Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,566 Bytes
3539b1a 2ac1c2d 691ecd9 77948f7 7f54bbc 3539b1a aac950a 3539b1a fb76e24 50e4252 3539b1a 50e4252 3539b1a fb76e24 50e4252 fb76e24 3539b1a aac950a 3539b1a 50e4252 3539b1a 50e4252 f55e443 2ac1c2d 3539b1a 5cbb918 50e4252 5cbb918 2ac1c2d 5cbb918 50e4252 3539b1a 2ac1c2d 3539b1a 5cbb918 50e4252 5cbb918 3539b1a 5cbb918 3539b1a 50e4252 3539b1a 50e4252 3539b1a 50e4252 3539b1a 50e4252 3539b1a 50e4252 3539b1a 50e4252 3539b1a 50e4252 3539b1a 50e4252 3539b1a 50e4252 3539b1a 50e4252 3539b1a 50e4252 3539b1a aac950a 50e4252 3539b1a 50e4252 3539b1a 50e4252 3539b1a 5cbb918 bc373eb 5cbb918 3539b1a 5cbb918 aac950a 3539b1a aac950a 3539b1a aac950a 50e4252 3539b1a aac950a 3539b1a aac950a 3539b1a 56b8892 aac950a 5cbb918 aac950a 3539b1a 5cbb918 aac950a 5cbb918 3539b1a aac950a 3539b1a 5cbb918 3539b1a aac950a 3539b1a 50e4252 aac950a 5cbb918 3539b1a 50e4252 3539b1a aac950a 3539b1a 50e4252 3539b1a aac950a 5cbb918 3539b1a 5cbb918 3539b1a b8291ba 50e4252 3539b1a aac950a 3539b1a 5cbb918 50e4252 3539b1a 2ac1c2d 3539b1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
# ==============================================================================
# 1. INSTALACIÓN DEL ENTORNO Y DEPENDENCIAS
# ==============================================================================
import os
import shlex
import spaces
import subprocess
import logging
# Configuración del logging para depuración
logging.basicConfig(level=logging.INFO, format='%(asctime)s - Step1X-3D - %(levelname)s - %(message)s')
def install_dependencies():
"""Instala el toolkit de CUDA y compila las extensiones C++/CUDA necesarias."""
logging.info("Iniciando la instalación de dependencias...")
# Instalar CUDA Toolkit
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_550.54.14_linux.run"
CUDA_TOOLKIT_FILE = f"/tmp/{os.path.basename(CUDA_TOOLKIT_URL)}"
if not os.path.exists("/usr/local/cuda"):
logging.info("Descargando e instalando CUDA Toolkit...")
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
else:
logging.info("CUDA Toolkit ya está instalado.")
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = f"{os.environ['CUDA_HOME']}/bin:{os.environ['PATH']}"
os.environ["LD_LIBRARY_PATH"] = f"{os.environ['CUDA_HOME']}/lib:{os.environ.get('LD_LIBRARY_PATH', '')}"
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
# Compilar extensiones personalizadas
logging.info("Compilando extensiones de renderizado...")
renderer_path = "/home/user/app/step1x3d_texture/differentiable_renderer/"
subprocess.run(f"cd {renderer_path} && python setup.py install", shell=True, check=True)
subprocess.run(shlex.split("pip install custom_rasterizer-0.1-cp310-cp310-linux_x86_64.whl"), check=True)
logging.info("Instalación completada.")
os.system('nvcc -V')
install_dependencies()
import uuid
import torch
import trimesh
import argparse
import numpy as np
import gradio as gr
from PIL import Image, ImageOps
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, EulerAncestralDiscreteScheduler
from step1x3d_geometry.models.pipelines.pipeline import Step1X3DGeometryPipeline
from step1x3d_texture.pipelines.step1x_3d_texture_synthesis_pipeline import Step1X3DTexturePipeline
from step1x3d_geometry.models.pipelines.pipeline_utils import reduce_face, remove_degenerate_face
# ==============================================================================
# 2. CONFIGURACIÓN Y CARGA DE MODELOS
# ==============================================================================
parser = argparse.ArgumentParser()
parser.add_argument("--geometry_model", type=str, default="Step1X-3D-Geometry-Label-1300m")
parser.add_argument("--texture_model", type=str, default="Step1X-3D-Texture")
parser.add_argument("--cache_dir", type=str, default="cache")
args = parser.parse_args()
os.makedirs(args.cache_dir, exist_ok=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16
logging.info("Cargando modelos... Este proceso puede tardar varios minutos.")
