Spaces:
Running
Running
Create StockSentimentAnalyser.py
Browse files- StockSentimentAnalyser.py +676 -0
StockSentimentAnalyser.py
ADDED
|
@@ -0,0 +1,676 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
mport requests
|
| 2 |
+
from bs4 import BeautifulSoup
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
+
from transformers import pipeline
|
| 5 |
+
from collections import Counter
|
| 6 |
+
import time
|
| 7 |
+
import numpy as np
|
| 8 |
+
import yfinance as yf
|
| 9 |
+
import pandas as pd
|
| 10 |
+
from datetime import datetime, timedelta
|
| 11 |
+
import json
|
| 12 |
+
from typing import Dict, List, Tuple
|
| 13 |
+
import re # Add this import
|
| 14 |
+
import warnings
|
| 15 |
+
warnings.filterwarnings('ignore')
|
| 16 |
+
|
| 17 |
+
# Load FinBERT
|
| 18 |
+
model_name = "yiyanghkust/finbert-tone"
|
| 19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 20 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 21 |
+
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
| 22 |
+
|
| 23 |
+
class StockSentimentAnalyzer:
|
| 24 |
+
def __init__(self):
|
| 25 |
+
self.session = requests.Session()
|
| 26 |
+
self.session.headers.update({
|
| 27 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
| 28 |
+
})
|
| 29 |
+
|
| 30 |
+
# API setup for Indian stock data
|
| 31 |
+
self.api_url = "https://indian-stock-exchange-api2.p.rapidapi.com/stock"
|
| 32 |
+
self.api_headers = {
|
| 33 |
+
"x-rapidapi-host": "indian-stock-exchange-api2.p.rapidapi.com",
|
| 34 |
+
"x-rapidapi-key": "a12f59fc40msh153da8fdf3885b6p100406jsn57d1d84b0d06"
|
| 35 |
+
}
|
| 36 |
+
self.symbol = None
|
| 37 |
+
|
| 38 |
+
def get_stock_data(self, symbol: str, period: str = "1mo") -> pd.DataFrame:
|
| 39 |
+
"""Fetch stock data from Yahoo Finance"""
|
| 40 |
+
try:
|
| 41 |
+
# Add .NS for NSE stocks if not present
|
| 42 |
+
if not symbol.endswith('.NS') and not symbol.endswith('.BO'):
|
| 43 |
+
symbol += '.NS'
|
| 44 |
+
|
| 45 |
+
stock = yf.Ticker(symbol)
|
| 46 |
+
data = stock.history(period=period)
|
| 47 |
+
return data
|
| 48 |
+
except Exception as e:
|
| 49 |
+
print(f"Error fetching stock data for {symbol}: {e}")
|
| 50 |
+
return pd.DataFrame()
|
| 51 |
+
|
| 52 |
+
def get_news_from_api(self, company_name: str) -> List[Dict]:
|
| 53 |
+
"""Get news articles from the API"""
|
| 54 |
+
querystring = {"name": company_name}
|
| 55 |
+
try:
|
| 56 |
+
response = requests.get(self.api_url, headers=self.api_headers, params=querystring)
|
| 57 |
+
data = response.json()
|
| 58 |
+
news_data = data.get("recentNews", {})
|
| 59 |
+
return news_data
|
| 60 |
+
except Exception as e:
|
| 61 |
+
print(f"Error fetching news from API: {e}")
|
| 62 |
+
return []
|
| 63 |
+
|
| 64 |
+
def scrape_news_sentiment(self, company_name: str, symbol: str) -> Dict:
|
| 65 |
+
"""Scrape news sentiment from multiple sources"""
|
| 66 |
+
news_data = {
|
| 67 |
+
'headlines': [],
|
| 68 |
+
'sources': [],
|
| 69 |
+
'sentiment_scores': [],
|
| 70 |
+
'dates': [],
|
| 71 |
+
'urls': []
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
# Get news from API
|
| 75 |
+
api_news = self.get_news_from_api(company_name)
|
| 76 |
+
urls = [item["url"] for item in api_news if isinstance(item, dict) and "url" in item]
|
| 77 |
+
|
| 78 |
+
print(f"Found {len(urls)} news articles from API")
|
| 79 |
+
|
| 80 |
+
# Process each URL
|
| 81 |
+
for i, news_url in enumerate(urls):
|
| 82 |
+
try:
|
| 83 |
+
print(f"\n[{i+1}/{len(urls)}] Analyzing: {news_url[:60]}...")
