File size: 8,510 Bytes
cf4796c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from typing import Optional, Union, List

import os
import random
import yaml
import glob
from PIL import Image

import torch
from torchvision import transforms

from datasets import load_dataset, concatenate_datasets

from ..pipelines.omnigen2.pipeline_omnigen2 import OmniGen2ImageProcessor

class OmniGen2TrainDataset(torch.utils.data.Dataset):
    SYSTEM_PROMPT = "You are a helpful assistant that generates high-quality images based on user instructions."
    SYSTEM_PROMPT_DROP = "You are a helpful assistant that generates images."

    def __init__(
        self,
        config_path: str,
        tokenizer,
        use_chat_template: bool,
        max_input_pixels: Optional[Union[int, List[int]]] = None,
        max_output_pixels: Optional[int] = None,
        max_side_length: Optional[int] = None,
        img_scale_num: int = 16,
        prompt_dropout_prob: float = 0.0,
        ref_img_dropout_prob: float = 0.0,
    ):
        self.max_input_pixels = max_input_pixels
        self.max_output_pixels = max_output_pixels

        self.max_side_length = max_side_length
        self.img_scale_num = img_scale_num
        self.prompt_dropout_prob = prompt_dropout_prob
        self.ref_img_dropout_prob = ref_img_dropout_prob

        with open(config_path, "r") as f:
            self.config = yaml.load(f, Loader=yaml.FullLoader)

        self.use_chat_template = use_chat_template
        self.image_processor = OmniGen2ImageProcessor(vae_scale_factor=img_scale_num, do_resize=True)

        data = self._collect_annotations(self.config)

        self.data = data
        self.tokenizer = tokenizer
        
    def _collect_annotations(self, config):
        total_samples = 0
        total_ratio = 0
        json_datasets = []
        for data in config['data']:
            data_path, data_type = data['path'], data.get("type", "default")
            if os.path.isdir(data_path):
                jsonl_files = list(glob.glob(os.path.join(data_path, "**/*.jsonl"), recursive=True)) + list(glob.glob(os.path.join(data_path, "**/*.json"), recursive=True))
                json_dataset = load_dataset('json', data_files=jsonl_files, cache_dir=None)['train']
            else:
                data_ext = os.path.splitext(data_path)[-1]
                if data_ext in [".json", ".jsonl"]:
                    json_dataset = load_dataset('json', data_files=data_path, cache_dir=None)['train']
                elif data_ext in [".yml", ".yaml"]:
                    with open(data_path, "r") as f:
                        sub_config = yaml.load(f, Loader=yaml.FullLoader)
                        json_dataset = self._collect_annotations(sub_config)
                else:
                    raise NotImplementedError(
                        f'Unknown data file extension: "{data_ext}". '
                        f"Currently, .json, .jsonl .yml .yaml are supported. "
                        "If you are using a supported format, please set the file extension so that the proper parsing "
                        "routine can be called."
                    )
            total_ratio += data['ratio']
            total_samples += len(json_dataset)
            json_datasets.append(json_dataset)
        
        for json_dataset in json_datasets:
            target_size = int(len(json_dataset) * data['ratio'] / total_ratio) # normalize the ratio
            if target_size <= len(json_dataset):
                # Random selection without replacement
                indices = random.sample(range(len(json_dataset)), target_size)
            else:
                # Oversample with replacement
                indices = random.choices(range(len(json_dataset)), k=target_size)
            json_dataset = json_dataset.select(indices)
            
        json_dataset = concatenate_datasets(json_datasets)
        return json_dataset
    
    def clean_data_item(self, data_item):
        task_type = data_item['task_type']
        prefixs = ["The image portrays ", "The image depicts ", "The image captures ", "The image highlights ", "The image shows ", "这张图片展示了"]
        if "text_to_image" in task_type or "t2i" in task_type:
            if random.random() < 0.5:
                for p in prefixs:
                    if p in data_item['instruction']:
                        data_item['instruction'] = data_item['instruction'].replace(p, "")
                        break
        return data_item
    
    def apply_chat_template(self, instruction, system_prompt):
        if self.use_chat_template:
            prompt = [
                {
                    "role": "system",
                    "content": system_prompt,
                },
                {"role": "user", "content": instruction},
            ]
            instruction = self.tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=False)
        return instruction
    
    def process_item(self, data_item):
        assert data_item['instruction'] is not None
        data_item = self.clean_data_item(data_item)

        drop_prompt = random.random() < self.prompt_dropout_prob
        drop_ref_img = drop_prompt and random.random() < self.ref_img_dropout_prob

        if drop_prompt:
            instruction = self.apply_chat_template("", self.SYSTEM_PROMPT_DROP)
        else:
            instruction = self.apply_chat_template(data_item['instruction'], self.SYSTEM_PROMPT)

        if not drop_ref_img and 'input_images' in data_item and data_item['input_images'] is not None:
            input_images_path = data_item['input_images']
            input_images = []

            max_input_pixels = self.max_input_pixels[len(input_images_path) - 1] if isinstance(self.max_input_pixels, list) else self.max_input_pixels

            for input_image_path in input_images_path:
                input_image = Image.open(input_image_path).convert("RGB")
                input_image = self.image_processor.preprocess(input_image, max_pixels=max_input_pixels, max_side_length=self.max_side_length)
                input_images.append(input_image)
        else:
            input_images_path, input_images = None, None

        output_image_path = data_item['output_image']
        output_image = Image.open(output_image_path).convert("RGB")
        output_image = self.image_processor.preprocess(output_image, max_pixels=self.max_output_pixels, max_side_length=self.max_side_length)

        data = {
            'task_type': data_item['task_type'],
            'instruction': instruction,
            'input_images_path': input_images_path,
            'input_images': input_images,
            'output_image': output_image,
            'output_image_path': output_image_path,
        }
        return data

    def __getitem__(self, index):
        max_retries = 12

        current_index = index
        for attempt in range(max_retries):
            try:
                data_item = self.data[current_index]
                return self.process_item(data_item)
            except Exception as e:
                if attempt == max_retries - 1:
                    raise e
                else:
                    # Try a different index for the next attempt
                    current_index = random.randint(0, len(self.data) - 1)
                    continue
        
    def __len__(self):
        return len(self.data)

class OmniGen2Collator():
    def __init__(self, tokenizer, max_token_len):
        self.tokenizer = tokenizer
        self.max_token_len = max_token_len

    def __call__(self, batch):
        task_type = [data['task_type'] for data in batch]
        instruction = [data['instruction'] for data in batch]
        input_images_path = [data['input_images_path'] for data in batch]
        input_images = [data['input_images'] for data in batch]
        output_image = [data['output_image'] for data in batch]
        output_image_path = [data['output_image_path'] for data in batch]

        text_inputs = self.tokenizer(
            instruction,
            padding="longest",
            max_length=self.max_token_len,
            truncation=True,
            return_tensors="pt",
        )

        data = {
            "task_type": task_type,
            "text_ids": text_inputs.input_ids,
            "text_mask": text_inputs.attention_mask,
            "input_images": input_images, 
            "input_images_path": input_images_path,
            "output_image": output_image,
            "output_image_path": output_image_path,
        }
        return data