# Carga de modelos de Step1X-3D
logging.info(f"Cargando modelo de geometría: {args.geometry_model}")
geometry_model = Step1X3DGeometryPipeline.from_pretrained(
"stepfun-ai/Step1X-3D", subfolder=args.geometry_model
).to(device)
logging.info(f"Cargando modelo de textura: {args.texture_model}")
texture_model = Step1X3DTexturePipeline.from_pretrained("stepfun-ai/Step1X-3D", subfolder=args.texture_model)
# Carga de modelos de ControlNet para el pre-procesamiento de bocetos
logging.info("Cargando modelos para el pre-procesamiento de bocetos (SDXL + ControlNet)...")
controlnet = ControlNetModel.from_pretrained("xinsir/controlnet-scribble-sdxl-1.0", torch_dtype=torch_dtype)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch_dtype)
pipe_control = StableDiffusionXLControlNetPipeline.from_pretrained(
"sd-community/sdxl-flash", controlnet=controlnet, vae=vae, torch_dtype=torch_dtype
)
pipe_control.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_control.scheduler.config)
pipe_control.to(device)
logging.info("Todos los modelos han sido cargados correctamente.")
# ==============================================================================
# 3. FUNCIONES DE GENERACIÓN POR PASOS
# ==============================================================================
def apply_3d_style(prompt: str) -> tuple[str, str]:
"""Aplica el estilo '3D Model' por defecto al prompt."""
style_prompt = "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting"
negative_prompt = "ugly, deformed, noisy, low poly, blurry, painting"
return style_prompt.replace("{prompt}", prompt), negative_prompt
@spaces.GPU(duration=60)
def process_sketch(image, prompt, negative_prompt, guidance_scale, num_steps, controlnet_scale):
"""
Paso 0: Convierte un boceto en una imagen de alta calidad usando ControlNet.
"""
if image is None:
raise gr.Error("Por favor, proporciona un boceto de entrada.")
input_image = image.convert("RGB")
# Pre-procesamiento de la imagen de entrada (invertir y redimensionar)
width, height = input_image.size
ratio = np.sqrt(1024.0 * 1024.0 / (width * height))
new_width, new_height = int(width * ratio), int(height * ratio)
input_image = input_image.resize((new_width, new_height))
input_image = ImageOps.invert(input_image)
final_prompt, final_negative_prompt = apply_3d_style(prompt)
if negative_prompt: # Añadir negativo del usuario si existe
final_negative_prompt = f"{final_negative_prompt}, {negative_prompt}"
logging.info(f"Mejorando boceto con prompt: '{final_prompt}'")
generator = torch.Generator(device=device).manual_seed(np.random.randint(0, 2**32 - 1))
output_image = pipe_control(
prompt=final_prompt,
negative_prompt=final_negative_prompt,
image=input_image,
num_inference_steps=int(num_steps),
controlnet_conditioning_scale=float(controlnet_scale),
guidance_scale=float(guidance_scale),
width=new_width,
height=new_height,
generator=generator,
).images[0]
save_name = str(uuid.uuid4())
processed_image_path = f"{args.cache_dir}/{save_name}_processed.png"
output_image.save(processed_image_path)
logging.info(f"Boceto mejorado y guardado en: {processed_image_path}")
return processed_image_path
@spaces.GPU(duration=180)
def generate_geometry(input_image_path, guidance_scale, inference_steps, max_facenum, symmetry, edge_type):
"""Paso 1: Genera la geometría a partir de la imagen procesada."""
if not input_image_path or not os.path.exists(input_image_path):
raise gr.Error("Primero debes procesar un boceto o proporcionar una imagen de entrada válida.")
logging.info(f"Iniciando generación de geometría desde: {os.path.basename(input_image_path)}")
if "Label" in args.geometry_model:
symmetry_values = ["x", "asymmetry"]
out = geometry_model(
input_image_path,
label={"symmetry": symmetry_values[int(symmetry)], "edge_type": edge_type},
guidance_scale=float(guidance_scale),
octree_resolution=384,
max_facenum=int(max_facenum),
num_inference_steps=int(inference_steps),
)
else:
out = geometry_model(
input_image_path,
guidance_scale=float(guidance_scale),
num_inference_steps=int(inference_steps),
max_facenum=int(max_facenum),
)
save_name = os.path.basename(input_image_path).replace("_processed.png", "")
geometry_save_path = f"{args.cache_dir}/{save_name}_geometry.glb"
geometry_mesh = out.mesh[0]
geometry_mesh.export(geometry_save_path)
torch.cuda.empty_cache()
logging.info(f"Geometría guardada en: {geometry_save_path}")
return geometry_save_path
@spaces.GPU(duration=120)
def generate_texture(input_image_path, geometry_path):
"""Paso 2: Aplica la textura a la geometría generada."""
if not geometry_path or not os.path.exists(geometry_path):
raise gr.Error("Por favor, primero genera la geometría antes de texturizar.")
if not input_image_path or not os.path.exists(input_image_path):
raise gr.Error("Se necesita la imagen procesada para el texturizado.")
