cb1716pics commited on
Commit
8848e89
·
verified ·
1 Parent(s): fdc80c8

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +21 -13
  2. data_processing.py +10 -3
app.py CHANGED
@@ -66,12 +66,12 @@ if "metrics" not in st.session_state:
66
  if "metrics" not in st.session_state:
67
  st.session_state.metrics = {}
68
 
69
- recent_data = load_recent_questions()
70
 
71
  import matplotlib.pyplot as plt
72
 
73
  # for visualization
74
- st.sidebar.title("Analytics")
75
 
76
  # response_time = [q["response_time"] for q in recent_data["questions"]]
77
  # labels = [f"Q{i+1}" for i in range(len(response_time))] # Labels for X-axis
@@ -81,22 +81,30 @@ st.sidebar.title("Analytics")
81
  # ax.set_ylabel("Time Taken for Response")
82
  # ax.legend()
83
  # st.sidebar.pyplot(fig)
84
- response_time = [q["response_time"] for q in recent_data["questions"]]
85
- labels = [f"Q{i+1}" for i in range(len(response_time))] # Labels for X-axis
 
 
 
 
 
 
 
 
86
 
87
- fig, ax = plt.subplots()
88
- ax.plot(labels, response_time, color="skyblue")
89
- ax.set_xlabel("Recent Questions")
90
- ax.set_ylabel("Time Taken for Response (seconds)")
91
- ax.set_title("Response Time Analysis")
92
 
 
 
 
 
 
93
 
94
- st.sidebar.markdown("---") # Separator
 
95
 
96
  # Streamlit Sidebar for Recent Questions
97
- st.sidebar.title("Recent Questions")
98
- for q in reversed(recent_data["questions"]): # Show latest first
99
- st.sidebar.write(f"🔹 {q}")
100
 
101
  # Submit Button
102
  # if st.button("Submit"):
 
66
  if "metrics" not in st.session_state:
67
  st.session_state.metrics = {}
68
 
69
+ recent_questions = load_recent_questions()
70
 
71
  import matplotlib.pyplot as plt
72
 
73
  # for visualization
74
+
75
 
76
  # response_time = [q["response_time"] for q in recent_data["questions"]]
77
  # labels = [f"Q{i+1}" for i in range(len(response_time))] # Labels for X-axis
 
81
  # ax.set_ylabel("Time Taken for Response")
82
  # ax.legend()
83
  # st.sidebar.pyplot(fig)
84
+ if recent_questions:
85
+ st.sidebar.title("Analytics")
86
+ response_time = [q["response_time"] for q in recent_questions["questions"]]
87
+ labels = [f"Q{i+1}" for i in range(len(response_time))] # Labels for X-axis
88
+
89
+ fig, ax = plt.subplots()
90
+ ax.plot(labels, response_time, color="skyblue")
91
+ ax.set_xlabel("Recent Questions")
92
+ ax.set_ylabel("Time Taken for Response (seconds)")
93
+ ax.set_title("Response Time Analysis")
94
 
95
+ st.sidebar.markdown("---")
 
 
 
 
96
 
97
+ st.sidebar.title("Recent Questions")
98
+ for q in reversed(recent_questions["questions"]): # Show latest first
99
+ st.sidebar.write(f"🔹 {q["question"]}")
100
+ else:
101
+ st.sidebar.write(f"No Recent questions")
102
 
103
+
104
+ # Separator
105
 
106
  # Streamlit Sidebar for Recent Questions
107
+
 
 
108
 
109
  # Submit Button
110
  # if st.button("Submit"):
data_processing.py CHANGED
@@ -19,6 +19,7 @@ embedding_model = HuggingFaceEmbeddings(
19
  )
20
 
21
  reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
 
22
 
23
  # File path for storing recently asked questions and metrics
24
  RECENT_QUESTIONS_FILE = "data_local/recent_questions.json"
@@ -95,12 +96,18 @@ def load_ragbench():
95
 
96
  def load_query_dataset(q_dataset):
97
  global query_dataset_data
98
- if query_dataset_data[q_dataset]:
99
- return query_dataset_data[q_dataset]
100
- else:
 
101
  query_dataset_data[q_dataset] = load_dataset("rungalileo/ragbench", q_dataset)
 
 
 
 
102
  return query_dataset_data[q_dataset]
103
 
 
104
  def load_faiss(q_dataset):
105
  global index
106
  faiss_index_path = f"data_local/{q_dataset}_quantized.faiss"
 
19
  )
20
 
21
  reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
22
+ query_dataset_data = {}
23
 
24
  # File path for storing recently asked questions and metrics
25
  RECENT_QUESTIONS_FILE = "data_local/recent_questions.json"
 
96
 
97
  def load_query_dataset(q_dataset):
98
  global query_dataset_data
99
+
100
+ if query_dataset_data.get(q_dataset):
101
+ return query_dataset_data[q_dataset]
102
+ try:
103
  query_dataset_data[q_dataset] = load_dataset("rungalileo/ragbench", q_dataset)
104
+ except Exception as e:
105
+ print(f"Error loading dataset '{q_dataset}': {e}")
106
+ return None # Return None if the dataset fails to load
107
+
108
  return query_dataset_data[q_dataset]
109
 
110
+
111
  def load_faiss(q_dataset):
112
  global index
113
  faiss_index_path = f"data_local/{q_dataset}_quantized.faiss"