|
| 84 |
+
html = requests.get(news_url, timeout=10).text
|
| 85 |
+
soup = BeautifulSoup(html, "html.parser")
|
| 86 |
+
|
| 87 |
+
# Get title
|
| 88 |
+
title = soup.title.string if soup.title else "No title"
|
| 89 |
+
|
| 90 |
+
# Grab <p> tags and filter
|
| 91 |
+
paragraphs = soup.find_all("p")
|
| 92 |
+
if not paragraphs:
|
| 93 |
+
print("→ No content found")
|
| 94 |
+
continue
|
| 95 |
+
|
| 96 |
+
content = " ".join(p.get_text() for p in paragraphs if len(p.get_text()) > 40)
|
| 97 |
+
content = content.strip()
|
| 98 |
+
if len(content) < 100:
|
| 99 |
+
print("→ Content too short")
|
| 100 |
+
continue
|
| 101 |
+
|
| 102 |
+
# Truncate to 512 tokens max
|
| 103 |
+
content = content[:1000]
|
| 104 |
+
result = classifier(content[:512])[0]
|
| 105 |
+
label = result['label'].lower()
|
| 106 |
+
score = result['score']
|
| 107 |
+
|
| 108 |
+
# Convert FinBERT sentiment to polarity score (-1 to 1)
|
| 109 |
+
polarity = 0
|
| 110 |
+
if label == "positive":
|
| 111 |
+
polarity = score
|
| 112 |
+
elif label == "negative":
|
| 113 |
+
polarity = -score
|
| 114 |
+
|
| 115 |
+
news_data['headlines'].append(title)
|
| 116 |
+
news_data['sources'].append('API')
|
| 117 |
+
news_data['sentiment_scores'].append(polarity)
|
| 118 |
+
news_data['dates'].append(datetime.now())
|
| 119 |
+
news_data['urls'].append(news_url)
|
| 120 |
+
|
| 121 |
+
print(f"→ Sentiment: {label.upper()} (confidence: {score:.1%})")
|
| 122 |
+
time.sleep(1.2) # polite delay
|
| 123 |
+
|
| 124 |
+
except Exception as e:
|
| 125 |
+
print(f"❌ Error: {str(e)}")
|
| 126 |
+
continue
|
| 127 |
+
|
| 128 |
+
# Economic Times
|
| 129 |
+
try:
|
| 130 |
+
et_url = f"https://economictimes.indiatimes.com/topic/{company_name.replace(' ', '-')}"
|
| 131 |
+
response = self.session.get(et_url, timeout=10)
|
| 132 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
| 133 |
+
|
| 134 |
+
headlines = soup.find_all(['h2', 'h3', 'h4'], class_=re.compile('.*title.*|.*headline.*'))
|
| 135 |
+
for headline in headlines[:5]: # Limit to 5 headlines
|
| 136 |
+
text = headline.get_text().strip()
|
| 137 |
+
if text and len(text) > 10:
|
| 138 |
+
# Use FinBERT for sentiment analysis
|
| 139 |
+
result = classifier(text)[0]
|
| 140 |
+
label = result['label'].lower()
|
| 141 |
+
score = result['score']
|
| 142 |
+
|
| 143 |
+
# Convert to polarity
|
| 144 |
+
polarity = 0
|
| 145 |
+
if label == "positive":
|
| 146 |
+
polarity = score
|
| 147 |
+
elif label == "negative":
|
| 148 |
+
polarity = -score
|
| 149 |
+
|
| 150 |
+
news_data['headlines'].append(text)
|
| 151 |
+
news_data['sources'].append('Economic Times')
|
| 152 |
+
news_data['sentiment_scores'].append(polarity)
|
| 153 |
+
news_data['dates'].append(datetime.now())
|
| 154 |
+
news_data['urls'].append(et_url)
|
| 155 |
+
except Exception as e:
|
| 156 |
+
print(f"Error scraping Economic Times: {e}")
|
| 157 |
+
|
| 158 |
+
return news_data
|
| 159 |
+
|
| 160 |
+
def calculate_news_sentiment_score(self, news_data: Dict) -> Dict:
|
| 161 |
+
"""Calculate various sentiment scores from news data"""
|
| 162 |
+
if not news_data['sentiment_scores']:
|
| 163 |
+
return {
|
| 164 |
+
'positive_score': 50,
|
| 165 |
+
'negative_score': 50,
|
| 166 |
+
'fear_score': 50,
|
| 167 |
+
'confidence_score': 50,
|
| 168 |
+
'overall_sentiment_score': 50
|
| 169 |
+
}
|
| 170 |
+
|
| 171 |
+
sentiments = news_data['sentiment_scores']
|
| 172 |
+
headlines = news_data['headlines']
|
| 173 |
+
|
| 174 |
+
# Count sentiments
|
| 175 |
+
positive_count = sum(1 for s in sentiments if s > 0.1)
|
| 176 |
+
negative_count = sum(1 for s in sentiments if s < -0.1)
|
| 177 |
+
neutral_count = len(sentiments) - positive_count - negative_count
|
| 178 |
+
|
| 179 |
+
total = len(sentiments)
|
| 180 |
+
positive_score = (positive_count / total) * 100 if total > 0 else 50
|
| 181 |
+
