charliebaby2023's picture
Update app_demo.py
4ceba74 verified
from __future__ import annotations
from huggingface_hub import HfApi, snapshot_download
from concurrent.futures import ThreadPoolExecutor
import asyncio
import ast
import os
import random
import time
import gradio as gr
import numpy as np
import PIL.Image
import torch
from diffusers import StableDiffusionPipeline
import uuid
from diffusers import DiffusionPipeline
from tqdm import tqdm
from safetensors.torch import load_file
import cv2
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "768"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
DTYPE = torch.float32
api = HfApi()
executor = ThreadPoolExecutor()
model_cache = {}
model_id = "Lykon/dreamshaper-xl-v2-turbo"
custom_pipe = DiffusionPipeline.from_pretrained(
model_id,
custom_pipeline="latent_consistency_txt2img",
custom_revision="main",
safety_checker=None,
feature_extractor=None
)
custom_pipe.to(torch_device="cpu", torch_dtype=DTYPE)
pipe = custom_pipe
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
return random.randint(0, MAX_SEED) if randomize_seed else seed
def save_image(img, profile: gr.OAuthProfile | None, metadata: dict):
unique_name = str(uuid.uuid4()) + '.png'
img.save(unique_name)
gr_user_history.save_image(label=metadata["prompt"], image=img, profile=profile, metadata=metadata)
return unique_name
def save_images(image_array, profile: gr.OAuthProfile | None, metadata: dict):
with ThreadPoolExecutor() as executor:
return list(executor.map(save_image, image_array, [profile]*len(image_array), [metadata]*len(image_array)))
def generate(prompt: str, seed: int = 0, width: int = 512, height: int = 512,
guidance_scale: float = 8.0, num_inference_steps: int = 4,
num_images: int = 1, randomize_seed: bool = False,
progress=gr.Progress(track_tqdm=True),
profile: gr.OAuthProfile | None = None) -> tuple[list[str], int]:
seed = randomize_seed_fn(seed, randomize_seed)
torch.manual_seed(seed)
start_time = time.time()
outputs = pipe(prompt=prompt, negative_prompt="", height=height, width=width,
guidance_scale=guidance_scale, num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images, output_type="pil", lcm_origin_steps=50).images
print(f"Generation took {time.time() - start_time:.2f} seconds")
paths = save_images(outputs, profile, metadata={"prompt": prompt, "seed": seed,
"width": width, "height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps})
return paths, seed
def validate_and_list_models(hfuser):
try:
models = api.list_models(author=hfuser)
return [model.modelId for model in models if model.pipeline_tag == "text-to-image"]
except Exception:
return []
def parse_user_model_dict(user_model_dict_str):
try:
data = ast.literal_eval(user_model_dict_str)
if isinstance(data, dict) and all(isinstance(v, list) for v in data.values()):
return data
return {}
except Exception:
return {}
def load_model(model_id):
if model_id in model_cache:
return f"{model_id} loaded from cache"
try:
path = snapshot_download(repo_id=model_id, cache_dir="model_cache", token=os.getenv("HF_TOKEN"))
model_cache[model_id] = path
return f"{model_id} loaded successfully"
except Exception as e:
return f"{model_id} failed to load: {str(e)}"
def run_models(models, parallel):
if parallel:
futures = [executor.submit(load_model, m) for m in models]
return [f.result() for f in futures]
return [load_model(m) for m in models]
with gr.Blocks() as demo:
with gr.Row():
gr.HTML("""
<p id="project-links" align="center">
<a href='https://huggingface.co/spaces/charliebaby2023/Fast_Stable_diffusion_CPU/edit/main/app_demo.py'>Edit this app_demo py file</a>
<p> this is currently running the Lykon/dreamshaper-xl-v2-turbo model</p>
<p><fast stable diffusion, CPU</p>
</p>
""")
with gr.Column(scale=1):
with gr.Row():
hfuser_input = gr.Textbox(label="Hugging Face Username")
hfuser_models = gr.Dropdown(label="Models from User", choices=["Choose A Model"], value="Choose A Model", multiselect=True, visible=False)
user_model_dict = gr.Textbox(visible=False, label="Dict Input (e.g., {'username': ['model1', 'model2']})")
with gr.Row():
run_btn = gr.Button("Load Models")
with gr.Column(scale=3):
with gr.Row():
parallel_toggle = gr.Checkbox(label="Load in Parallel", value=True)
with gr.Row():
output = gr.Textbox(label="Output", lines=3)
def update_models(hfuser):
if hfuser:
models = validate_and_list_models(hfuser)
label = f"Models found: {len(models)}"
return gr.update(choices=models, label=label, visible=bool(models))
return gr.update(choices=[], label='', visible=False)
def update_from_dict(dict_str):
parsed = parse_user_model_dict(dict_str)
if not parsed:
return gr.update(), gr.update()
hfuser = next(iter(parsed))
models = parsed[hfuser]
label = f"Models found: {len(models)}"
return gr.update(value=hfuser), gr.update(choices=models, value=models, label=label)
hfuser_input.change(update_models, hfuser_input, hfuser_models)
user_model_dict.change(update_from_dict, user_model_dict, [hfuser_input, hfuser_models])
run_btn.click(run_models, [hfuser_models, parallel_toggle], output)
with gr.Group():
with gr.Row():
prompt = gr.Text(placeholder="Enter your prompt", show_label=False, container=False)
run_button = gr.Button("Run", scale=0)
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery")
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(0, MAX_SEED, value=0, step=1, randomize=True, label="Seed")
randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True)
with gr.Row():
width = gr.Slider(256, MAX_IMAGE_SIZE, value=512, step=32, label="Width")
height = gr.Slider(256, MAX_IMAGE_SIZE, value=512, step=32, label="Height")
with gr.Row():
guidance_scale = gr.Slider(2.0, 14.0, value=8.0, step=0.1, label="Guidance Scale")
num_inference_steps = gr.Slider(1, 8, value=4, step=1, label="Inference Steps")
num_images = gr.Slider(1, 8, value=1, step=1, label="Number of Images")
run_button.click(
fn=generate,
inputs=[prompt, seed, width, height, guidance_scale, num_inference_steps, num_images, randomize_seed],
outputs=[gallery, seed]
)