Step1X-Boceto3D / app.py
cavargas10's picture
Update app.py
3539b1a verified
# ==============================================================================
# 1. INSTALACIÓN DEL ENTORNO Y DEPENDENCIAS
# ==============================================================================
import os
import shlex
import spaces
import subprocess
import logging
# Configuración del logging para depuración
logging.basicConfig(level=logging.INFO, format='%(asctime)s - Step1X-3D - %(levelname)s - %(message)s')
def install_dependencies():
"""Instala el toolkit de CUDA y compila las extensiones C++/CUDA necesarias."""
logging.info("Iniciando la instalación de dependencias...")
# Instalar CUDA Toolkit
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_550.54.14_linux.run"
CUDA_TOOLKIT_FILE = f"/tmp/{os.path.basename(CUDA_TOOLKIT_URL)}"
if not os.path.exists("/usr/local/cuda"):
logging.info("Descargando e instalando CUDA Toolkit...")
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
else:
logging.info("CUDA Toolkit ya está instalado.")
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = f"{os.environ['CUDA_HOME']}/bin:{os.environ['PATH']}"
os.environ["LD_LIBRARY_PATH"] = f"{os.environ['CUDA_HOME']}/lib:{os.environ.get('LD_LIBRARY_PATH', '')}"
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
# Compilar extensiones personalizadas
logging.info("Compilando extensiones de renderizado...")
renderer_path = "/home/user/app/step1x3d_texture/differentiable_renderer/"
subprocess.run(f"cd {renderer_path} && python setup.py install", shell=True, check=True)
subprocess.run(shlex.split("pip install custom_rasterizer-0.1-cp310-cp310-linux_x86_64.whl"), check=True)
logging.info("Instalación completada.")
os.system('nvcc -V')
install_dependencies()
import uuid
import torch
import trimesh
import argparse
import numpy as np
import gradio as gr
from PIL import Image, ImageOps
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, EulerAncestralDiscreteScheduler
from step1x3d_geometry.models.pipelines.pipeline import Step1X3DGeometryPipeline
from step1x3d_texture.pipelines.step1x_3d_texture_synthesis_pipeline import Step1X3DTexturePipeline
from step1x3d_geometry.models.pipelines.pipeline_utils import reduce_face, remove_degenerate_face
# ==============================================================================
# 2. CONFIGURACIÓN Y CARGA DE MODELOS
# ==============================================================================
parser = argparse.ArgumentParser()
parser.add_argument("--geometry_model", type=str, default="Step1X-3D-Geometry-Label-1300m")
parser.add_argument("--texture_model", type=str, default="Step1X-3D-Texture")
parser.add_argument("--cache_dir", type=str, default="cache")
args = parser.parse_args()
os.makedirs(args.cache_dir, exist_ok=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16
logging.info("Cargando modelos... Este proceso puede tardar varios minutos.")
# Carga de modelos de Step1X-3D
logging.info(f"Cargando modelo de geometría: {args.geometry_model}")
geometry_model = Step1X3DGeometryPipeline.from_pretrained(
"stepfun-ai/Step1X-3D", subfolder=args.geometry_model
).to(device)
logging.info(f"Cargando modelo de textura: {args.texture_model}")
texture_model = Step1X3DTexturePipeline.from_pretrained("stepfun-ai/Step1X-3D", subfolder=args.texture_model)
# Carga de modelos de ControlNet para el pre-procesamiento de bocetos
logging.info("Cargando modelos para el pre-procesamiento de bocetos (SDXL + ControlNet)...")
controlnet = ControlNetModel.from_pretrained("xinsir/controlnet-scribble-sdxl-1.0", torch_dtype=torch_dtype)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype)
pipe_control = StableDiffusionXLControlNetPipeline.from_pretrained(
"sd-community/sdxl-flash", controlnet=controlnet, vae=vae, torch_dtype=torch_dtype
)
pipe_control.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_control.scheduler.config)
pipe_control.to(device)
logging.info("Todos los modelos han sido cargados correctamente.")
# ==============================================================================
# 3. FUNCIONES DE GENERACIÓN POR PASOS
# ==============================================================================
def apply_3d_style(prompt: str) -> tuple[str, str]:
"""Aplica el estilo '3D Model' por defecto al prompt."""
style_prompt = "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting"
negative_prompt = "ugly, deformed, noisy, low poly, blurry, painting"
return style_prompt.replace("{prompt}", prompt), negative_prompt
@spaces.GPU(duration=60)
def process_sketch(image, prompt, negative_prompt, guidance_scale, num_steps, controlnet_scale):
"""
Paso 0: Convierte un boceto en una imagen de alta calidad usando ControlNet.
