Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
from huggingface_hub import HfApi, snapshot_download | |
from concurrent.futures import ThreadPoolExecutor | |
import asyncio | |
import ast | |
import os | |
import random | |
import time | |
import gradio as gr | |
import numpy as np | |
import PIL.Image | |
import torch | |
from diffusers import StableDiffusionPipeline | |
import uuid | |
from diffusers import DiffusionPipeline | |
from tqdm import tqdm | |
from safetensors.torch import load_file | |
import cv2 | |
MAX_SEED = np.iinfo(np.int32).max | |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1" | |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "768")) | |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1" | |
DTYPE = torch.float32 | |
api = HfApi() | |
executor = ThreadPoolExecutor() | |
model_cache = {} | |
model_id = "Lykon/dreamshaper-xl-v2-turbo" | |
custom_pipe = DiffusionPipeline.from_pretrained( | |
model_id, | |
custom_pipeline="latent_consistency_txt2img", | |
custom_revision="main", | |
safety_checker=None, | |
feature_extractor=None | |
) | |
custom_pipe.to(torch_device="cpu", torch_dtype=DTYPE) | |
pipe = custom_pipe | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
return random.randint(0, MAX_SEED) if randomize_seed else seed | |
def save_image(img, profile: gr.OAuthProfile | None, metadata: dict): | |
unique_name = str(uuid.uuid4()) + '.png' | |
img.save(unique_name) | |
gr_user_history.save_image(label=metadata["prompt"], image=img, profile=profile, metadata=metadata) | |
return unique_name | |
def save_images(image_array, profile: gr.OAuthProfile | None, metadata: dict): | |
with ThreadPoolExecutor() as executor: | |
return list(executor.map(save_image, image_array, [profile]*len(image_array), [metadata]*len(image_array))) | |
def generate(prompt: str, seed: int = 0, width: int = 512, height: int = 512, | |
guidance_scale: float = 8.0, num_inference_steps: int = 4, | |
num_images: int = 1, randomize_seed: bool = False, | |
progress=gr.Progress(track_tqdm=True), | |
profile: gr.OAuthProfile | None = None) -> tuple[list[str], int]: | |
seed = randomize_seed_fn(seed, randomize_seed) | |
torch.manual_seed(seed) | |
start_time = time.time() | |
outputs = pipe(prompt=prompt, negative_prompt="", height=height, width=width, | |
guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, | |
num_images_per_prompt=num_images, output_type="pil", lcm_origin_steps=50).images | |
print(f"Generation took {time.time() - start_time:.2f} seconds") | |
paths = save_images(outputs, profile, metadata={"prompt": prompt, "seed": seed, | |
"width": width, "height": height, | |
"guidance_scale": guidance_scale, | |
"num_inference_steps": num_inference_steps}) | |
return paths, seed | |
def validate_and_list_models(hfuser): | |
try: | |
models = api.list_models(author=hfuser) | |
return [model.modelId for model in models if model.pipeline_tag == "text-to-image"] | |
except Exception: | |
return [] | |
def parse_user_model_dict(user_model_dict_str): | |
try: | |
data = ast.literal_eval(user_model_dict_str) | |
if isinstance(data, dict) and all(isinstance(v, list) for v in data.values()): | |
return data | |
return {} | |
except Exception: | |
return {} | |
def load_model(model_id): | |
if model_id in model_cache: | |
return f"{model_id} loaded from cache" | |
try: | |
path = snapshot_download(repo_id=model_id, cache_dir="model_cache", token=os.getenv("HF_TOKEN")) | |
model_cache[model_id] = path | |
return f"{model_id} loaded successfully" | |
except Exception as e: | |
return f"{model_id} failed to load: {str(e)}" | |
def run_models(models, parallel): | |
if parallel: | |
futures = [executor.submit(load_model, m) for m in models] | |
return [f.result() for f in futures] | |
return [load_model(m) for m in models] | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
gr.HTML(""" | |
<p id="project-links" align="center"> | |
<a href='https://huggingface.co/spaces/charliebaby2023/Fast_Stable_diffusion_CPU/edit/main/app_demo.py'>Edit this app_demo py file</a> | |
<p> this is currently running the Lykon/dreamshaper-xl-v2-turbo model</p> | |
<p><fast stable diffusion, CPU</p> | |
</p> | |
""") | |
with gr.Column(scale=1): | |
with gr.Row(): | |
hfuser_input = gr.Textbox(label="Hugging Face Username") | |
hfuser_models = gr.Dropdown(label="Models from User", choices=["Choose A Model"], value="Choose A Model", multiselect=True, visible=False) | |
user_model_dict = gr.Textbox(visible=False, label="Dict Input (e.g., {'username': ['model1', 'model2']})") | |
with gr.Row(): | |
run_btn = gr.Button("Load Models") | |
with gr.Column(scale=3): | |
with gr.Row(): | |
parallel_toggle = gr.Checkbox(label="Load in Parallel", value=True) | |
with gr.Row(): | |
output = gr.Textbox(label="Output", lines=3) | |
def update_models(hfuser): | |
if hfuser: | |
models = validate_and_list_models(hfuser) | |
label = f"Models found: {len(models)}" | |
return gr.update(choices=models, label=label, visible=bool(models)) | |
return gr.update(choices=[], label='', visible=False) | |
def update_from_dict(dict_str): | |
parsed = parse_user_model_dict(dict_str) | |
if not parsed: | |
return gr.update(), gr.update() | |
hfuser = next(iter(parsed)) | |
models = parsed[hfuser] | |
label = f"Models found: {len(models)}" | |
return gr.update(value=hfuser), gr.update(choices=models, value=models, label=label) | |
hfuser_input.change(update_models, hfuser_input, hfuser_models) | |
user_model_dict.change(update_from_dict, user_model_dict, [hfuser_input, hfuser_models]) | |
run_btn.click(run_models, [hfuser_models, parallel_toggle], output) | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Text(placeholder="Enter your prompt", show_label=False, container=False) | |
run_button = gr.Button("Run", scale=0) | |
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery") | |
with gr.Accordion("Advanced options", open=False): | |
seed = gr.Slider(0, MAX_SEED, value=0, step=1, randomize=True, label="Seed") | |
randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True) | |
with gr.Row(): | |
width = gr.Slider(256, MAX_IMAGE_SIZE, value=512, step=32, label="Width") | |
height = gr.Slider(256, MAX_IMAGE_SIZE, value=512, step=32, label="Height") | |
with gr.Row(): | |
guidance_scale = gr.Slider(2.0, 14.0, value=8.0, step=0.1, label="Guidance Scale") | |
num_inference_steps = gr.Slider(1, 8, value=4, step=1, label="Inference Steps") | |
num_images = gr.Slider(1, 8, value=1, step=1, label="Number of Images") | |
run_button.click( | |
fn=generate, | |
inputs=[prompt, seed, width, height, guidance_scale, num_inference_steps, num_images, randomize_seed], | |
outputs=[gallery, seed] | |
) |