Spaces:
Running
Running
import json | |
import requests | |
from io import BytesIO | |
import gradio as gr | |
import os | |
# hf_token = os.environ.get("HF_TOKEN") | |
import spaces | |
# import torch | |
# from pipeline_bria import BriaPipeline | |
import time | |
from PIL import Image | |
def download_image(url): | |
response = requests.get(url) | |
return Image.open(BytesIO(response.content)).convert("RGB") | |
hf_token = os.environ.get("HF_TOKEN_API_DEMO") # we get it from a secret env variable, such that it's private | |
auth_headers = {"api_token": hf_token} | |
aspect_ratios = ["1:1","2:3","3:2","3:4","4:3","4:5","5:4","9:16","16:9"] | |
# Ng | |
default_negative_prompt= "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers" | |
# Load pipeline | |
# trust_remote_code = True - allows loading a transformer which is not present at the transformers library(from transformer/bria_transformer.py) | |
# pipe = BriaPipeline.from_pretrained("briaai/BRIA-3.0-TOUCAN", torch_dtype=torch.bfloat16,trust_remote_code=True) | |
# pipe.to(device="cuda") | |
# @spaces.GPU(enable_queue=True) | |
def infer(prompt,negative_prompt,seed,aspect_ratio): | |
print(f""" | |
—/n | |
{prompt} | |
""") | |
# generator = torch.Generator("cuda").manual_seed(555) | |
t=time.time() | |
if seed=="-1": | |
generator=None | |
else: | |
try: | |
seed=int(seed) | |
# generator = torch.Generator("cuda").manual_seed(seed) | |
except: | |
generator=None | |
# image = pipe(prompt,num_inference_steps=30, negative_prompt=negative_prompt,generator=generator,width=w,height=h).images[0] | |
url = "https://engine.prod.bria-api.com/v1/text-to-image/base/3.2" | |
payload = json.dumps({ | |
"prompt": prompt, | |
"num_results": 1, | |
"sync": True, | |
"prompt_enhancement": True, | |
"negative_prompt": negative_prompt, | |
"seed": seed, | |
"aspect_ratio": aspect_ratio | |
}) | |
response = requests.request("POST", url, headers=auth_headers, data=payload) | |
print('1',response) | |
response = response.json() | |
print('2',response) | |
res_image = download_image(response["result"][0]['urls'][0]) | |
print(f'gen time is {time.time()-t} secs') | |
# Future | |
# Add amound of steps | |
# if nsfw: | |
# raise gr.Error("Generated image is NSFW") | |
return res_image | |
css = """ | |
#col-container{ | |
margin: 0 auto; | |
max-width: 580px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("## BRIA-3.2") | |
gr.HTML(''' | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
This is a demo for | |
<a href="https://huggingface.co/briaai/BRIA-3.2" target="_blank">BRIA 3.2 text-to-image </a>. | |
is our latest commercial-ready text-to-image model that significantly improves aesthetics and excels at rendering clear, readable text, particularly optimized for short phrases (1-6 words) while still trained on licensed data, and so provide full legal liability coverage for copyright and privacy infringement. | |
</p> | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
API Endpoint available on: <a href="https://docs.bria.ai/image-generation/endpoints/text-to-image-base" target="_blank">Bria.ai</a>. | |
</p> | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
ComfyUI node is available here: <a href="https://github.com/Bria-AI/ComfyUI-BRIA-API" target="_blank">ComfyUI Node</a>. | |
</p> | |
''') | |
with gr.Group(): | |
with gr.Column(): | |
prompt_in = gr.Textbox(label="Prompt", value='''photo of mystical dragon eating sushi, text bubble says "Sushi Time".''') | |
aspect_ratio = gr.Dropdown(value=aspect_ratios[0], show_label=True, label="Aspect Ratio", choices=aspect_ratios) | |
seed = gr.Textbox(label="Seed", value=-1) | |
negative_prompt = gr.Textbox(label="Negative Prompt", value=default_negative_prompt) | |
submit_btn = gr.Button("Generate") | |
result = gr.Image(label="BRIA-3.2 Result") | |
# gr.Examples( | |
# examples = [ | |
# "Dragon, digital art, by Greg Rutkowski", | |
# "Armored knight holding sword", | |
# "A flat roof villa near a river with black walls and huge windows", | |
# "A calm and peaceful office", | |
# "Pirate guinea pig" | |
# ], | |
# fn = infer, | |
# inputs = [ | |
# prompt_in | |
# ], | |
# outputs = [ | |
# result | |
# ] | |
# ) | |
submit_btn.click( | |
fn = infer, | |
inputs = [ | |
prompt_in, | |
negative_prompt, | |
seed, | |
aspect_ratio | |
], | |
outputs = [ | |
result | |
] | |
) | |
demo.queue().launch(show_api=False) |