File size: 6,506 Bytes
7c99075
 
 
 
 
 
 
 
 
 
 
4240e15
 
 
 
 
 
 
 
 
 
 
7c99075
 
 
 
 
 
 
 
 
 
 
 
 
 
c5069aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c99075
 
 
c5069aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c99075
 
 
c5069aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c99075
 
 
 
 
 
 
 
 
 
 
 
 
4240e15
 
 
 
 
7c99075
4240e15
 
7c99075
4240e15
 
7c99075
c5069aa
4240e15
 
 
 
 
 
 
 
 
 
 
 
 
 
c5069aa
7c99075
4240e15
7c99075
4240e15
7c99075
 
 
 
7f4564b
7c99075
 
 
7f4564b
7c99075
 
 
 
 
4240e15
 
7c99075
 
4240e15
 
7c99075
4240e15
7c99075
 
 
 
 
 
4240e15
7c99075
 
 
4240e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c99075
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import torch
import shutil
import librosa
import warnings
import numpy as np
import gradio as gr
import librosa.display
import matplotlib.pyplot as plt
from collections import Counter
from model import EvalNet
from utils import (
    get_modelist,
    find_files,
    embed_img,
    _L,
    SAMPLE_RATE,
    TEMP_DIR,
    TRANSLATE,
    CLASSES,
    EN_US,
)


def circular_padding(spec: np.ndarray, end: int):
    size = len(spec)
    if end <= size:
        return spec

    num_padding = end - size
    num_repeat = num_padding // size + int(num_padding % size != 0)
    padding = np.tile(spec, num_repeat)
    return np.concatenate((spec, padding))[:end]


def wav2mel(audio_path: str, width=3):
    y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
    total_frames = len(y)
    if total_frames % (width * sr) != 0:
        count = total_frames // (width * sr) + 1
        y = circular_padding(y, count * width * sr)

    mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
    log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
    dur = librosa.get_duration(y=y, sr=sr)
    total_frames = log_mel_spec.shape[1]
    step = int(width * total_frames / dur)
    count = int(total_frames / step)
    begin = int(0.5 * (total_frames - count * step))
    end = begin + step * count
    for i in range(begin, end, step):
        librosa.display.specshow(log_mel_spec[:, i : i + step])
        plt.axis("off")
        plt.savefig(
            f"{TEMP_DIR}/{i}.jpg",
            bbox_inches="tight",
            pad_inches=0.0,
        )
        plt.close()


def wav2cqt(audio_path: str, width=3):
    y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
    total_frames = len(y)
    if total_frames % (width * sr) != 0:
        count = total_frames // (width * sr) + 1
        y = circular_padding(y, count * width * sr)

    cqt_spec = librosa.cqt(y=y, sr=sr)
    log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
    dur = librosa.get_duration(y=y, sr=sr)
    total_frames = log_cqt_spec.shape[1]
    step = int(width * total_frames / dur)
    count = int(total_frames / step)
    begin = int(0.5 * (total_frames - count * step))
    end = begin + step * count
    for i in range(begin, end, step):
        librosa.display.specshow(log_cqt_spec[:, i : i + step])
        plt.axis("off")
        plt.savefig(
            f"{TEMP_DIR}/{i}.jpg",
            bbox_inches="tight",
            pad_inches=0.0,
        )
        plt.close()


def wav2chroma(audio_path: str, width=3):
    y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
    total_frames = len(y)
    if total_frames % (width * sr) != 0:
        count = total_frames // (width * sr) + 1
        y = circular_padding(y, count * width * sr)

    chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr)
    log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
    dur = librosa.get_duration(y=y, sr=sr)
    total_frames = log_chroma_spec.shape[1]
    step = int(width * total_frames / dur)
    count = int(total_frames / step)
    begin = int(0.5 * (total_frames - count * step))
    end = begin + step * count
    for i in range(begin, end, step):
        librosa.display.specshow(log_chroma_spec[:, i : i + step])
        plt.axis("off")
        plt.savefig(
            f"{TEMP_DIR}/{i}.jpg",
            bbox_inches="tight",
            pad_inches=0.0,
        )
        plt.close()


def most_frequent_value(lst: list):
    counter = Counter(lst)
    max_count = max(counter.values())
    for element, count in counter.items():
        if count == max_count:
            return element

    return None


def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
    status = "Success"
    filename = result = None
    try:
        if os.path.exists(folder_path):
            shutil.rmtree(folder_path)

        if not wav_path:
            raise ValueError("请输入音频!")

        spec = log_name.split("_")[-3]
        os.makedirs(folder_path, exist_ok=True)
        model = EvalNet(log_name, len(TRANSLATE)).model
        eval("wav2%s" % spec)(wav_path)
        jpgs = find_files(folder_path, ".jpg")
        preds = []
        for jpg in jpgs:
            input = embed_img(jpg)
            output: torch.Tensor = model(input)
            preds.append(torch.max(output.data, 1)[1])

        pred_id = most_frequent_value(preds)
        filename = os.path.basename(wav_path)
        result = (
            CLASSES[pred_id].capitalize()
            if EN_US
            else f"{TRANSLATE[CLASSES[pred_id]]} ({CLASSES[pred_id].capitalize()})"
        )

    except Exception as e:
        status = f"{e}"

    return status, filename, result


if __name__ == "__main__":
    warnings.filterwarnings("ignore")
    models = get_modelist(assign_model="vit_l_16_mel")
    examples = []
    example_wavs = find_files()
    for wav in example_wavs:
        examples.append([wav, models[0]])

    with gr.Blocks() as demo:
        gr.Interface(
            fn=infer,
            inputs=[
                gr.Audio(label=_L("上传录音"), type="filepath"),
                gr.Dropdown(choices=models, label=_L("选择模型"), value=models[0]),
            ],
            outputs=[
                gr.Textbox(label=_L("状态栏"), show_copy_button=True),
                gr.Textbox(label=_L("音频文件名"), show_copy_button=True),
                gr.Textbox(
                    label=_L("古筝演奏技法识别"),
                    show_copy_button=True,
                ),
            ],
            examples=examples,
            cache_examples=False,
            flagging_mode="never",
            title=_L("建议录音时长保持在 3s 左右"),
        )

        gr.Markdown(
            f"# {_L('引用')}"
            + """
            ```bibtex
            @article{Zhou-2025,
                author  = {Monan Zhou and Shenyang Xu and Zhaorui Liu and Zhaowen Wang and Feng Yu and Wei Li and Baoqiang Han},
                title   = {CCMusic: An Open and Diverse Database for Chinese Music Information Retrieval Research},
                journal = {Transactions of the International Society for Music Information Retrieval},
                volume  = {8},
                number  = {1},
                pages   = {22--38},
                month   = {Mar},
                year    = {2025},
                url     = {https://doi.org/10.5334/tismir.194},
                doi     = {10.5334/tismir.194}
            }
            ```"""
        )

    demo.launch()