Spaces:
Running
Running
Update build_rag.py
Browse files- build_rag.py +18 -24
build_rag.py
CHANGED
@@ -1,10 +1,9 @@
|
|
1 |
-
# build_rag.py
|
2 |
|
3 |
import json
|
4 |
import os
|
5 |
import pandas as pd
|
6 |
import torch
|
7 |
-
import torch.nn.functional as F
|
8 |
from transformers import AutoTokenizer, AutoModel
|
9 |
import chromadb
|
10 |
import sys
|
@@ -15,10 +14,8 @@ import traceback
|
|
15 |
# --- Configuration ---
|
16 |
CHROMA_PATH = "chroma_db"
|
17 |
COLLECTION_NAME = "bible_verses"
|
18 |
-
# *** CHANGE 1: USE A MODEL WITH NORMALIZED EMBEDDINGS ***
|
19 |
MODEL_NAME = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
20 |
-
|
21 |
-
DATASET_REPO = "broadfield-dev/bible-chromadb-multi-qa-mpnet"
|
22 |
STATUS_FILE = "build_status.log"
|
23 |
JSON_DIRECTORY = 'bible_json'
|
24 |
CHUNK_SIZE = 3
|
@@ -46,20 +43,19 @@ def update_status(message):
|
|
46 |
with open(STATUS_FILE, "w") as f:
|
47 |
f.write(message)
|
48 |
|
49 |
-
# Mean Pooling Function
|
50 |
def mean_pooling(model_output, attention_mask):
|
51 |
token_embeddings = model_output[0]
|
52 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
53 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
54 |
|
55 |
-
def process_bible_json_files(directory_path: str, chunk_size: int):
|
56 |
-
# (This function is unchanged)
|
57 |
all_verses = []
|
58 |
if not os.path.exists(directory_path) or not os.listdir(directory_path):
|
59 |
raise FileNotFoundError(f"Directory '{directory_path}' is empty or does not exist.")
|
60 |
for filename in os.listdir(directory_path):
|
61 |
if filename.endswith('.json'):
|
62 |
-
version_name = filename.split('
|
63 |
file_path = os.path.join(directory_path, filename)
|
64 |
with open(file_path, 'r') as f: data = json.load(f)
|
65 |
rows = data.get("resultset", {}).get("row", [])
|
@@ -79,7 +75,14 @@ def process_bible_json_files(directory_path: str, chunk_size: int):
|
|
79 |
combined_text = " ".join(chunk_df['text'])
|
80 |
start_verse, end_verse = chunk_df.iloc[0]['verse'], chunk_df.iloc[-1]['verse']
|
81 |
reference = f"{book_name} {chapter}:{start_verse}" if start_verse == end_verse else f"{book_name} {chapter}:{start_verse}-{end_verse}"
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
return pd.DataFrame(all_chunks)
|
84 |
|
85 |
def main():
|
@@ -92,16 +95,13 @@ def main():
|
|
92 |
shutil.rmtree(CHROMA_PATH)
|
93 |
client = chromadb.PersistentClient(path=CHROMA_PATH)
|
94 |
|
95 |
-
collection = client.create_collection(
|
96 |
-
name=COLLECTION_NAME,
|
97 |
-
metadata={"hnsw:space": "cosine"}
|
98 |
-
)
|
99 |
|
100 |
update_status(f"IN_PROGRESS: Step 3/5 - Loading embedding model '{MODEL_NAME}'...")
|
101 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
102 |
model = AutoModel.from_pretrained(MODEL_NAME, device_map="auto")
|
103 |
|
104 |
-
update_status("IN_PROGRESS: Step 4/5 - Generating embeddings
|
105 |
for i in tqdm(range(0, len(bible_chunks_df), EMBEDDING_BATCH_SIZE), desc="Embedding Chunks"):
|
106 |
batch_df = bible_chunks_df.iloc[i:i+EMBEDDING_BATCH_SIZE]
|
107 |
texts = batch_df['text'].tolist()
|
@@ -112,24 +112,18 @@ def main():
|
|
112 |
|
113 |
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
114 |
|
115 |
-
# *** REMOVED: NO LONGER NEED TO NORMALIZE THE EMBEDDINGS ***
|
116 |
-
# embeddings = F.normalize(embeddings, p=2, dim=1)
|
117 |
-
|
118 |
collection.add(
|
119 |
ids=[str(j) for j in range(i, i + len(batch_df))],
|
120 |
embeddings=embeddings.cpu().tolist(),
|
121 |
documents=texts,
|
122 |
-
|
|
|
123 |
)
|
124 |
|
125 |
update_status(f"IN_PROGRESS: Step 5/5 - Pushing database to Hugging Face Hub '{DATASET_REPO}'...")
|
126 |
create_repo(repo_id=DATASET_REPO, repo_type="dataset", exist_ok=True)
|
127 |
api = HfApi()
|
128 |
-
api.upload_folder(
|
129 |
-
folder_path=CHROMA_PATH,
|
130 |
-
repo_id=DATASET_REPO,
|
131 |
-
repo_type="dataset",
|
132 |
-
)
|
133 |
|
134 |
update_status("SUCCESS: Build complete! The application is ready.")