negative_score = (negative_count / total) * 100 if total > 0 else 50
|
| 182 |
+
|
| 183 |
+
# Calculate average confidence
|
| 184 |
+
confidence_values = [abs(s) for s in sentiments]
|
| 185 |
+
avg_confidence = sum(confidence_values) / len(confidence_values) if confidence_values else 0
|
| 186 |
+
confidence_score = avg_confidence * 100
|
| 187 |
+
|
| 188 |
+
# Fear score based on keywords
|
| 189 |
+
fear_keywords = ['fall', 'drop', 'crash', 'loss', 'decline', 'bear', 'sell', 'down', 'negative', 'risk']
|
| 190 |
+
confidence_keywords = ['rise', 'gain', 'bull', 'buy', 'up', 'positive', 'growth', 'profit', 'strong']
|
| 191 |
+
|
| 192 |
+
fear_mentions = sum(1 for headline in headlines
|
| 193 |
+
for keyword in fear_keywords
|
| 194 |
+
if keyword.lower() in headline.lower())
|
| 195 |
+
|
| 196 |
+
confidence_mentions = sum(1 for headline in headlines
|
| 197 |
+
for keyword in confidence_keywords
|
| 198 |
+
if keyword.lower() in headline.lower())
|
| 199 |
+
|
| 200 |
+
fear_score = min(100, (fear_mentions / len(headlines)) * 200) if headlines else 50
|
| 201 |
+
confidence_boost = min(100, (confidence_mentions / len(headlines)) * 200) if headlines else 50
|
| 202 |
+
|
| 203 |
+
# Overall sentiment score
|
| 204 |
+
overall_sentiment = 50 + ((positive_score - negative_score) * 0.3) + ((confidence_boost - fear_score) * 0.2)
|
| 205 |
+
|
| 206 |
+
return {
|
| 207 |
+
'positive_score': round(positive_score, 2),
|
| 208 |
+
'negative_score': round(negative_score, 2),
|
| 209 |
+
'fear_score': round(fear_score, 2),
|
| 210 |
+
'confidence_score': round(confidence_score, 2),
|
| 211 |
+
'overall_sentiment_score': round(min(100, max(0, overall_sentiment)), 2)
|
| 212 |
+
}
|
| 213 |
+
|
| 214 |
+
def calculate_volatility_score(self, stock_data: pd.DataFrame) -> float:
|
| 215 |
+
"""Calculate innovative volatility score (0-100)"""
|
| 216 |
+
if stock_data.empty:
|
| 217 |
+
return 0
|
| 218 |
+
|
| 219 |
+
# Calculate different volatility measures
|
| 220 |
+
returns = stock_data['Close'].pct_change().dropna()
|
| 221 |
+
|
| 222 |
+
# Standard deviation of returns (annualized)
|
| 223 |
+
std_vol = returns.std() * np.sqrt(252) * 100
|
| 224 |
+
|
| 225 |
+
# Average True Range volatility
|
| 226 |
+
high_low = stock_data['High'] - stock_data['Low']
|
| 227 |
+
high_close = np.abs(stock_data['High'] - stock_data['Close'].shift())
|
| 228 |
+
low_close = np.abs(stock_data['Low'] - stock_data['Close'].shift())
|
| 229 |
+
true_range = np.maximum(high_low, np.maximum(high_close, low_close))
|
| 230 |
+
atr = true_range.rolling(14).mean().iloc[-1]
|
| 231 |
+
atr_vol = (atr / stock_data['Close'].iloc[-1]) * 100
|
| 232 |
+
|
| 233 |
+
# Price range volatility
|
| 234 |
+
price_range = ((stock_data['High'].max() - stock_data['Low'].min()) / stock_data['Close'].iloc[-1]) * 100
|
| 235 |
+
|
| 236 |
+
# Combine and normalize to 0-100 scale
|
| 237 |
+
volatility_score = min(100, (std_vol * 0.4 + atr_vol * 0.4 + price_range * 0.2))
|
| 238 |
+
return round(volatility_score, 2)
|
| 239 |
+
|
| 240 |
+
def calculate_momentum_score(self, stock_data: pd.DataFrame) -> float:
|
| 241 |
+
"""Calculate momentum score based on price trends (0-100)"""
|
| 242 |
+
if stock_data.empty:
|
| 243 |
+
return 50
|
| 244 |
+
|
| 245 |
+
# RSI calculation
|
| 246 |
+
delta = stock_data['Close'].diff()
|
| 247 |
+
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
|
| 248 |
+
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
|
| 249 |
+
rs = gain / loss
|
| 250 |
+
rsi = 100 - (100 / (1 + rs))
|
| 251 |
+
current_rsi = rsi.iloc[-1] if not np.isnan(rsi.iloc[-1]) else 50
|
| 252 |
+
|
| 253 |
+
# Price momentum (% change over different periods)
|
| 254 |
+
mom_1d = ((stock_data['Close'].iloc[-1] - stock_data['Close'].iloc[-2]) / stock_data['Close'].iloc[-2]) * 100
|
| 255 |
+
