File size: 4,994 Bytes
f70143b
 
 
9549cef
 
f70143b
9549cef
f70143b
 
9549cef
f70143b
 
 
 
 
 
 
 
9549cef
3e2d063
9549cef
 
f70143b
9549cef
f70143b
 
 
 
9549cef
f70143b
3e2d063
9549cef
 
 
 
 
 
 
 
 
 
 
 
 
f70143b
9549cef
 
 
3e2d063
f70143b
a6e6edb
f70143b
 
 
 
 
4b9dd51
f70143b
3e2d063
 
f70143b
 
 
 
 
 
 
9549cef
 
 
 
 
 
 
f70143b
9549cef
 
 
 
 
 
 
 
 
f70143b
9549cef
 
c74635b
36bd960
c74635b
 
 
 
 
 
 
 
9549cef
 
 
46753d4
3e2d063
9549cef
 
 
36bd960
9549cef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e2d063
9549cef
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import json
import requests
from io import BytesIO
import gradio as gr
import os
# hf_token = os.environ.get("HF_TOKEN")
import spaces
# import torch
# from pipeline_bria import BriaPipeline
import time
from PIL import Image

def download_image(url):
    response = requests.get(url)
    return Image.open(BytesIO(response.content)).convert("RGB")

hf_token = os.environ.get("HF_TOKEN_API_DEMO") # we get it from a secret env variable, such that it's private
auth_headers = {"api_token": hf_token}

aspect_ratios = ["1:1","2:3","3:2","3:4","4:3","4:5","5:4","9:16","16:9"] 

# Ng
default_negative_prompt= "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"

# Load pipeline
# trust_remote_code = True - allows loading a transformer which is not present at the transformers library(from transformer/bria_transformer.py)
# pipe = BriaPipeline.from_pretrained("briaai/BRIA-3.0-TOUCAN", torch_dtype=torch.bfloat16,trust_remote_code=True)
# pipe.to(device="cuda")

# @spaces.GPU(enable_queue=True)
def infer(prompt,negative_prompt,seed,aspect_ratio):
    print(f"""
    —/n
    {prompt}
    """)
    
    # generator = torch.Generator("cuda").manual_seed(555)
    t=time.time()

    if seed=="-1":
        generator=None
    else:
        try:
            seed=int(seed)
            # generator = torch.Generator("cuda").manual_seed(seed)
        except:
            generator=None


    # image = pipe(prompt,num_inference_steps=30, negative_prompt=negative_prompt,generator=generator,width=w,height=h).images[0]
    url = "https://engine.prod.bria-api.com/v1/text-to-image/base/3.2"
    
    payload = json.dumps({
    "prompt": prompt,
    "num_results": 1,
    "sync": True,
    "prompt_enhancement": True,
    "negative_prompt": negative_prompt,
    "seed": seed,
    "aspect_ratio": aspect_ratio
    })
    response = requests.request("POST", url, headers=auth_headers, data=payload)
    print('1',response)
    response = response.json()
    print('2',response)
    res_image = download_image(response["result"][0]['urls'][0])

    print(f'gen time is {time.time()-t} secs')
    
    # Future
    # Add amound of steps
    # if nsfw:
    #     raise gr.Error("Generated image is NSFW")
    
    return res_image

css = """
#col-container{
    margin: 0 auto;
    max-width: 580px;
}
"""
with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("## BRIA-3.2")
        gr.HTML('''
          <p style="margin-bottom: 10px; font-size: 94%">
            This is a demo for 
            <a href="https://huggingface.co/briaai/BRIA-3.2" target="_blank">BRIA 3.2 text-to-image </a>. 
            is our latest commercial-ready text-to-image model that significantly improves aesthetics and excels at rendering clear, readable text, particularly optimized for short phrases (1-6 words) while still trained on licensed data, and so provide full legal liability coverage for copyright and privacy infringement.
          </p>
          <p style="margin-bottom: 10px; font-size: 94%">
            API Endpoint available on: <a href="https://docs.bria.ai/image-generation/endpoints/text-to-image-base" target="_blank">Bria.ai</a>.
          </p>
        <p style="margin-bottom: 10px; font-size: 94%">
            ComfyUI node is available here: <a href="https://github.com/Bria-AI/ComfyUI-BRIA-API" target="_blank">ComfyUI Node</a>.
          </p>
        ''')
        with gr.Group():
            with gr.Column():
                prompt_in = gr.Textbox(label="Prompt", value='''photo of mystical dragon eating sushi, text bubble says "Sushi Time".''')
                aspect_ratio = gr.Dropdown(value=aspect_ratios[0], show_label=True, label="Aspect Ratio", choices=aspect_ratios)
                seed = gr.Textbox(label="Seed", value=-1)
                negative_prompt = gr.Textbox(label="Negative Prompt", value=default_negative_prompt)
                submit_btn = gr.Button("Generate")
        result = gr.Image(label="BRIA-3.2 Result")

        # gr.Examples(
        #     examples = [ 
        #         "Dragon, digital art, by Greg Rutkowski",
        #         "Armored knight holding sword",
        #         "A flat roof villa near a river with black walls and huge windows",
        #         "A calm and peaceful office",
        #         "Pirate guinea pig"
        #     ],
        #     fn = infer, 
        #     inputs = [
        #         prompt_in
        #     ],
        #     outputs = [
        #         result
        #     ]
        # )

    submit_btn.click(
        fn = infer,
        inputs = [
            prompt_in,
            negative_prompt,
            seed,
            aspect_ratio
        ],
        outputs = [
            result
        ]
    )

demo.queue().launch(show_api=False)