Spaces:
Sleeping
Sleeping
File size: 5,693 Bytes
ce3af46 fdc80c8 ce3af46 0e36212 ce3af46 1a1332a ce3af46 e6167f8 ece1395 e6167f8 f78495c ce3af46 f78495c ce3af46 f78495c ce3af46 f78495c ce3af46 f78495c ce3af46 f78495c ce3af46 f78495c ce3af46 f78495c 0e36212 01c5a73 0e36212 ced5431 0e36212 ce3af46 0e36212 ece1395 0e36212 ece1395 0e36212 8848e89 1a1332a 0e36212 1a1332a 8848e89 1a1332a 0e36212 599d161 1a1332a 8848e89 e6167f8 ca5aacd 8848e89 3c7eb9f ce3af46 0e36212 ce3af46 0e36212 ce3af46 e6167f8 fdc80c8 0e36212 ece1395 0e36212 ece1395 0e36212 e6167f8 0e36212 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import streamlit as st
from generator import generate_response_from_document
from retrieval import retrieve_documents_hybrid,find_query_dataset
from evaluation import calculate_metrics
from data_processing import load_recent_questions, save_recent_questions
import time
import matplotlib.pyplot as plt
# Page Title
st.title("RAG7 - Real World RAG System")
st.markdown(
"""
<style>
.stTextArea textarea {
background-color: white !important;
font-size: 24px !important;
color: black !important;
}
</style>
""",
unsafe_allow_html=True
)
# # Submit Button
# if st.button("Submit"):
# start_time = time.time()
# retrieved_documents = retrieve_documents_hybrid(question, 10)
# response = generate_response_from_document(question, retrieved_documents)
# end_time = time.time()
# time_taken_for_response = end_time-start_time
# else:
# response = ""
# # Response Section
# st.subheader("Response")
# st.text_area("Generated Response:", value=response, height=150, disabled=True)
# # Metrics Section
# st.subheader("Metrics")
# col1, col2 = st.columns([1, 3]) # Creating two columns for button and metrics display
# with col1:
# if st.button("Calculate Metrics"):
# metrics = calculate_metrics(question, response, retrieved_documents, time_taken_for_response)
# else:
# metrics = ""
# with col2:
# st.text_area("Metrics:", value=metrics, height=100, disabled=True)
# Initialize session state
if "recent_questions" not in st.session_state:
st.session_state.recent_questions = load_recent_questions()
if "last_question" not in st.session_state:
st.session_state.last_question = None
if "response_time" not in st.session_state:
st.session_state.response_time = None
if "retrieved_documents" not in st.session_state:
st.session_state.retrieved_documents = None
if "response" not in st.session_state:
st.session_state.response = None
if st.session_state.recent_questions:
recent_qns = list(reversed(st.session_state.recent_questions))
print(recent_qns)
# Display Recent Questions
st.sidebar.title("Overall RMSE")
rmse_values = [q["metrics"]["rmse"] for q in recent_qns if "metrics" in q and "rmse" in q["metrics"]]
average_rmse = sum(rmse_values) / len(rmse_values) if rmse_values else 0
st.sidebar.write(f"📊 **Average RMSE:** {average_rmse:.4f}")
st.sidebar.markdown("---")
st.sidebar.title("Analytics")
# Extract response times and labels
response_time = [q.get('metrics').get('response_time') for q in recent_qns]
labels = [f"Q{i+1}" for i in range(len(response_time))]
# Plot graph
if any(response_time):
fig, ax = plt.subplots()
ax.plot(labels, response_time, marker="o", linestyle="-", color="skyblue")
ax.set_xlabel("Recent Questions")
ax.set_ylabel("Time Taken for Response (seconds)")
ax.set_title("Response Time Analysis")
st.sidebar.pyplot(fig)
st.sidebar.markdown("---")
# Display Recent Questions
st.sidebar.title("Recent Questions")
for q in recent_qns: # Show latest first
st.sidebar.write(f"🔹 {q['question']}")
else:
st.sidebar.title("No recent questions")
# Question Section
st.subheader("Hi, What do you want to know today?")
question = st.text_area("Enter your question:", placeholder="Type your question here...", height=100)
question = question.strip()
if st.button("Submit"):
if question:
st.session_state.last_question = question
start_time = time.time()
st.session_state.metrics = {}
st.session_state.response = ""
st.session_state.query_dataset = find_query_dataset(question)
st.session_state.retrieved_documents = retrieve_documents_hybrid(question, st.session_state.query_dataset, 10)
st.session_state.response = generate_response_from_document(question, st.session_state.retrieved_documents)
end_time = time.time()
st.session_state.time_taken_for_response = end_time - start_time
# Check if question already exists
existing_questions = [q["question"] for q in st.session_state.recent_questions]
if question not in existing_questions:
new_entry = {
"question": question,
"metrics": st.session_state.metrics
}
st.session_state.recent_questions.append(new_entry)
save_recent_questions(st.session_state.recent_questions)
else:
st.error("Please enter a question before submitting.")
# Display stored response
st.subheader("Response")
st.text_area("Generated Response:", value=st.session_state.response, height=150, disabled=True)
col1, col2 = st.columns([1, 3]) # Creating two columns for button and metrics display
# Calculate Metrics Button
with col1:
if st.button("Show Metrics"):
st.session_state.metrics = calculate_metrics(question, st.session_state.query_dataset, st.session_state.response, st.session_state.retrieved_documents, st.session_state.time_taken_for_response)
for q in st.session_state.recent_questions:
if q["question"] == st.session_state.last_question:
q["metrics"] = {"metrics": st.session_state.metrics}
# Save updated data to file
save_recent_questions(st.session_state.recent_questions)
with col2:
st.text_area("Metrics:", value=st.session_state.metrics, height=100, disabled=True)
st.experimental_rerun()
|