mom_5d = ((stock_data['Close'].iloc[-1] - stock_data['Close'].iloc[-6]) / stock_data['Close'].iloc[-6]) * 100 if len(stock_data) > 5 else 0
|
| 256 |
+
mom_20d = ((stock_data['Close'].iloc[-1] - stock_data['Close'].iloc[-21]) / stock_data['Close'].iloc[-21]) * 100 if len(stock_data) > 20 else 0
|
| 257 |
+
|
| 258 |
+
# Moving average trends
|
| 259 |
+
ma_5 = stock_data['Close'].rolling(5).mean().iloc[-1]
|
| 260 |
+
ma_20 = stock_data['Close'].rolling(20).mean().iloc[-1] if len(stock_data) > 20 else ma_5
|
| 261 |
+
current_price = stock_data['Close'].iloc[-1]
|
| 262 |
+
|
| 263 |
+
ma_score = 50
|
| 264 |
+
if current_price > ma_5 > ma_20:
|
| 265 |
+
ma_score = 75
|
| 266 |
+
elif current_price > ma_5:
|
| 267 |
+
ma_score = 65
|
| 268 |
+
elif current_price < ma_5 < ma_20:
|
| 269 |
+
ma_score = 25
|
| 270 |
+
elif current_price < ma_5:
|
| 271 |
+
ma_score = 35
|
| 272 |
+
|
| 273 |
+
# Combine scores
|
| 274 |
+
momentum_score = (current_rsi * 0.4 + ma_score * 0.3 +
|
| 275 |
+
min(max(mom_1d * 2 + 50, 0), 100) * 0.1 +
|
| 276 |
+
min(max(mom_5d + 50, 0), 100) * 0.1 +
|
| 277 |
+
min(max(mom_20d * 0.5 + 50, 0), 100) * 0.1)
|
| 278 |
+
|
| 279 |
+
return round(momentum_score, 2)
|
| 280 |
+
|
| 281 |
+
def calculate_liquidity_score(self, stock_data: pd.DataFrame) -> float:
|
| 282 |
+
"""Calculate liquidity score based on volume patterns (0-100)"""
|
| 283 |
+
if stock_data.empty:
|
| 284 |
+
return 0
|
| 285 |
+
|
| 286 |
+
# Average volume
|
| 287 |
+
avg_volume = stock_data['Volume'].mean()
|
| 288 |
+
recent_volume = stock_data['Volume'].tail(5).mean()
|
| 289 |
+
|
| 290 |
+
# Volume trend
|
| 291 |
+
volume_trend = (recent_volume - avg_volume) / avg_volume * 100 if avg_volume > 0 else 0
|
| 292 |
+
|
| 293 |
+
# Volume-price relationship
|
| 294 |
+
price_changes = stock_data['Close'].pct_change()
|
| 295 |
+
volume_changes = stock_data['Volume'].pct_change()
|
| 296 |
+
correlation = price_changes.corr(volume_changes)
|
| 297 |
+
correlation = 0 if np.isnan(correlation) else correlation
|
| 298 |
+
|
| 299 |
+
# Normalize to 0-100 scale
|
| 300 |
+
volume_score = min(100, max(0, 50 + volume_trend * 0.3 + correlation * 25))
|
| 301 |
+
|
| 302 |
+
return round(volume_score, 2)
|
| 303 |
+
|
| 304 |
+
def calculate_technical_strength_score(self, stock_data: pd.DataFrame) -> float:
|
| 305 |
+
"""Calculate technical strength based on multiple indicators (0-100)"""
|
| 306 |
+
if stock_data.empty:
|
| 307 |
+
return 50
|
| 308 |
+
|
| 309 |
+
scores = []
|
| 310 |
+
|
| 311 |
+
# Support/Resistance levels
|
| 312 |
+
highs = stock_data['High'].rolling(20).max()
|
| 313 |
+
lows = stock_data['Low'].rolling(20).min()
|
| 314 |
+
current_price = stock_data['Close'].iloc[-1]
|
| 315 |
+
|
| 316 |
+
# Price position within range
|
| 317 |
+
price_position = ((current_price - lows.iloc[-1]) / (highs.iloc[-1] - lows.iloc[-1])) * 100
|
| 318 |
+
scores.append(min(100, max(0, price_position)))
|
| 319 |
+
|
| 320 |
+
# Volume-weighted average price deviation
|
| 321 |
+
vwap = (stock_data['Close'] * stock_data['Volume']).sum() / stock_data['Volume'].sum()
|
| 322 |
+
vwap_score = 50 + ((current_price - vwap) / vwap) * 100
|
| 323 |
+
scores.append(min(100, max(0, vwap_score)))
|
| 324 |
+
|
| 325 |
+
# Bollinger Bands position
|
| 326 |
+
ma_20 = stock_data['Close'].rolling(20).mean()
|
| 327 |
+
std_20 = stock_data['Close'].rolling(20).std()
|
| 328 |
+
upper_band = ma_20 + (std_20 * 2)
|
| 329 |
+
lower_band = ma_20 - (std_20 * 2)
|
| 330 |
+
|
| 331 |
+
if not upper_band.empty and not lower_band.empty:
|
| 332 |
+
bb_position = ((current_price - lower_band.iloc[-1]) /
|
| 333 |
+
(upper_band.iloc[-1] - lower_band.iloc[-1])) * 100
|
| 334 |
+
scores.append(min(100, max(0, bb_position)))
|
| 335 |
+
|
| 336 |
+
return round(np.mean(scores), 2)
|
| 337 |
+
|
| 338 |
+
def calculate_market_correlation_score(self, symbol: str, stock_data: pd.DataFrame) -> float:
