Spaces:
Runtime error
A newer version of the Streamlit SDK is available:
1.43.2
write an automl streamlit python tensorflow keras application with mechanics that takes a CSV dataset, performs pandas profiling and generates the code to do classification Here is an example of an Automated Machine Learning (AutoML) Streamlit application that takes a CSV dataset, performs pandas profiling, and generates the code to do classification using TensorFlow and Keras:
python Copy code import streamlit as st import pandas as pd import pandas_profiling from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from sklearn.model_selection import train_test_split
st.set_page_config(page_title="AutoML Streamlit App", page_icon=":robot:", layout="wide")
st.title("AutoML Streamlit App")
Upload a CSV dataset
uploaded_file = st.file_uploader("Upload your dataset", type=["csv"]) if uploaded_file is not None: # Load the dataset and display the first 5 rows df = pd.read_csv(uploaded_file) st.dataframe(df.head())
# Perform pandas profiling and display the report
profile = pandas_profiling.ProfileReport(df)
st.write("Pandas Profiling Report:", profile)
# Split the data into features and target variables
X = df.drop(df.columns[-1], axis=1)
y = df[df.columns[-1]]
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# Define a sequential model with TensorFlow and Keras
model = Sequential()
model.add(Dense(16, input_dim=X_train.shape[1], activation="relu"))
model.add(Dense(1, activation="sigmoid"))
# Compile the model
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])
# Train the model
model.fit(X_train, y_train, epochs=10, batch_size=32)
# Evaluate the model on the test set
test_loss, test_accuracy = model.evaluate(X_test, y_test)
st.write("Test Accuracy:", test_accuracy)
# Generate the code to do classification
st.write("Generated Code:")
st.code("""
import pandas as pd import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense
Load the dataset
df = pd.read_csv("dataset.csv")
Split the data into features and target variables
X = df.drop(df.columns[-1], axis=1) y = df[df.columns[-1]]
Define a sequential model with TensorFlow and Keras
model = Sequential() model.add(Dense(16, input_dim=X.shape[1], activation="relu")) model.add(Dense(1, activation="sigmoid"))
Compile the model
model.compile(loss="binary_crossentropy", optimizer="
Aaron Wacker continue writing the program above but simplify it and automatically generate a plotly visualization using treemap and sunburst plot from the dataset dynamically by interpreting the data types inside the CSV file Here is a simplified version of the AutoML Streamlit application that automatically generates a Plotly visualization using treemap and sunburst plots from the CSV dataset dynamically by interpreting the data types inside the file:
python Copy code import streamlit as st import pandas as pd import plotly.express as px
st.set_page_config(page_title="AutoML Streamlit App", page_icon=":robot:", layout="wide")
st.title("AutoML Streamlit App")
Upload a CSV dataset
uploaded_file = st.file_uploader("Upload your dataset", type=["csv"]) if uploaded_file is not None: # Load the dataset and display the first 5 rows df = pd.read_csv(uploaded_file) st.dataframe(df.head())
# Generate a treemap or sunburst plot based on data types
numerical_cols = df.select_dtypes(include=["float", "int"]).columns
categorical_cols = df.select_dtypes(include=["object"]).columns
if len(numerical_cols) >= 2:
fig = px.scatter_matrix(df, dimensions=numerical_cols)
st.plotly_chart(fig)
elif len(categorical_cols) >= 2:
fig = px.treemap(df, path=categorical_cols)
st.plotly_chart(fig)
else:
fig = px.sunburst(df, path=categorical_cols + numerical_cols)
st.plotly_chart(fig)
In this simplified version, we use Plotly Express to generate a scatter matrix plot for numerical data, a treemap plot for categorical data, and a sunburst plot for both numerical and categorical data. The type of plot generated is based on the number of numerical and categorical columns present in the dataset.
Regenerate response