Spaces:
Sleeping
Sleeping
Create StockSentimentNews.py
Browse files- StockSentimentNews.py +163 -0
StockSentimentNews.py
ADDED
|
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
from bs4 import BeautifulSoup
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
+
from transformers import pipeline
|
| 5 |
+
from collections import Counter
|
| 6 |
+
import time
|
| 7 |
+
import json
|
| 8 |
+
import numpy as np
|
| 9 |
+
|
| 10 |
+
def sentiment_analysis(querystring, headers):
|
| 11 |
+
|
| 12 |
+
# Load FinBERT
|
| 13 |
+
model_name = "yiyanghkust/finbert-tone"
|
| 14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 15 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 16 |
+
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
| 17 |
+
|
| 18 |
+
def calculate_sentiment_scores(sentiment_data):
|
| 19 |
+
# Convert list values to their lengths, excluding 'details'
|
| 20 |
+
processed = {
|
| 21 |
+
k: len(v) if isinstance(v, list) and k != 'details' else v
|
| 22 |
+
for k, v in sentiment_data.items() if k != 'details'
|
| 23 |
+
}
|
| 24 |
+
total = sum(processed.values())
|
| 25 |
+
|
| 26 |
+
return {
|
| 27 |
+
"overall": max(processed, key=processed.get) if processed else "neutral",
|
| 28 |
+
"positive_percent": processed.get("positive", 0) / total * 100 if total > 0 else 0,
|
| 29 |
+
"negative_percent": processed.get("negative", 0) / total * 100 if total > 0 else 0,
|
| 30 |
+
"sentiment_ratio": processed.get("positive", 0) / processed.get("negative", 1) if processed.get("negative", 1) != 0 else float('-99999999'),
|
| 31 |
+
"average_confidence": sum(sentiment_data.get("confidence", [0])) / len(sentiment_data.get("confidence", [0])) if sentiment_data.get("confidence") else 0
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
# API setup
|
| 35 |
+
url = "https://indian-stock-exchange-api2.p.rapidapi.com/stock"
|
| 36 |
+
|
| 37 |
+
# Step 1: Get stock data
|
| 38 |
+
print("Fetching stock data...")
|
| 39 |
+
response = requests.get(url, headers=headers, params=querystring)
|
| 40 |
+
data = response.json()
|
| 41 |
+
news_data = data.get("recentNews", {})
|
| 42 |
+
print(f"Found {len(news_data)} news articles")
|
| 43 |
+
|
| 44 |
+
# Step 2: Extract URLs
|
| 45 |
+
urls = [item["url"] for item in news_data if isinstance(item, dict) and "url" in item]
|
| 46 |
+
print(f"Processing {len(urls)} articles...")
|
| 47 |
+
|
| 48 |
+
# Step 3: Analyze sentiment for each article
|
| 49 |
+
summary = Counter()
|
| 50 |
+
details = []
|
| 51 |
+
|
| 52 |
+
for i, news_item in enumerate(news_data):
|
| 53 |
+
news_url = news_item.get("url")
|
| 54 |
+
headline = news_item.get("headline", "")
|
| 55 |
+
intro = news_item.get("intro", "")
|
| 56 |
+
|
| 57 |
+
content_for_sentiment = ""
|
| 58 |
+
if news_url:
|
| 59 |
+
try:
|
| 60 |
+
print(f"\n[{i+1}/{len(urls)}] Analyzing: {news_url[:60]}...")
|
| 61 |
+
html = requests.get(news_url, timeout=10).text
|
| 62 |
+
soup = BeautifulSoup(html, "html.parser")
|
| 63 |
+
|
| 64 |
+
# Grab <p> tags and filter
|
| 65 |
+
paragraphs = soup.find_all("p")
|
| 66 |
+
if not paragraphs:
|
| 67 |
+
raise ValueError("No content found in paragraphs")
|
| 68 |
+
|
| 69 |
+
content_for_sentiment = " ".join(p.get_text() for p in paragraphs if len(p.get_text()) > 40)
|
| 70 |
+
content_for_sentiment = content_for_sentiment.strip()
|
| 71 |
+
if len(content_for_sentiment) < 100:
|
| 72 |
+
print("→ Content too short from web scraping, falling back to headline/intro")
|
| 73 |
+
content_for_sentiment = headline + " ." + intro
|
| 74 |
+
|
| 75 |
+
except Exception as e:
|
| 76 |
+
print(f"❌ Error scraping {news_url}: {str(e)}. Falling back to headline/intro for sentiment analysis.")
|
| 77 |
+
content_for_sentiment = headline + " ." + intro
|
| 78 |
+
else:
|
| 79 |
+
print(f"\n[{i+1}/{len(urls)}] No URL provided, using headline/intro for sentiment analysis.")