|
| 339 |
+
"""Calculate correlation with major indices (0-100)"""
|
| 340 |
+
try:
|
| 341 |
+
# Get Nifty 50 data for comparison
|
| 342 |
+
nifty = yf.Ticker("^NSEI")
|
| 343 |
+
nifty_data = nifty.history(period="1mo")
|
| 344 |
+
|
| 345 |
+
if nifty_data.empty or stock_data.empty:
|
| 346 |
+
return 50
|
| 347 |
+
|
| 348 |
+
# Align dates
|
| 349 |
+
common_dates = stock_data.index.intersection(nifty_data.index)
|
| 350 |
+
if len(common_dates) < 5:
|
| 351 |
+
return 50
|
| 352 |
+
|
| 353 |
+
stock_returns = stock_data.loc[common_dates]['Close'].pct_change().dropna()
|
| 354 |
+
nifty_returns = nifty_data.loc[common_dates]['Close'].pct_change().dropna()
|
| 355 |
+
|
| 356 |
+
# Calculate correlation
|
| 357 |
+
correlation = stock_returns.corr(nifty_returns)
|
| 358 |
+
if np.isnan(correlation):
|
| 359 |
+
return 50
|
| 360 |
+
|
| 361 |
+
# Convert correlation to 0-100 score
|
| 362 |
+
# High positive correlation = higher score (follows market)
|
| 363 |
+
# Negative correlation = lower score (contrarian)
|
| 364 |
+
correlation_score = (correlation + 1) * 50
|
| 365 |
+
|
| 366 |
+
return round(correlation_score, 2)
|
| 367 |
+
except Exception as e:
|
| 368 |
+
print(f"Error calculating market correlation: {e}")
|
| 369 |
+
return 50
|
| 370 |
+
|
| 371 |
+
def calculate_growth_potential_score(self, stock_data: pd.DataFrame) -> float:
|
| 372 |
+
"""Calculate growth potential based on trend analysis (0-100)"""
|
| 373 |
+
if stock_data.empty:
|
| 374 |
+
return 50
|
| 375 |
+
|
| 376 |
+
# Calculate different timeframe growth rates
|
| 377 |
+
current_price = stock_data['Close'].iloc[-1]
|
| 378 |
+
|
| 379 |
+
growth_scores = []
|
| 380 |
+
|
| 381 |
+
# Weekly growth
|
| 382 |
+
if len(stock_data) >= 5:
|
| 383 |
+
week_ago_price = stock_data['Close'].iloc[-5]
|
| 384 |
+
weekly_growth = ((current_price - week_ago_price) / week_ago_price) * 100
|
| 385 |
+
weekly_score = min(100, max(0, 50 + weekly_growth * 2))
|
| 386 |
+
growth_scores.append(weekly_score)
|
| 387 |
+
|
| 388 |
+
# Monthly growth
|
| 389 |
+
if len(stock_data) >= 20:
|
| 390 |
+
month_ago_price = stock_data['Close'].iloc[-20]
|
| 391 |
+
monthly_growth = ((current_price - month_ago_price) / month_ago_price) * 100
|
| 392 |
+
monthly_score = min(100, max(0, 50 + monthly_growth))
|
| 393 |
+
growth_scores.append(monthly_score)
|
| 394 |
+
|
| 395 |
+
# Volume growth trend
|
| 396 |
+
recent_volume = stock_data['Volume'].tail(5).mean()
|
| 397 |
+
earlier_volume = stock_data['Volume'].head(5).mean()
|
| 398 |
+
if earlier_volume > 0:
|
| 399 |
+
volume_growth = ((recent_volume - earlier_volume) / earlier_volume) * 100
|
| 400 |
+
volume_score = min(100, max(0, 50 + volume_growth * 0.5))
|
| 401 |
+
growth_scores.append(volume_score)
|
| 402 |
+
|
| 403 |
+
return round(np.mean(growth_scores) if growth_scores else 50, 2)
|
| 404 |
+
|
| 405 |
+
def calculate_stability_score(self, stock_data: pd.DataFrame) -> float:
|
| 406 |
+
"""Calculate stability score based on price steadiness (0-100)"""
|
| 407 |
+
if stock_data.empty:
|
| 408 |
+
return 50
|
| 409 |
+
|
| 410 |
+
# Calculate coefficient of variation
|
| 411 |
+
returns = stock_data['Close'].pct_change().dropna()
|
| 412 |
+
mean_return = returns.mean()
|
| 413 |
+
std_return = returns.std()
|
| 414 |
+
|
| 415 |
+
if mean_return != 0:
|
| 416 |
+
cv = abs(std_return / mean_return)
|
| 417 |
+
# Lower CV = higher stability
|
| 418 |
+
stability_score = max(0, 100 - cv * 100)
|
| 419 |
+
else:
|
| 420 |
+
stability_score = 50
|
| 421 |
+
|
| 422 |
+
# Consider price gaps
|
| 423 |
+
gaps = abs(stock_data['Open'] - stock_data['Close'].shift()).dropna()
|
| 424 |
+
avg_gap = gaps.mean()
|
| 425 |
+
avg_price = stock_data['Close'].mean()
|
| 426 |
+
|
| 427 |
+
if avg_price > 0:
|
| 428 |
+
gap_ratio = avg_gap / avg_price
|
| 429 |