"""
if image is None:
raise gr.Error("Por favor, proporciona un boceto de entrada.")
input_image = image.convert("RGB")
# Pre-procesamiento de la imagen de entrada (invertir y redimensionar)
width, height = input_image.size
ratio = np.sqrt(1024.0 * 1024.0 / (width * height))
new_width, new_height = int(width * ratio), int(height * ratio)
input_image = input_image.resize((new_width, new_height))
input_image = ImageOps.invert(input_image)
final_prompt, final_negative_prompt = apply_3d_style(prompt)
if negative_prompt: # Añadir negativo del usuario si existe
final_negative_prompt = f"{final_negative_prompt}, {negative_prompt}"
logging.info(f"Mejorando boceto con prompt: '{final_prompt}'")
generator = torch.Generator(device=device).manual_seed(np.random.randint(0, 2**32 - 1))
output_image = pipe_control(
prompt=final_prompt,
negative_prompt=final_negative_prompt,
image=input_image,
num_inference_steps=int(num_steps),
controlnet_conditioning_scale=float(controlnet_scale),
guidance_scale=float(guidance_scale),
width=new_width,
height=new_height,
generator=generator,
).images[0]
save_name = str(uuid.uuid4())
processed_image_path = f"{args.cache_dir}/{save_name}_processed.png"
output_image.save(processed_image_path)
logging.info(f"Boceto mejorado y guardado en: {processed_image_path}")
return processed_image_path
@spaces.GPU(duration=180)
def generate_geometry(input_image_path, guidance_scale, inference_steps, max_facenum, symmetry, edge_type):
"""Paso 1: Genera la geometría a partir de la imagen procesada."""
if not input_image_path or not os.path.exists(input_image_path):
raise gr.Error("Primero debes procesar un boceto o proporcionar una imagen de entrada válida.")
logging.info(f"Iniciando generación de geometría desde: {os.path.basename(input_image_path)}")
if "Label" in args.geometry_model:
symmetry_values = ["x", "asymmetry"]
out = geometry_model(
input_image_path,
label={"symmetry": symmetry_values[int(symmetry)], "edge_type": edge_type},
guidance_scale=float(guidance_scale),
octree_resolution=384,
max_facenum=int(max_facenum),
num_inference_steps=int(inference_steps),
)
else:
out = geometry_model(
input_image_path,
guidance_scale=float(guidance_scale),
num_inference_steps=int(inference_steps),
max_facenum=int(max_facenum),
)
save_name = os.path.basename(input_image_path).replace("_processed.png", "")
geometry_save_path = f"{args.cache_dir}/{save_name}_geometry.glb"
geometry_mesh = out.mesh[0]
geometry_mesh.export(geometry_save_path)
torch.cuda.empty_cache()
logging.info(f"Geometría guardada en: {geometry_save_path}")
return geometry_save_path
@spaces.GPU(duration=120)
def generate_texture(input_image_path, geometry_path):
"""Paso 2: Aplica la textura a la geometría generada."""
if not geometry_path or not os.path.exists(geometry_path):
raise gr.Error("Por favor, primero genera la geometría antes de texturizar.")
if not input_image_path or not os.path.exists(input_image_path):
raise gr.Error("Se necesita la imagen procesada para el texturizado.")