|
| 80 |
+
content_for_sentiment = headline + " ." + intro
|
| 81 |
+
|
| 82 |
+
if not content_for_sentiment.strip():
|
| 83 |
+
print("→ No content available for sentiment analysis, skipping.")
|
| 84 |
+
continue
|
| 85 |
+
|
| 86 |
+
# Truncate to 512 tokens max
|
| 87 |
+
content_for_sentiment = content_for_sentiment[:1000]
|
| 88 |
+
result = classifier(content_for_sentiment[:512])[0]
|
| 89 |
+
label = result['label'].lower()
|
| 90 |
+
score = round(result['score'], 3)
|
| 91 |
+
|
| 92 |
+
summary[label] += 1
|
| 93 |
+
details.append({
|
| 94 |
+
"url": news_url,
|
| 95 |
+
"title": news_item.get("title", "No title"), # Use title from news_item if available
|
| 96 |
+
"sentiment": label,
|
| 97 |
+
"confidence": score,
|
| 98 |
+
"content_length": len(content_for_sentiment),
|
| 99 |
+
"image_222x148": news_item.get("image_222x148"),
|
| 100 |
+
"intro": intro,
|
| 101 |
+
"headline": headline
|
| 102 |
+
})
|
| 103 |
+
|
| 104 |
+
print(f"→ Sentiment: {label.upper()} (confidence: {score:.1%})")
|
| 105 |
+
time.sleep(1.2)
|
| 106 |
+
|
| 107 |
+
# Step 4: Generate comprehensive output
|
| 108 |
+
sentiment_scores = calculate_sentiment_scores({
|
| 109 |
+
"positive": summary["positive"],
|
| 110 |
+
"negative": summary["negative"],
|
| 111 |
+
"neutral": summary["neutral"],
|
| 112 |
+
"details": details
|
| 113 |
+
})
|
| 114 |
+
|
| 115 |
+
output = {
|
| 116 |
+
"metadata": {
|
| 117 |
+
"total_articles": len(urls),
|
| 118 |
+
"processed_articles": len(details),
|
| 119 |
+
"processing_time": time.strftime("%Y-%m-%d %H:%M:%S")
|
| 120 |
+
},
|
| 121 |
+
"sentiment_metrics": {
|
| 122 |
+
"overall_score": sentiment_scores["overall"], # Removed round() for string label
|
| 123 |
+
"positive_score": round(sentiment_scores["positive_percent"], 2),
|
| 124 |
+
"negative_score": round(sentiment_scores["negative_percent"], 2),
|
| 125 |
+
"sentiment_ratio": round(sentiment_scores["sentiment_ratio"], 2),
|
| 126 |
+
"average_confidence": round(sentiment_scores["average_confidence"], 2)
|
| 127 |
+
},
|
| 128 |
+
"article_details": details
|
| 129 |
+
}
|
| 130 |
+
|
| 131 |
+
# Print formatted results
|
| 132 |
+
print("\n=== SENTIMENT ANALYSIS RESULTS ===")
|
| 133 |
+
print(f"Overall Sentiment Score: {output['sentiment_metrics']['overall_score']}") # Updated print statement
|
| 134 |
+
print(f"Positive/Negative Ratio: {output['sentiment_metrics']['sentiment_ratio']:.2f}")
|
| 135 |
+
print(f"Average Confidence: {output['sentiment_metrics']['average_confidence']:.1f}%")
|
| 136 |
+
|
| 137 |
+
import json
|
| 138 |
+
with open("sentiment_results.json", "w") as f:
|
| 139 |
+
json.dump(output, f, indent=2)
|
| 140 |
+
print("Results saved to sentiment_results.json")
|
| 141 |
+
return output
|
| 142 |
+
|
| 143 |
+
def main(querystring):
|
| 144 |
+
"""
|
| 145 |
+
Main function that takes querystring as parameter and runs sentiment analysis
|
| 146 |
+
Args:
|
| 147 |
+
querystring: Dictionary containing stock name (e.g. {'name': 'HDFC BANK'})
|
| 148 |
+
Returns:
|
| 149 |
+
Dictionary containing sentiment analysis results
|
| 150 |
+
"""
|
| 151 |
+
try:
|
| 152 |
+
headers = {
|
| 153 |
+
"x-rapidapi-host": "indian-stock-exchange-api2.p.rapidapi.com",
|
| 154 |
+
"x-rapidapi-key": "a12f59fc40msh153da8fdf3885b6p100406jsn57d1d84b0d06"
|
| 155 |
+
}
|
| 156 |
+
|
| 157 |
+
# Run the sentiment analysis
|
| 158 |
+
results = sentiment_analysis(querystring, headers)
|
| 159 |
+
return results
|
| 160 |
+
|
| 161 |
+
except Exception as e:
|
| 162 |
+
print(f"Error in main function: {str(e)}")
|
| 163 |
+
return {"error": str(e)}
|