+
gap_penalty = min(50, gap_ratio * 1000)
|
| 430 |
+
stability_score = max(0, stability_score - gap_penalty)
|
| 431 |
+
|
| 432 |
+
return round(stability_score, 2)
|
| 433 |
+
|
| 434 |
+
def calculate_risk_score(self, analysis: Dict) -> float:
|
| 435 |
+
"""Calculate risk score based on multiple factors"""
|
| 436 |
+
risk_factors = [
|
| 437 |
+
analysis['volatility_score'],
|
| 438 |
+
analysis['fear_score'],
|
| 439 |
+
100 - analysis['liquidity_score'],
|
| 440 |
+
100 - analysis['technical_strength_score'],
|
| 441 |
+
100 - analysis['stability_score']
|
| 442 |
+
]
|
| 443 |
+
return round(np.mean(risk_factors), 2)
|
| 444 |
+
|
| 445 |
+
def calculate_investment_attractiveness(self, analysis: Dict) -> float:
|
| 446 |
+
"""Calculate investment attractiveness score"""
|
| 447 |
+
attractiveness_factors = [
|
| 448 |
+
analysis['overall_sentiment_score'],
|
| 449 |
+
analysis['growth_potential_score'],
|
| 450 |
+
analysis['momentum_score'],
|
| 451 |
+
100 - analysis['risk_score']
|
| 452 |
+
]
|
| 453 |
+
return round(np.mean(attractiveness_factors), 2)
|
| 454 |
+
|
| 455 |
+
def get_comprehensive_analysis(self, symbol: str, company_name: str = None) -> Dict:
|
| 456 |
+
"""Get comprehensive sentiment analysis for a stock"""
|
| 457 |
+
# If company name not provided, try to extract from symbol
|
| 458 |
+
self.symbol = symbol
|
| 459 |
+
if not company_name:
|
| 460 |
+
company_name = symbol.replace('.NS', '').replace('.BO', '')
|
| 461 |
+
|
| 462 |
+
print(f"\n{'='*80}")
|
| 463 |
+
print(f"🔍 ANALYZING: {company_name.upper()} ({symbol})")
|
| 464 |
+
print(f"{'='*80}")
|
| 465 |
+
|
| 466 |
+
# Get stock data
|
| 467 |
+
print("📊 Fetching stock data...")
|
| 468 |
+
stock_data = self.get_stock_data(symbol)
|
| 469 |
+
|
| 470 |
+
if stock_data.empty:
|
| 471 |
+
print("❌ Could not fetch stock data. Please check the symbol.")
|
| 472 |
+
return {}
|
| 473 |
+
|
| 474 |
+
# Get news sentiment
|
| 475 |
+
print("📰 Scraping news sentiment...")
|
| 476 |
+
news_data = self.scrape_news_sentiment(company_name, symbol)
|
| 477 |
+
|
| 478 |
+
# Calculate all scores
|
| 479 |
+
print("🧮 Calculating sentiment scores...")
|
| 480 |
+
|
| 481 |
+
# Basic stock info
|
| 482 |
+
current_price = stock_data['Close'].iloc[-1]
|
| 483 |
+
prev_close = stock_data['Close'].iloc[-2] if len(stock_data) > 1 else current_price
|
| 484 |
+
price_change = current_price - prev_close
|
| 485 |
+
price_change_pct = (price_change / prev_close) * 100 if prev_close != 0 else 0
|
| 486 |
+
|
| 487 |
+
analysis = {
|
| 488 |
+
'symbol': symbol,
|
| 489 |
+
'company_name': company_name,
|
| 490 |
+
'analysis_date': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
|
| 491 |
+
'current_price': round(current_price, 2),
|
| 492 |
+
'price_change': round(price_change, 2),
|
| 493 |
+
'price_change_pct': round(price_change_pct, 2),
|
| 494 |
+
'volume': int(stock_data['Volume'].iloc[-1]),
|
| 495 |
+
'market_cap_approx': 'N/A', # Would need additional API for exact market cap
|
| 496 |
+
|
| 497 |
+
# Innovative Scores
|
| 498 |
+
'volatility_score': self.calculate_volatility_score(stock_data),
|
| 499 |
+
'momentum_score': self.calculate_momentum_score(stock_data),
|
| 500 |
+
'liquidity_score': self.calculate_liquidity_score(stock_data),
|
| 501 |
+
'technical_strength_score': self.calculate_technical_strength_score(stock_data),
|
| 502 |
+
'market_correlation_score': self.calculate_market_correlation_score(symbol, stock_data),
|
| 503 |
+
'growth_potential_score': self.calculate_growth_potential_score(stock_data),
|
| 504 |
+
'stability_score': self.calculate_stability_score(stock_data),
|
| 505 |
+
|
| 506 |
+
# News sentiment scores
|
| 507 |
+
**self.calculate_news_sentiment_score(news_data),
|
| 508 |
+
|
| 509 |
+
# Additional metrics
|
| 510 |
+
'news_count': len(news_data['headlines']),
|
| 511 |
+