logging.info(f"Iniciando texturizado para la malla: {os.path.basename(geometry_path)}")
geometry_mesh = trimesh.load(geometry_path)
# Post-procesamiento
geometry_mesh = remove_degenerate_face(geometry_mesh)
geometry_mesh = reduce_face(geometry_mesh)
textured_mesh = texture_model(input_image_path, geometry_mesh)
save_name = os.path.basename(geometry_path).replace("_geometry.glb", "")
textured_save_path = f"{args.cache_dir}/{save_name}_textured.glb"
textured_mesh.export(textured_save_path)
torch.cuda.empty_cache()
logging.info(f"Malla texturizada guardada en: {textured_save_path}")
return textured_save_path
# ==============================================================================
# 4. INTERFAZ DE GRADIO
# ==============================================================================
with gr.Blocks(title="Step1X-3D", css="footer {display: none !important;} a {text-decoration: none !important;}") as demo:
gr.Markdown("# Step1X-3D: De Boceto a Malla 3D Texturizada")
gr.Markdown("Flujo de trabajo en 3 pasos: **0. Procesar Boceto → 1. Generar Geometría → 2. Generar Textura**")
# Estados para mantener las rutas de los archivos entre pasos
processed_image_path_state = gr.State()
geometry_path_state = gr.State()
with gr.Row():
with gr.Column(scale=2):
# --- Panel de Entradas ---
input_image = gr.Image(label="Paso 0: Carga tu boceto o imagen", type="pil", image_mode="RGB")
prompt = gr.Textbox(label="Describe tu objeto", value="a comfortable armchair")
with gr.Accordion(label="Opciones Avanzadas", open=False):
gr.Markdown("### Opciones de Procesado de Boceto (Paso 0)")
neg_prompt_sketch = gr.Textbox(label="Negative Prompt (Boceto)", value="text, signature, watermark")
guidance_sketch = gr.Slider(0.1, 10.0, label="Guidance Scale (Boceto)", value=5.0, step=0.1)
steps_sketch = gr.Slider(1, 50, label="Steps (Boceto)", value=25, step=1)
controlnet_scale = gr.Slider(0.1, 2.0, label="ControlNet Scale", value=0.85, step=0.05)
gr.Markdown("---")
gr.Markdown("### Opciones de Generación 3D (Paso 1)")
guidance_3d = gr.Number(label="Guidance Scale (3D)", value="7.5")
steps_3d = gr.Slider(label="Inference Steps (3D)", minimum=1, maximum=100, value=50)
max_facenum = gr.Number(label="Max Face Num", value="200000")
symmetry = gr.Radio(choices=["symmetry", "asymmetry"], label="Symmetry", value="symmetry", type="index")
edge_type = gr.Radio(choices=["sharp", "normal", "smooth"], label="Edge Type", value="sharp", type="value")
with gr.Row():
btn_process_sketch = gr.Button("0. Procesar Boceto", variant="secondary")
with gr.Row():
btn_geo = gr.Button("1. Generar Geometría", interactive=False)
btn_tex = gr.Button("2. Generar Textura", interactive=False)
with gr.Column(scale=3):
# --- Panel de Salidas ---
processed_image_preview = gr.Image(label="Resultado del Boceto Procesado", type="filepath", interactive=False, height=400)
geometry_preview = gr.Model3D(label="Vista Previa de la Geometría", height=400, clear_color=[0.0, 0.0, 0.0, 0.0])
textured_preview = gr.Model3D(label="Vista Previa del Modelo Texturizado", height=400, clear_color=[0.0, 0.0, 0.0, 0.0])
with gr.Column(scale=1):
gr.Examples(
examples=[
["examples/images/000.png", "a futuristic spaceship"],
["examples/images/001.png", "a cartoon style monster"],
["examples/images/004.png", "a red sports car"],
["examples/images/008.png", "a medieval sword"],
["examples/images/028.png", "a vintage camera"],
["examples/images/032.png", "a cute robot"],
["examples/images/061.png", "a delicious hamburger"],
["examples/images/107.png", "a golden trophy"],
],
inputs=[input_image, prompt], cache_examples=False
)
# --- Lógica de la Interfaz ---
def on_sketch_processed(path):
"""Función a ejecutar cuando el boceto se ha procesado."""
return {
processed_image_path_state: path,
btn_geo: gr.update(interactive=True, variant="primary"),
btn_tex: gr.update(interactive=False),
geometry_preview: gr.update(value=None),
textured_preview: gr.update(value=None),
}
def on_geometry_generated(path):
"""Función a ejecutar cuando la geometría se ha generado."""
return {
geometry_path_state: path,
btn_tex: gr.update(interactive=True, variant="primary"),
}
btn_process_sketch.click(
fn=process_sketch,
inputs=[input_image, prompt, neg_prompt_sketch, guidance_sketch, steps_sketch, controlnet_scale],
outputs=[processed_image_preview]
).then(
fn=on_sketch_processed,
inputs=[processed_image_preview],
outputs=[processed_image_path_state, btn_geo, btn_tex, geometry_preview, textured_preview]
)
btn_geo.click(
fn=generate_geometry,
inputs=[processed_image_path_state, guidance_3d, steps_3d, max_facenum, symmetry, edge_type],
outputs=[geometry_preview]
).then(
fn=on_geometry_generated,
inputs=[geometry_preview],
outputs=[geometry_path_state, btn_tex]
)
btn_tex.click(
fn=generate_texture,
inputs=[processed_image_path_state, geometry_path_state],
outputs=[textured_preview],
)
demo.launch(ssr_mode=False) |