|
135 |
|
|
|
1 |
+
# build_rag.py
|
2 |
|
3 |
import json
|
4 |
import os
|
5 |
import pandas as pd
|
6 |
import torch
|
|
|
7 |
from transformers import AutoTokenizer, AutoModel
|
8 |
import chromadb
|
9 |
import sys
|
|
|
14 |
# --- Configuration ---
|
15 |
CHROMA_PATH = "chroma_db"
|
16 |
COLLECTION_NAME = "bible_verses"
|
|
|
17 |
MODEL_NAME = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
18 |
+
DATASET_REPO = "broadfield-dev/bible-chromadb-multi-qa-mpnet" # This can remain the same
|
|
|
19 |
STATUS_FILE = "build_status.log"
|
20 |
JSON_DIRECTORY = 'bible_json'
|
21 |
CHUNK_SIZE = 3
|
|
|
43 |
with open(STATUS_FILE, "w") as f:
|
44 |
f.write(message)
|
45 |
|
46 |
+
# Mean Pooling Function
|
47 |
def mean_pooling(model_output, attention_mask):
|
48 |
token_embeddings = model_output[0]
|
49 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
50 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
51 |
|
52 |
+
def process_bible_json_files(directory_path: str, chunk_size: int) -> pd.DataFrame:
|
|
|
53 |
all_verses = []
|
54 |
if not os.path.exists(directory_path) or not os.listdir(directory_path):
|
55 |
raise FileNotFoundError(f"Directory '{directory_path}' is empty or does not exist.")
|
56 |
for filename in os.listdir(directory_path):
|
57 |
if filename.endswith('.json'):
|
58 |
+
version_name = os.path.splitext(filename)[0].split('_')[-1].upper()
|
59 |
file_path = os.path.join(directory_path, filename)
|
60 |
with open(file_path, 'r') as f: data = json.load(f)
|
61 |
rows = data.get("resultset", {}).get("row", [])
|
|
|
75 |
combined_text = " ".join(chunk_df['text'])
|
76 |
start_verse, end_verse = chunk_df.iloc[0]['verse'], chunk_df.iloc[-1]['verse']
|
77 |
reference = f"{book_name} {chapter}:{start_verse}" if start_verse == end_verse else f"{book_name} {chapter}:{start_verse}-{end_verse}"
|
78 |
+
# *** CHANGE 1: ADD MORE METADATA TO EACH CHUNK ***
|
79 |
+
all_chunks.append({
|
80 |
+
'text': combined_text,
|
81 |
+
'reference': reference,
|
82 |
+
'version': version,
|
83 |
+
'book_name': book_name,
|
84 |
+
'chapter': chapter
|
85 |
+
})
|
86 |
return pd.DataFrame(all_chunks)
|
87 |
|
88 |
def main():
|
|
|
95 |
shutil.rmtree(CHROMA_PATH)
|
96 |
client = chromadb.PersistentClient(path=CHROMA_PATH)
|
97 |
|
98 |
+
collection = client.create_collection(name=COLLECTION_NAME, metadata={"hnsw:space": "cosine"})
|
|
|
|
|
|
|
99 |
|
100 |
update_status(f"IN_PROGRESS: Step 3/5 - Loading embedding model '{MODEL_NAME}'...")
|
101 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
102 |
model = AutoModel.from_pretrained(MODEL_NAME, device_map="auto")
|
103 |
|
104 |
+
update_status("IN_PROGRESS: Step 4/5 - Generating embeddings...")
|
105 |
for i in tqdm(range(0, len(bible_chunks_df), EMBEDDING_BATCH_SIZE), desc="Embedding Chunks"):
|
106 |
batch_df = bible_chunks_df.iloc[i:i+EMBEDDING_BATCH_SIZE]
|
107 |
texts = batch_df['text'].tolist()
|
|
|
112 |
|
113 |
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
114 |
|
|
|
|
|
|
|
115 |
collection.add(
|
116 |
ids=[str(j) for j in range(i, i + len(batch_df))],
|
117 |
embeddings=embeddings.cpu().tolist(),
|
118 |
documents=texts,
|
119 |
+
# *** CHANGE 2: SAVE THE NEW METADATA FIELDS TO THE DATABASE ***
|
120 |
+
metadatas=batch_df[['reference', 'version', 'book_name', 'chapter']].to_dict('records')
|
121 |
)
|
122 |
|
123 |
update_status(f"IN_PROGRESS: Step 5/5 - Pushing database to Hugging Face Hub '{DATASET_REPO}'...")
|
124 |
create_repo(repo_id=DATASET_REPO, repo_type="dataset", exist_ok=True)
|
125 |
api = HfApi()
|
126 |
+
api.upload_folder(folder_path=CHROMA_PATH, repo_id=DATASET_REPO, repo_type="dataset")
|
|
|
|
|
|
|
|
|
127 |
|
128 |
update_status("SUCCESS: Build complete! The application is ready.")
|
129 |
|