'recent_headlines': news_data['headlines'][:5] # Top 5 headlines
|
| 512 |
+
}
|
| 513 |
+
|
| 514 |
+
# Calculate risk score
|
| 515 |
+
analysis['risk_score'] = self.calculate_risk_score(analysis)
|
| 516 |
+
|
| 517 |
+
# Calculate risk level based on risk score
|
| 518 |
+
if analysis['risk_score'] >= 75:
|
| 519 |
+
analysis['risk_level'] = "VERY HIGH"
|
| 520 |
+
elif analysis['risk_score'] >= 60:
|
| 521 |
+
analysis['risk_level'] = "HIGH"
|
| 522 |
+
elif analysis['risk_score'] >= 40:
|
| 523 |
+
analysis['risk_level'] = "MODERATE"
|
| 524 |
+
elif analysis['risk_score'] >= 25:
|
| 525 |
+
analysis['risk_level'] = "LOW"
|
| 526 |
+
else:
|
| 527 |
+
analysis['risk_level'] = "VERY LOW"
|
| 528 |
+
|
| 529 |
+
# Add risk factors based on analysis
|
| 530 |
+
analysis['risk_factors'] = []
|
| 531 |
+
if analysis['volatility_score'] > 70:
|
| 532 |
+
analysis['risk_factors'].append("High market volatility")
|
| 533 |
+
if analysis['fear_score'] > 60:
|
| 534 |
+
analysis['risk_factors'].append("Elevated market fear")
|
| 535 |
+
if analysis['negative_score'] > 60:
|
| 536 |
+
analysis['risk_factors'].append("Negative sentiment trend")
|
| 537 |
+
if analysis['market_correlation_score'] < 30:
|
| 538 |
+
analysis['risk_factors'].append("Low market correlation")
|
| 539 |
+
if analysis['stability_score'] < 40:
|
| 540 |
+
analysis['risk_factors'].append("Low stability indicators")
|
| 541 |
+
|
| 542 |
+
# Calculate investment attractiveness
|
| 543 |
+
analysis['investment_attractiveness_score'] = self.calculate_investment_attractiveness(analysis)
|
| 544 |
+
|
| 545 |
+
return analysis
|
| 546 |
+
|
| 547 |
+
def generate_recommendation(self, analysis: Dict) -> str:
|
| 548 |
+
"""Generate trading recommendation based on analysis"""
|
| 549 |
+
if not analysis:
|
| 550 |
+
return "Unable to generate recommendation - insufficient data"
|
| 551 |
+
|
| 552 |
+
sentiment = analysis['overall_sentiment_score']
|
| 553 |
+
risk = analysis['risk_score']
|
| 554 |
+
momentum = analysis['momentum_score']
|
| 555 |
+
volatility = analysis['volatility_score']
|
| 556 |
+
attractiveness = analysis['investment_attractiveness_score']
|
| 557 |
+
|
| 558 |
+
if sentiment > 70 and risk < 40 and momentum > 60 and attractiveness > 65:
|
| 559 |
+
return "🟢 STRONG BUY - High sentiment, low risk, strong momentum"
|
| 560 |
+
elif sentiment > 60 and risk < 50 and attractiveness > 55:
|
| 561 |
+
return "🟢 BUY - Positive sentiment with manageable risk"
|
| 562 |
+
elif sentiment > 40 and sentiment < 60 and risk < 60:
|
| 563 |
+
return "🟡 HOLD - Neutral sentiment, monitor closely"
|
| 564 |
+
elif sentiment < 40 and risk > 60:
|
| 565 |
+
return "🔴 SELL - Negative sentiment with high risk"
|
| 566 |
+
elif sentiment < 30 or risk > 75:
|
| 567 |
+
return "🔴 STRONG SELL - Very negative sentiment or very high risk"
|
| 568 |
+
else:
|
| 569 |
+
return "🟡 HOLD - Mixed signals, proceed with caution"
|
| 570 |
+
|
| 571 |
+
def display_analysis(self, analysis: Dict):
|
| 572 |
+
"""Display comprehensive analysis in a formatted way"""
|
| 573 |
+
if not analysis:
|
| 574 |
+
print("❌ No analysis data available")
|
| 575 |
+
return
|
| 576 |
+
|
| 577 |
+
print(f"\n{'='*80}")
|
| 578 |
+
print(f"📈 COMPREHENSIVE STOCK ANALYSIS REPORT")
|
| 579 |
+
print(f"{'='*80}")
|
| 580 |
+
|
| 581 |
+
# Basic Info
|
| 582 |
+
print(f"\n📊 BASIC INFORMATION:")
|
| 583 |
+
print(f"Company: {analysis['company_name']}")
|
| 584 |
+
print(f"Symbol: {analysis['symbol']}")
|
| 585 |
+
print(f"Current Price: ₹{analysis['current_price']}")
|
| 586 |
+
print(f"Price Change: ₹{analysis['price_change']} ({analysis['price_change_pct']:+.2f}%)")
|
| 587 |
+
print(f"Volume: {analysis['volume']:,}")
|
| 588 |
+
print(f"Analysis Date: {analysis['analysis_date']}")
|
| 589 |
+
|
| 590 |
+
# Sentiment Scores
|
| 591 |
+
print(f"\n🎯 SENTIMENT SCORES (0-100):")
