Spaces:
Sleeping
Sleeping
Update build_rag.py
Browse files- build_rag.py +18 -24
build_rag.py
CHANGED
|
@@ -1,10 +1,9 @@
|
|
| 1 |
-
# build_rag.py
|
| 2 |
|
| 3 |
import json
|
| 4 |
import os
|
| 5 |
import pandas as pd
|
| 6 |
import torch
|
| 7 |
-
import torch.nn.functional as F
|
| 8 |
from transformers import AutoTokenizer, AutoModel
|
| 9 |
import chromadb
|
| 10 |
import sys
|
|
@@ -15,10 +14,8 @@ import traceback
|
|
| 15 |
# --- Configuration ---
|
| 16 |
CHROMA_PATH = "chroma_db"
|
| 17 |
COLLECTION_NAME = "bible_verses"
|
| 18 |
-
# *** CHANGE 1: USE A MODEL WITH NORMALIZED EMBEDDINGS ***
|
| 19 |
MODEL_NAME = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
| 20 |
-
|
| 21 |
-
DATASET_REPO = "broadfield-dev/bible-chromadb-multi-qa-mpnet"
|
| 22 |
STATUS_FILE = "build_status.log"
|
| 23 |
JSON_DIRECTORY = 'bible_json'
|
| 24 |
CHUNK_SIZE = 3
|
|
@@ -46,20 +43,19 @@ def update_status(message):
|
|
| 46 |
with open(STATUS_FILE, "w") as f:
|
| 47 |
f.write(message)
|
| 48 |
|
| 49 |
-
# Mean Pooling Function
|
| 50 |
def mean_pooling(model_output, attention_mask):
|
| 51 |
token_embeddings = model_output[0]
|
| 52 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 53 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 54 |
|
| 55 |
-
def process_bible_json_files(directory_path: str, chunk_size: int):
|
| 56 |
-
# (This function is unchanged)
|
| 57 |
all_verses = []
|
| 58 |
if not os.path.exists(directory_path) or not os.listdir(directory_path):
|
| 59 |
raise FileNotFoundError(f"Directory '{directory_path}' is empty or does not exist.")
|
| 60 |
for filename in os.listdir(directory_path):
|
| 61 |
if filename.endswith('.json'):
|
| 62 |
-
version_name = filename.split('
|
| 63 |
file_path = os.path.join(directory_path, filename)
|
| 64 |
with open(file_path, 'r') as f: data = json.load(f)
|
| 65 |
rows = data.get("resultset", {}).get("row", [])
|
|
@@ -79,7 +75,14 @@ def process_bible_json_files(directory_path: str, chunk_size: int):
|
|
| 79 |
combined_text = " ".join(chunk_df['text'])
|
| 80 |
start_verse, end_verse = chunk_df.iloc[0]['verse'], chunk_df.iloc[-1]['verse']
|
| 81 |
reference = f"{book_name} {chapter}:{start_verse}" if start_verse == end_verse else f"{book_name} {chapter}:{start_verse}-{end_verse}"
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
return pd.DataFrame(all_chunks)
|
| 84 |
|
| 85 |
def main():
|
|
@@ -92,16 +95,13 @@ def main():
|
|
| 92 |
shutil.rmtree(CHROMA_PATH)
|
| 93 |
client = chromadb.PersistentClient(path=CHROMA_PATH)
|
| 94 |
|
| 95 |
-
collection = client.create_collection(
|
| 96 |
-
name=COLLECTION_NAME,
|
| 97 |
-
metadata={"hnsw:space": "cosine"}
|
| 98 |
-
)
|
| 99 |
|
| 100 |
update_status(f"IN_PROGRESS: Step 3/5 - Loading embedding model '{MODEL_NAME}'...")
|
| 101 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 102 |
model = AutoModel.from_pretrained(MODEL_NAME, device_map="auto")
|
| 103 |
|
| 104 |
-
update_status("IN_PROGRESS: Step 4/5 - Generating embeddings
|
| 105 |
for i in tqdm(range(0, len(bible_chunks_df), EMBEDDING_BATCH_SIZE), desc="Embedding Chunks"):
|
| 106 |
batch_df = bible_chunks_df.iloc[i:i+EMBEDDING_BATCH_SIZE]
|
| 107 |
texts = batch_df['text'].tolist()
|
|
@@ -112,24 +112,18 @@ def main():
|
|
| 112 |
|
| 113 |
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
| 114 |
|
| 115 |
-
# *** REMOVED: NO LONGER NEED TO NORMALIZE THE EMBEDDINGS ***
|
| 116 |
-
# embeddings = F.normalize(embeddings, p=2, dim=1)
|
| 117 |
-
|
| 118 |
collection.add(
|
| 119 |
ids=[str(j) for j in range(i, i + len(batch_df))],
|
| 120 |
embeddings=embeddings.cpu().tolist(),
|
| 121 |
documents=texts,
|
| 122 |
-
|
|
|
|
| 123 |
)
|
| 124 |
|
| 125 |
update_status(f"IN_PROGRESS: Step 5/5 - Pushing database to Hugging Face Hub '{DATASET_REPO}'...")
|
| 126 |
create_repo(repo_id=DATASET_REPO, repo_type="dataset", exist_ok=True)
|
| 127 |
api = HfApi()
|
| 128 |
-
api.upload_folder(
|
| 129 |
-
folder_path=CHROMA_PATH,
|
| 130 |
-
repo_id=DATASET_REPO,
|
| 131 |
-
repo_type="dataset",
|
| 132 |
-
)
|
| 133 |
|
| 134 |
update_status("SUCCESS: Build complete! The application is ready.")
