bible-app / build_rag.py
broadfield-dev's picture
Update build_rag.py
b7595c0 verified
# build_rag.py
import json
import os
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModel
import chromadb
import sys
from tqdm import tqdm
from huggingface_hub import HfApi, create_repo
import traceback
# --- Configuration ---
CHROMA_PATH = "chroma_db"
COLLECTION_NAME = "bible_verses"
MODEL_NAME = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
DATASET_REPO = "broadfield-dev/bible-chromadb-multi-qa-mpnet" # This can remain the same
STATUS_FILE = "build_status.log"
JSON_DIRECTORY = 'bible_json'
CHUNK_SIZE = 3
EMBEDDING_BATCH_SIZE = 16
# (BOOK_ID_TO_NAME dictionary remains the same)
BOOK_ID_TO_NAME = {
1: "Genesis", 2: "Exodus", 3: "Leviticus", 4: "Numbers", 5: "Deuteronomy",
6: "Joshua", 7: "Judges", 8: "Ruth", 9: "1 Samuel", 10: "2 Samuel",
11: "1 Kings", 12: "2 Kings", 13: "1 Chronicles", 14: "2 Chronicles",
15: "Ezra", 16: "Nehemiah", 17: "Esther", 18: "Job", 19: "Psalms",
20: "Proverbs", 21: "Ecclesiastes", 22: "Song of Solomon", 23: "Isaiah",
24: "Jeremiah", 25: "Lamentations", 26: "Ezekiel", 27: "Daniel", 28: "Hosea",
29: "Joel", 30: "Amos", 31: "Obadiah", 32: "Jonah", 33: "Micah", 34: "Nahum",
35: "Habakkuk", 36: "Zephaniah", 37: "Haggai", 38: "Zechariah", 39: "Malachi",
40: "Matthew", 41: "Mark", 42: "Luke", 43: "John", 44: "Acts",
45: "Romans", 46: "1 Corinthians", 47: "2 Corinthians", 48: "Galatians",
49: "Ephesians", 50: "Philippians", 51: "Colossians", 52: "1 Thessalonians",
53: "2 Thessalonians", 54: "1 Timothy", 55: "2 Timothy", 56: "Titus",
57: "Philemon", 58: "Hebrews", 59: "James", 60: "1 Peter", 61: "2 Peter",
62: "1 John", 63: "2 John", 64: "3 John", 65: "Jude", 66: "Revelation"
}
def update_status(message):
print(message)
with open(STATUS_FILE, "w") as f:
f.write(message)
# Mean Pooling Function
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def process_bible_json_files(directory_path: str, chunk_size: int) -> pd.DataFrame:
all_verses = []
if not os.path.exists(directory_path) or not os.listdir(directory_path):
raise FileNotFoundError(f"Directory '{directory_path}' is empty or does not exist.")
for filename in os.listdir(directory_path):
if filename.endswith('.json'):
version_name = os.path.splitext(filename)[0].split('_')[-1].upper()
file_path = os.path.join(directory_path, filename)
with open(file_path, 'r') as f: data = json.load(f)
rows = data.get("resultset", {}).get("row", [])
for row in rows:
field = row.get("field", [])
if len(field) == 5:
_id, book_id, chapter, verse, text = field
book_name = BOOK_ID_TO_NAME.get(book_id, "Unknown Book")
all_verses.append({'version': version_name, 'book_name': book_name, 'chapter': chapter, 'verse': verse, 'text': text.strip()})
if not all_verses: raise ValueError("No verses were processed.")
df = pd.DataFrame(all_verses)
all_chunks = []
for (version, book_name, chapter), group in df.groupby(['version', 'book_name', 'chapter']):
group = group.sort_values('verse').reset_index(drop=True)
for i in range(0, len(group), chunk_size):
chunk_df = group.iloc[i:i+chunk_size]
combined_text = " ".join(chunk_df['text'])
start_verse, end_verse = chunk_df.iloc[0]['verse'], chunk_df.iloc[-1]['verse']
reference = f"{book_name} {chapter}:{start_verse}" if start_verse == end_verse else f"{book_name} {chapter}:{start_verse}-{end_verse}"
# *** CHANGE 1: ADD MORE METADATA TO EACH CHUNK ***
all_chunks.append({
'text': combined_text,
'reference': reference,
'version': version,
'book_name': book_name,
'chapter': chapter
})
return pd.DataFrame(all_chunks)
def main():
update_status("IN_PROGRESS: Step 1/5 - Processing JSON files...")
bible_chunks_df = process_bible_json_files(JSON_DIRECTORY, chunk_size=CHUNK_SIZE)
update_status("IN_PROGRESS: Step 2/5 - Setting up local ChromaDB...")
if os.path.exists(CHROMA_PATH):
import shutil
shutil.rmtree(CHROMA_PATH)
client = chromadb.PersistentClient(path=CHROMA_PATH)
collection = client.create_collection(name=COLLECTION_NAME, metadata={"hnsw:space": "cosine"})
update_status(f"IN_PROGRESS: Step 3/5 - Loading embedding model '{MODEL_NAME}'...")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModel.from_pretrained(MODEL_NAME, device_map="auto")
update_status("IN_PROGRESS: Step 4/5 - Generating embeddings...")
for i in tqdm(range(0, len(bible_chunks_df), EMBEDDING_BATCH_SIZE), desc="Embedding Chunks"):
batch_df = bible_chunks_df.iloc[i:i+EMBEDDING_BATCH_SIZE]
texts = batch_df['text'].tolist()
encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt').to(model.device)
with torch.no_grad():
model_output = model(**encoded_input)
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
collection.add(
ids=[str(j) for j in range(i, i + len(batch_df))],
embeddings=embeddings.cpu().tolist(),
documents=texts,
# *** CHANGE 2: SAVE THE NEW METADATA FIELDS TO THE DATABASE ***
metadatas=batch_df[['reference', 'version', 'book_name', 'chapter']].to_dict('records')
)
update_status(f"IN_PROGRESS: Step 5/5 - Pushing database to Hugging Face Hub '{DATASET_REPO}'...")
create_repo(repo_id=DATASET_REPO, repo_type="dataset", exist_ok=True)
api = HfApi()
api.upload_folder(folder_path=CHROMA_PATH, repo_id=DATASET_REPO, repo_type="dataset")
update_status("SUCCESS: Build complete! The application is ready.")
if __name__ == "__main__":
try:
main()
except Exception as e:
error_message = traceback.format_exc()
if "401" in str(e) or "Unauthorized" in str(e):
update_status("FAILED: Hugging Face authentication error. Ensure your HF_TOKEN secret has WRITE permissions.")
else:
update_status(f"FAILED: An unexpected error occurred. Check Space logs. Error: {e}")
print(error_message, file=sys.stderr)