Spaces:
Running
Running
import os | |
import torch | |
import shutil | |
import librosa | |
import warnings | |
import numpy as np | |
import gradio as gr | |
import librosa.display | |
import matplotlib.pyplot as plt | |
from collections import Counter | |
from model import EvalNet | |
from utils import ( | |
get_modelist, | |
find_files, | |
embed_img, | |
_L, | |
SAMPLE_RATE, | |
TEMP_DIR, | |
TRANSLATE, | |
CLASSES, | |
EN_US, | |
) | |
def circular_padding(spec: np.ndarray, end: int): | |
size = len(spec) | |
if end <= size: | |
return spec | |
num_padding = end - size | |
num_repeat = num_padding // size + int(num_padding % size != 0) | |
padding = np.tile(spec, num_repeat) | |
return np.concatenate((spec, padding))[:end] | |
def wav2mel(audio_path: str, width=3): | |
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE) | |
total_frames = len(y) | |
if total_frames % (width * sr) != 0: | |
count = total_frames // (width * sr) + 1 | |
y = circular_padding(y, count * width * sr) | |
mel_spec = librosa.feature.melspectrogram(y=y, sr=sr) | |
log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max) | |
dur = librosa.get_duration(y=y, sr=sr) | |
total_frames = log_mel_spec.shape[1] | |
step = int(width * total_frames / dur) | |
count = int(total_frames / step) | |
begin = int(0.5 * (total_frames - count * step)) | |
end = begin + step * count | |
for i in range(begin, end, step): | |
librosa.display.specshow(log_mel_spec[:, i : i + step]) | |
plt.axis("off") | |
plt.savefig( | |
f"{TEMP_DIR}/{i}.jpg", | |
bbox_inches="tight", | |
pad_inches=0.0, | |
) | |
plt.close() | |
def wav2cqt(audio_path: str, width=3): | |
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE) | |
total_frames = len(y) | |
if total_frames % (width * sr) != 0: | |
count = total_frames // (width * sr) + 1 | |
y = circular_padding(y, count * width * sr) | |
cqt_spec = librosa.cqt(y=y, sr=sr) | |
log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max) | |
dur = librosa.get_duration(y=y, sr=sr) | |
total_frames = log_cqt_spec.shape[1] | |
step = int(width * total_frames / dur) | |
count = int(total_frames / step) | |
begin = int(0.5 * (total_frames - count * step)) | |
end = begin + step * count | |
for i in range(begin, end, step): | |
librosa.display.specshow(log_cqt_spec[:, i : i + step]) | |
plt.axis("off") | |
plt.savefig( | |
f"{TEMP_DIR}/{i}.jpg", | |
bbox_inches="tight", | |
pad_inches=0.0, | |
) | |
plt.close() | |
def wav2chroma(audio_path: str, width=3): | |
y, sr = librosa.load(audio_path, sr=SAMPLE_RATE) | |
total_frames = len(y) | |
if total_frames % (width * sr) != 0: | |
count = total_frames // (width * sr) + 1 | |
y = circular_padding(y, count * width * sr) | |
chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr) | |
log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max) | |
dur = librosa.get_duration(y=y, sr=sr) | |
total_frames = log_chroma_spec.shape[1] | |
step = int(width * total_frames / dur) | |
count = int(total_frames / step) | |
begin = int(0.5 * (total_frames - count * step)) | |
end = begin + step * count | |
for i in range(begin, end, step): | |
librosa.display.specshow(log_chroma_spec[:, i : i + step]) | |
plt.axis("off") | |
plt.savefig( | |
f"{TEMP_DIR}/{i}.jpg", | |
bbox_inches="tight", | |
pad_inches=0.0, | |
) | |
plt.close() | |
def most_frequent_value(lst: list): | |
counter = Counter(lst) | |
max_count = max(counter.values()) | |
for element, count in counter.items(): | |
if count == max_count: | |
return element | |
return None | |
def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR): | |
status = "Success" | |
filename = result = None | |
try: | |
if os.path.exists(folder_path): | |
shutil.rmtree(folder_path) | |
if not wav_path: | |
raise ValueError("请输入音频!") | |
spec = log_name.split("_")[-3] | |
os.makedirs(folder_path, exist_ok=True) | |
model = EvalNet(log_name, len(TRANSLATE)).model | |
eval("wav2%s" % spec)(wav_path) | |
jpgs = find_files(folder_path, ".jpg") | |
preds = [] | |
for jpg in jpgs: | |
input = embed_img(jpg) | |
output: torch.Tensor = model(input) | |
preds.append(torch.max(output.data, 1)[1]) | |
pred_id = most_frequent_value(preds) | |
filename = os.path.basename(wav_path) | |
result = ( | |
CLASSES[pred_id].capitalize() | |
if EN_US | |
else f"{TRANSLATE[CLASSES[pred_id]]} ({CLASSES[pred_id].capitalize()})" | |
) | |
except Exception as e: | |
status = f"{e}" | |
return status, filename, result | |
if __name__ == "__main__": | |
warnings.filterwarnings("ignore") | |
models = get_modelist(assign_model="vit_l_16_mel") | |
examples = [] | |
example_wavs = find_files() | |
for wav in example_wavs: | |
examples.append([wav, models[0]]) | |
with gr.Blocks() as demo: | |
gr.Interface( | |
fn=infer, | |
inputs=[ | |
gr.Audio(label=_L("上传录音"), type="filepath"), | |
gr.Dropdown(choices=models, label=_L("选择模型"), value=models[0]), | |
], | |
outputs=[ | |
gr.Textbox(label=_L("状态栏"), show_copy_button=True), | |
gr.Textbox(label=_L("音频文件名"), show_copy_button=True), | |
gr.Textbox( | |
label=_L("古筝演奏技法识别"), | |
show_copy_button=True, | |
), | |
], | |
examples=examples, | |
cache_examples=False, | |
flagging_mode="never", | |
title=_L("建议录音时长保持在 3s 左右"), | |
) | |
gr.Markdown( | |
f"# {_L('引用')}" | |
+ """ | |
```bibtex | |
@article{Zhou-2025, | |
author = {Monan Zhou and Shenyang Xu and Zhaorui Liu and Zhaowen Wang and Feng Yu and Wei Li and Baoqiang Han}, | |
title = {CCMusic: An Open and Diverse Database for Chinese Music Information Retrieval Research}, | |
journal = {Transactions of the International Society for Music Information Retrieval}, | |
volume = {8}, | |
number = {1}, | |
pages = {22--38}, | |
month = {Mar}, | |
year = {2025}, | |
url = {https://doi.org/10.5334/tismir.194}, | |
doi = {10.5334/tismir.194} | |
} | |
```""" | |
) | |
demo.launch() | |