|
| 135 |
|
|
|
|
| 1 |
+
# build_rag.py
|
| 2 |
|
| 3 |
import json
|
| 4 |
import os
|
| 5 |
import pandas as pd
|
| 6 |
import torch
|
|
|
|
| 7 |
from transformers import AutoTokenizer, AutoModel
|
| 8 |
import chromadb
|
| 9 |
import sys
|
|
|
|
| 14 |
# --- Configuration ---
|
| 15 |
CHROMA_PATH = "chroma_db"
|
| 16 |
COLLECTION_NAME = "bible_verses"
|
|
|
|
| 17 |
MODEL_NAME = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
| 18 |
+
DATASET_REPO = "broadfield-dev/bible-chromadb-multi-qa-mpnet" # This can remain the same
|
|
|
|
| 19 |
STATUS_FILE = "build_status.log"
|
| 20 |
JSON_DIRECTORY = 'bible_json'
|
| 21 |
CHUNK_SIZE = 3
|
|
|
|
| 43 |
with open(STATUS_FILE, "w") as f:
|
| 44 |
f.write(message)
|
| 45 |
|
| 46 |
+
# Mean Pooling Function
|
| 47 |
def mean_pooling(model_output, attention_mask):
|
| 48 |
token_embeddings = model_output[0]
|
| 49 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 50 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 51 |
|
| 52 |
+
def process_bible_json_files(directory_path: str, chunk_size: int) -> pd.DataFrame:
|
|
|
|
| 53 |
all_verses = []
|
| 54 |
if not os.path.exists(directory_path) or not os.listdir(directory_path):
|
| 55 |
raise FileNotFoundError(f"Directory '{directory_path}' is empty or does not exist.")
|
| 56 |
for filename in os.listdir(directory_path):
|
| 57 |
if filename.endswith('.json'):
|
| 58 |
+
version_name = os.path.splitext(filename)[0].split('_')[-1].upper()
|
| 59 |
file_path = os.path.join(directory_path, filename)
|
| 60 |
with open(file_path, 'r') as f: data = json.load(f)
|
| 61 |
rows = data.get("resultset", {}).get("row", [])
|
|
|
|
| 75 |
combined_text = " ".join(chunk_df['text'])
|
| 76 |
start_verse, end_verse = chunk_df.iloc[0]['verse'], chunk_df.iloc[-1]['verse']
|
| 77 |
reference = f"{book_name} {chapter}:{start_verse}" if start_verse == end_verse else f"{book_name} {chapter}:{start_verse}-{end_verse}"
|
| 78 |
+
# *** CHANGE 1: ADD MORE METADATA TO EACH CHUNK ***
|
| 79 |
+
all_chunks.append({
|
| 80 |
+
'text': combined_text,
|
| 81 |
+
'reference': reference,
|
| 82 |
+
'version': version,
|
| 83 |
+
'book_name': book_name,
|
| 84 |
+
'chapter': chapter
|
| 85 |
+
})
|
| 86 |
return pd.DataFrame(all_chunks)
|
| 87 |
|
| 88 |
def main():
|
|
|
|
| 95 |
shutil.rmtree(CHROMA_PATH)
|
| 96 |
client = chromadb.PersistentClient(path=CHROMA_PATH)
|
| 97 |
|
| 98 |
+
collection = client.create_collection(name=COLLECTION_NAME, metadata={"hnsw:space": "cosine"})
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
update_status(f"IN_PROGRESS: Step 3/5 - Loading embedding model '{MODEL_NAME}'...")
|
| 101 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 102 |
model = AutoModel.from_pretrained(MODEL_NAME, device_map="auto")
|
| 103 |
|
| 104 |
+
update_status("IN_PROGRESS: Step 4/5 - Generating embeddings...")
|
| 105 |
for i in tqdm(range(0, len(bible_chunks_df), EMBEDDING_BATCH_SIZE), desc="Embedding Chunks"):
|
| 106 |
batch_df = bible_chunks_df.iloc[i:i+EMBEDDING_BATCH_SIZE]
|
| 107 |
texts = batch_df['text'].tolist()
|
|
|
|
| 112 |
|
| 113 |
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
| 114 |
|
|
|
|
|
|
|
|
|
|
| 115 |
collection.add(
|
| 116 |
ids=[str(j) for j in range(i, i + len(batch_df))],
|
| 117 |
embeddings=embeddings.cpu().tolist(),
|
| 118 |
documents=texts,
|
| 119 |
+
# *** CHANGE 2: SAVE THE NEW METADATA FIELDS TO THE DATABASE ***
|
| 120 |
+
metadatas=batch_df[['reference', 'version', 'book_name', 'chapter']].to_dict('records')
|
| 121 |
)
|
| 122 |
|
| 123 |
update_status(f"IN_PROGRESS: Step 5/5 - Pushing database to Hugging Face Hub '{DATASET_REPO}'...")
|
| 124 |
create_repo(repo_id=DATASET_REPO, repo_type="dataset", exist_ok=True)
|
| 125 |
api = HfApi()
|
| 126 |
+
api.upload_folder(folder_path=CHROMA_PATH, repo_id=DATASET_REPO, repo_type="dataset")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
update_status("SUCCESS: Build complete! The application is ready.")
|
| 129 |
|