|
| 592 |
+
print(f"Overall Sentiment Score: {analysis['overall_sentiment_score']}/100")
|
| 593 |
+
print(f"Positive Score: {analysis['positive_score']}/100")
|
| 594 |
+
print(f"Negative Score: {analysis['negative_score']}/100")
|
| 595 |
+
print(f"Fear Score: {analysis['fear_score']}/100")
|
| 596 |
+
print(f"Confidence Score: {analysis['confidence_score']}/100")
|
| 597 |
+
|
| 598 |
+
# Technical Scores
|
| 599 |
+
print(f"\n⚙️ TECHNICAL SCORES (0-100):")
|
| 600 |
+
print(f"Volatility Score: {analysis['volatility_score']}/100")
|
| 601 |
+
print(f"Momentum Score: {analysis['momentum_score']}/100")
|
| 602 |
+
print(f"Technical Strength: {analysis['technical_strength_score']}/100")
|
| 603 |
+
print(f"Liquidity Score: {analysis['liquidity_score']}/100")
|
| 604 |
+
print(f"Market Correlation: {analysis['market_correlation_score']}/100")
|
| 605 |
+
|
| 606 |
+
# Advanced Scores
|
| 607 |
+
print(f"\n🚀 ADVANCED SCORES (0-100):")
|
| 608 |
+
print(f"Growth Potential: {analysis['growth_potential_score']}/100")
|
| 609 |
+
print(f"Stability Score: {analysis['stability_score']}/100")
|
| 610 |
+
print(f"Risk Score: {analysis['risk_score']}/100")
|
| 611 |
+
print(f"Investment Attractiveness: {analysis['investment_attractiveness_score']}/100")
|
| 612 |
+
|
| 613 |
+
# Recommendation
|
| 614 |
+
recommendation = self.generate_recommendation(analysis)
|
| 615 |
+
print(f"\n💡 RECOMMENDATION:")
|
| 616 |
+
print(f"{recommendation}")
|
| 617 |
+
|
| 618 |
+
# News Analysis
|
| 619 |
+
print(f"\n📰 NEWS ANALYSIS:")
|
| 620 |
+
print(f"Headlines Analyzed: {analysis['news_count']}")
|
| 621 |
+
if analysis['recent_headlines']:
|
| 622 |
+
print(f"\n📋 Recent Headlines:")
|
| 623 |
+
for i, headline in enumerate(analysis['recent_headlines'], 1):
|
| 624 |
+
print(f"{i}. {headline}")
|
| 625 |
+
|
| 626 |
+
# Risk Assessment
|
| 627 |
+
print(f"\n⚠️ RISK ASSESSMENT:")
|
| 628 |
+
print(f"Risk Level: {analysis['risk_level']}")
|
| 629 |
+
print(f"Key Risk Factors:")
|
| 630 |
+
for risk_factor in analysis['risk_factors']:
|
| 631 |
+
print(f"- {risk_factor}")
|
| 632 |
+
|
| 633 |
+
# Save analysis to JSON
|
| 634 |
+
output_file = f"analysis_{self.symbol}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
|
| 635 |
+
with open(output_file, 'w') as f:
|
| 636 |
+
json.dump(analysis, f, indent=4)
|
| 637 |
+
print(f"\n💾 Analysis saved to {output_file}")
|
| 638 |
+
|
| 639 |
+
def main():
|
| 640 |
+
"""Main function to run the stock analysis"""
|
| 641 |
+
analyzer = StockSentimentAnalyzer()
|
| 642 |
+
|
| 643 |
+
print("🚀 Welcome to Stock Sentiment Analyzer!")
|
| 644 |
+
print("Enter stock symbols (e.g., RELIANCE, TCS, HDFCBANK)")
|
| 645 |
+
print("The system will automatically add .NS for NSE stocks")
|
| 646 |
+
print("Type 'quit' to exit\n")
|
| 647 |
+
|
| 648 |
+
while True:
|
| 649 |
+
try:
|
| 650 |
+
# Get user input
|
| 651 |
+
user_input = input("Enter stock symbol: ").strip().upper()
|
| 652 |
+
|
| 653 |
+
if user_input.lower() == 'quit':
|
| 654 |
+
print("👋 Thank you for using Stock Sentiment Analyzer!")
|
| 655 |
+
break
|
| 656 |
+
|
| 657 |
+
if not user_input:
|
| 658 |
+
print("❌ Please enter a valid stock symbol")
|
| 659 |
+
continue
|
| 660 |
+
|
| 661 |
+
# Get company name (optional)
|
| 662 |
+
company_name = input("Enter company name (optional, press Enter to skip): ").strip()
|
| 663 |
+
|
| 664 |
+
# Perform analysis
|
| 665 |
+
analysis = analyzer.get_comprehensive_analysis(user_input, company_name if company_name else None)
|
| 666 |
+
|
| 667 |
+
# Display results
|
| 668 |
+
if analysis:
|
| 669 |
+
analyzer.display_analysis(analysis)
|
| 670 |
+
|
| 671 |
+
except Exception as e:
|
| 672 |
+
print(f"❌ Error: {str(e)}")
|
| 673 |
+
print("Please try again with a different stock symbol")
|
| 674 |
+
|
| 675 |
+
if __name__ == "__main__":
|
| 676 |
+
main()
|