logging.info(f"Iniciando texturizado para la malla: {os.path.basename(geometry_path)}")
geometry_mesh = trimesh.load(geometry_path)
# Post-procesamiento
geometry_mesh = remove_degenerate_face(geometry_mesh)
geometry_mesh = reduce_face(geometry_mesh)
textured_mesh = texture_model(input_image_path, geometry_mesh)
save_name = os.path.basename(geometry_path).replace("_geometry.glb", "")
textured_save_path = f"{args.cache_dir}/{save_name}_textured.glb"
textured_mesh.export(textured_save_path)
torch.cuda.empty_cache()
logging.info(f"Malla texturizada guardada en: {textured_save_path}")
return textured_save_path
# ==============================================================================
# 4. INTERFAZ DE GRADIO
# ==============================================================================
with gr.Blocks(title="Step1X-3D", css="footer {display: none !important;} a {text-decoration: none !important;}") as demo:
gr.Markdown("# Step1X-3D: De Boceto a Malla 3D Texturizada")
gr.Markdown("Flujo de trabajo en 3 pasos: **0. Procesar Boceto → 1. Generar Geometría → 2. Generar Textura**")
# Estados para mantener las rutas de los archivos entre pasos
processed_image_path_state = gr.State()
geometry_path_state = gr.State()
with gr.Row():
with gr.Column(scale=2):
# --- Panel de Entradas ---
input_image = gr.Image(label="Paso 0: Carga tu boceto o imagen", type="pil", image_mode="RGB")
prompt = gr.Textbox(label="Describe tu objeto", value="a comfortable armchair")
with gr.Accordion(label="Opciones Avanzadas", open=False):
gr.Markdown("### Opciones de Procesado de Boceto (Paso 0)")
neg_prompt_sketch = gr.Textbox(label="Negative Prompt (Boceto)", value="text, signature, watermark")
guidance_sketch = gr.Slider(0.1, 10.0, label="Guidance Scale (Boceto)", value=5.0, step=0.1)
steps_sketch = gr.Slider(1, 50, label="Steps (Boceto)", value=25, step=1)
controlnet_scale = gr.Slider(0.1, 2.0, label="ControlNet Scale", value=0.85, step=0.05)
gr.Markdown("---")
gr.Markdown("### Opciones de Generación 3D (Paso 1)")
guidance_3d = gr.Number(label="Guidance Scale (3D)", value="7.5")
steps_3d = gr.Slider(label="Inference Steps (3D)", minimum=1, maximum=100, value=50)
max_facenum = gr.Number(label="Max Face Num", value="200000")
symmetry = gr.Radio(choices=["symmetry", "asymmetry"], label="Symmetry", value="symmetry", type="index")
edge_type = gr.Radio(choices=["sharp", "normal", "smooth"], label="Edge Type", value="sharp", type="value")
with gr.Row():
btn_process_sketch = gr.Button("0. Procesar Boceto", variant="secondary")
with gr.Row():
btn_geo = gr.Button("1. Generar Geometría", interactive=False)
btn_tex = gr.Button("2. Generar Textura", interactive=False)
with gr.Column(scale=3):
# --- Panel de Salidas ---
processed_image_preview = gr.Image(label="Resultado del Boceto Procesado", type="filepath", interactive=False, height=400)
geometry_preview = gr.Model3D(label="Vista Previa de la Geometría", height=400, clear_color=[0.0, 0.0, 0.0, 0.0])
textured_preview = gr.Model3D(label="Vista Previa del Modelo Texturizado", height=400, clear_color=[0.0, 0.0, 0.0, 0.0])
with gr.Column(scale=1):
gr.Examples(
examples=[
["examples/images/000.png", "a futuristic spaceship"],
["examples/images/001.png", "a cartoon style monster"],
["examples/images/004.png", "a red sports car"],
["examples/images/008.png", "a medieval sword"],
["examples/images/028.png", "a vintage camera"],
["examples/images/032.png", "a cute robot"],
["examples/images/061.png", "a delicious hamburger"],
["examples/images/107.png", "a golden trophy"],
],
inputs=[input_image, prompt], cache_examples=False
)
# --- Lógica de la Interfaz ---
def on_sketch_processed(path):
"""Función a ejecutar cuando el boceto se ha procesado."""
return {
processed_image_path_state: path,
btn_geo: gr.update(interactive=True, variant="primary"),
btn_tex: gr.update(interactive=False),
geometry_preview: gr.update(value=None),
textured_preview: gr.update(value=None),
}
def on_geometry_generated(path):
"""Función a ejecutar cuando la geometría se ha generado."""
return {
geometry_path_state: path,
btn_tex: gr.update(interactive=True, variant="primary"),
}
btn_process_sketch.click(
fn=process_sketch,
inputs=[input_image, prompt, neg_prompt_sketch, guidance_sketch, steps_sketch, controlnet_scale],
outputs=[processed_image_preview]
).then(
fn=on_sketch_processed,
inputs=[processed_image_preview],
outputs=[processed_image_path_state, btn_geo, btn_tex, geometry_preview, textured_preview]
)
btn_geo.click(
fn=generate_geometry,
inputs=[processed_image_path_state, guidance_3d, steps_3d, max_facenum, symmetry, edge_type],
outputs=[geometry_preview]
).then(
fn=on_geometry_generated,
inputs=[geometry_preview],
outputs=[geometry_path_state, btn_tex]
)
btn_tex.click(
fn=generate_texture,
inputs=[processed_image_path_state, geometry_path_state],
outputs=[textured_preview],
)
demo.launch(ssr_mode=False)