
|
80 |
data = ast.literal_eval(user_model_dict_str)
|
|
|
84 |
except Exception:
|
85 |
return {}
|
86 |
|
|
|
87 |
def load_model(model_id):
|
88 |
if model_id in model_cache:
|
89 |
return f"{model_id} loaded from cache"
|
|
|
94 |
except Exception as e:
|
95 |
return f"{model_id} failed to load: {str(e)}"
|
96 |
|
|
|
97 |
def run_models(models, parallel):
|
98 |
if parallel:
|
99 |
futures = [executor.submit(load_model, m) for m in models]
|
100 |
return [f.result() for f in futures]
|
101 |
return [load_model(m) for m in models]
|
102 |
|
|
|
103 |
with gr.Blocks() as demo:
|
104 |
with gr.Row():
|
105 |
gr.HTML("""
|
|
|
163 |
fn=generate,
|
164 |
inputs=[prompt, seed, width, height, guidance_scale, num_inference_steps, num_images, randomize_seed],
|
165 |
outputs=[gallery, seed]
|
166 |
+
)
|