Spaces:
Running
on
Zero
Running
on
Zero
from typing import Optional, Union, List | |
import os | |
import random | |
import yaml | |
import glob | |
from PIL import Image | |
import torch | |
from torchvision import transforms | |
from datasets import load_dataset, concatenate_datasets | |
from ..pipelines.omnigen2.pipeline_omnigen2 import OmniGen2ImageProcessor | |
class OmniGen2TrainDataset(torch.utils.data.Dataset): | |
SYSTEM_PROMPT = "You are a helpful assistant that generates high-quality images based on user instructions." | |
SYSTEM_PROMPT_DROP = "You are a helpful assistant that generates images." | |
def __init__( | |
self, | |
config_path: str, | |
tokenizer, | |
use_chat_template: bool, | |
max_input_pixels: Optional[Union[int, List[int]]] = None, | |
max_output_pixels: Optional[int] = None, | |
max_side_length: Optional[int] = None, | |
img_scale_num: int = 16, | |
prompt_dropout_prob: float = 0.0, | |
ref_img_dropout_prob: float = 0.0, | |
): | |
self.max_input_pixels = max_input_pixels | |
self.max_output_pixels = max_output_pixels | |
self.max_side_length = max_side_length | |
self.img_scale_num = img_scale_num | |
self.prompt_dropout_prob = prompt_dropout_prob | |
self.ref_img_dropout_prob = ref_img_dropout_prob | |
with open(config_path, "r") as f: | |
self.config = yaml.load(f, Loader=yaml.FullLoader) | |
self.use_chat_template = use_chat_template | |
self.image_processor = OmniGen2ImageProcessor(vae_scale_factor=img_scale_num, do_resize=True) | |
data = self._collect_annotations(self.config) | |
self.data = data | |
self.tokenizer = tokenizer | |
def _collect_annotations(self, config): | |
total_samples = 0 | |
total_ratio = 0 | |
json_datasets = [] | |
for data in config['data']: | |
data_path, data_type = data['path'], data.get("type", "default") | |
if os.path.isdir(data_path): | |
jsonl_files = list(glob.glob(os.path.join(data_path, "**/*.jsonl"), recursive=True)) + list(glob.glob(os.path.join(data_path, "**/*.json"), recursive=True)) | |
json_dataset = load_dataset('json', data_files=jsonl_files, cache_dir=None)['train'] | |
else: | |
data_ext = os.path.splitext(data_path)[-1] | |
if data_ext in [".json", ".jsonl"]: | |
json_dataset = load_dataset('json', data_files=data_path, cache_dir=None)['train'] | |
elif data_ext in [".yml", ".yaml"]: | |
with open(data_path, "r") as f: | |
sub_config = yaml.load(f, Loader=yaml.FullLoader) | |
json_dataset = self._collect_annotations(sub_config) | |
else: | |
raise NotImplementedError( | |
f'Unknown data file extension: "{data_ext}". ' | |
f"Currently, .json, .jsonl .yml .yaml are supported. " | |
"If you are using a supported format, please set the file extension so that the proper parsing " | |
"routine can be called." | |
) | |
total_ratio += data['ratio'] | |
total_samples += len(json_dataset) | |
json_datasets.append(json_dataset) | |
for json_dataset in json_datasets: | |
target_size = int(len(json_dataset) * data['ratio'] / total_ratio) # normalize the ratio | |
if target_size <= len(json_dataset): | |
# Random selection without replacement | |
indices = random.sample(range(len(json_dataset)), target_size) | |
else: | |
# Oversample with replacement | |
indices = random.choices(range(len(json_dataset)), k=target_size) | |
json_dataset = json_dataset.select(indices) | |
json_dataset = concatenate_datasets(json_datasets) | |
return json_dataset | |
def clean_data_item(self, data_item): | |
task_type = data_item['task_type'] | |
prefixs = ["The image portrays ", "The image depicts ", "The image captures ", "The image highlights ", "The image shows ", "这张图片展示了"] | |
if "text_to_image" in task_type or "t2i" in task_type: | |
if random.random() < 0.5: | |
for p in prefixs: | |
if p in data_item['instruction']: | |
data_item['instruction'] = data_item['instruction'].replace(p, "") | |
break | |
return data_item | |
def apply_chat_template(self, instruction, system_prompt): | |
if self.use_chat_template: | |
prompt = [ | |
{ | |
"role": "system", | |
"content": system_prompt, | |
}, | |
{"role": "user", "content": instruction}, | |
] | |
instruction = self.tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=False) | |
return instruction | |
def process_item(self, data_item): | |
assert data_item['instruction'] is not None | |
data_item = self.clean_data_item(data_item) | |
drop_prompt = random.random() < self.prompt_dropout_prob | |
drop_ref_img = drop_prompt and random.random() < self.ref_img_dropout_prob | |
if drop_prompt: | |
instruction = self.apply_chat_template("", self.SYSTEM_PROMPT_DROP) | |
else: | |
instruction = self.apply_chat_template(data_item['instruction'], self.SYSTEM_PROMPT) | |
if not drop_ref_img and 'input_images' in data_item and data_item['input_images'] is not None: | |
input_images_path = data_item['input_images'] | |
input_images = [] | |
max_input_pixels = self.max_input_pixels[len(input_images_path) - 1] if isinstance(self.max_input_pixels, list) else self.max_input_pixels | |
for input_image_path in input_images_path: | |
input_image = Image.open(input_image_path).convert("RGB") | |
input_image = self.image_processor.preprocess(input_image, max_pixels=max_input_pixels, max_side_length=self.max_side_length) | |
input_images.append(input_image) | |
else: | |
input_images_path, input_images = None, None | |
output_image_path = data_item['output_image'] | |
output_image = Image.open(output_image_path).convert("RGB") | |
output_image = self.image_processor.preprocess(output_image, max_pixels=self.max_output_pixels, max_side_length=self.max_side_length) | |
data = { | |
'task_type': data_item['task_type'], | |
'instruction': instruction, | |
'input_images_path': input_images_path, | |
'input_images': input_images, | |
'output_image': output_image, | |
'output_image_path': output_image_path, | |
} | |
return data | |
def __getitem__(self, index): | |
max_retries = 12 | |
current_index = index | |
for attempt in range(max_retries): | |
try: | |
data_item = self.data[current_index] | |
return self.process_item(data_item) | |
except Exception as e: | |
if attempt == max_retries - 1: | |
raise e | |
else: | |
# Try a different index for the next attempt | |
current_index = random.randint(0, len(self.data) - 1) | |
continue | |
def __len__(self): | |
return len(self.data) | |
class OmniGen2Collator(): | |
def __init__(self, tokenizer, max_token_len): | |
self.tokenizer = tokenizer | |
self.max_token_len = max_token_len | |
def __call__(self, batch): | |
task_type = [data['task_type'] for data in batch] | |
instruction = [data['instruction'] for data in batch] | |
input_images_path = [data['input_images_path'] for data in batch] | |
input_images = [data['input_images'] for data in batch] | |
output_image = [data['output_image'] for data in batch] | |
output_image_path = [data['output_image_path'] for data in batch] | |
text_inputs = self.tokenizer( | |
instruction, | |
padding="longest", | |
max_length=self.max_token_len, | |
truncation=True, | |
return_tensors="pt", | |
) | |
data = { | |
"task_type": task_type, | |
"text_ids": text_inputs.input_ids, | |
"text_mask": text_inputs.attention_mask, | |
"input_images": input_images, | |
"input_images_path": input_images_path, | |
"output_image": output_image, | |
"output_image_path": output_image_path, | |
} | |
return data | |