|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import math |
|
from timm.layers.mlp import SwiGLU |
|
from timm.models.vision_transformer import PatchEmbed, Attention |
|
from tim.models.utils.funcs import build_mlp, modulate, get_parameter_dtype |
|
from tim.models.utils.rope import VisionRotaryEmbedding, rotate_half |
|
|
|
|
|
|
|
|
|
|
|
class TimestepEmbedder(nn.Module): |
|
""" |
|
Embeds scalar timesteps into vector representations. |
|
""" |
|
|
|
def __init__(self, hidden_size, frequency_embedding_size=256): |
|
super().__init__() |
|
self.mlp = nn.Sequential( |
|
nn.Linear(frequency_embedding_size, hidden_size, bias=True), |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, hidden_size, bias=True), |
|
) |
|
self.frequency_embedding_size = frequency_embedding_size |
|
|
|
@staticmethod |
|
def positional_embedding(t, dim, max_period=10000): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
:param t: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an (N, D) Tensor of positional embeddings. |
|
""" |
|
|
|
half = dim // 2 |
|
freqs = torch.exp( |
|
-math.log(max_period) |
|
* torch.arange(start=0, end=half, dtype=torch.float32) |
|
/ half |
|
).to(device=t.device) |
|
args = t[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat( |
|
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1 |
|
) |
|
return embedding |
|
|
|
def forward(self, t): |
|
self.timestep_embedding = self.positional_embedding |
|
t_freq = self.timestep_embedding(t, dim=self.frequency_embedding_size).to( |
|
t.dtype |
|
) |
|
t_emb = self.mlp(t_freq) |
|
return t_emb |
|
|
|
|
|
class CaptionEmbedder(nn.Module): |
|
""" |
|
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. |
|
""" |
|
|
|
def __init__(self, cap_feat_dim, hidden_size): |
|
super().__init__() |
|
self.norm = nn.LayerNorm(cap_feat_dim) |
|
self.mlp = SwiGLU( |
|
in_features=cap_feat_dim, |
|
hidden_features=hidden_size * 4, |
|
out_features=hidden_size, |
|
) |
|
|
|
def forward(self, cap_feats): |
|
""" |
|
cfg is also essential in text-to-image generation |
|
""" |
|
cap_feats = self.mlp(self.norm(cap_feats)) |
|
return cap_feats |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int = 8, |
|
qkv_bias: bool = False, |
|
qk_norm: bool = False, |
|
attn_drop: float = 0.0, |
|
proj_drop: float = 0.0, |
|
norm_layer: nn.Module = nn.LayerNorm, |
|
distance_aware: bool = False, |
|
) -> None: |
|
super().__init__() |
|
assert dim % num_heads == 0, "dim should be divisible by num_heads" |
|
self.num_heads = num_heads |
|
self.head_dim = dim // num_heads |
|
self.scale = self.head_dim**-0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.distance_aware = distance_aware |
|
if distance_aware: |
|
self.qkv_d = nn.Linear(dim, dim * 3, bias=False) |
|
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() |
|
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
freqs_cos, |
|
freqs_sin, |
|
attn_type="fused_attn", |
|
delta_t=None, |
|
) -> torch.Tensor: |
|
B, N, C = x.shape |
|
if self.distance_aware: |
|
qkv = self.qkv(x) + self.qkv_d(delta_t) |
|
else: |
|
qkv = self.qkv(x) |
|
if attn_type == "flash_attn": |
|
qkv = qkv.reshape(B, N, 3, self.num_heads, self.head_dim).permute( |
|
2, 0, 1, 3, 4 |
|
) |
|
else: |
|
qkv = qkv.reshape(B, N, 3, self.num_heads, self.head_dim).permute( |
|
2, 0, 3, 1, 4 |
|
) |
|
ori_dtype = qkv.dtype |
|
q, k, v = qkv.unbind(0) |
|
q, k = self.q_norm(q), self.k_norm(k) |
|
|
|
q = q * freqs_cos + rotate_half(q) * freqs_sin |
|
k = k * freqs_cos + rotate_half(k) * freqs_sin |
|
q, k = q.to(ori_dtype), k.to(ori_dtype) |
|
|
|
if attn_type == "flash_attn": |
|
from flash_attn import flash_attn_func |
|
|
|
x = flash_attn_func( |
|
q, |
|
k, |
|
v, |
|
dropout_p=self.attn_drop.p if self.training else 0.0, |
|
) |
|
x = x.reshape(B, N, C) |
|
elif attn_type == "fused_attn": |
|
x = F.scaled_dot_product_attention( |
|
q, |
|
k, |
|
v, |
|
dropout_p=self.attn_drop.p if self.training else 0.0, |
|
) |
|
x = x.transpose(1, 2).reshape(B, N, C) |
|
else: |
|
q = q * self.scale |
|
attn = q @ k.transpose(-2, -1) |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
x = attn @ v |
|
x = x.transpose(1, 2).reshape(B, N, C) |
|
|
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class CrossAttention(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int = 8, |
|
qkv_bias: bool = False, |
|
qk_norm: bool = False, |
|
attn_drop: float = 0.0, |
|
proj_drop: float = 0.0, |
|
norm_layer: nn.Module = nn.LayerNorm, |
|
) -> None: |
|
super().__init__() |
|
assert dim % num_heads == 0, "dim should be divisible by num_heads" |
|
self.num_heads = num_heads |
|
self.head_dim = dim // num_heads |
|
self.scale = self.head_dim**-0.5 |
|
|
|
self.q = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) |
|
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() |
|
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
y: torch.Tensor, |
|
freqs_cos, |
|
freqs_sin, |
|
attn_type="fused_attn", |
|
) -> torch.Tensor: |
|
B, N, C = x.shape |
|
_, M, _ = y.shape |
|
if attn_type == "flash_attn": |
|
q = self.q(x).reshape(B, N, self.num_heads, self.head_dim) |
|
kv = ( |
|
self.kv(y) |
|
.reshape(B, M, 2, self.num_heads, self.head_dim) |
|
.permute(2, 0, 1, 3, 4) |
|
) |
|
else: |
|
q = ( |
|
self.q(x) |
|
.reshape(B, N, self.num_heads, self.head_dim) |
|
.permute(0, 2, 1, 3) |
|
) |
|
kv = ( |
|
self.kv(y) |
|
.reshape(B, M, 2, self.num_heads, self.head_dim) |
|
.permute(2, 0, 3, 1, 4) |
|
) |
|
ori_dtype = q.dtype |
|
k, v = kv.unbind(0) |
|
q, k = self.q_norm(q), self.k_norm(k) |
|
q = q * freqs_cos + rotate_half(q) * freqs_sin |
|
q, k = q.to(ori_dtype), k.to(ori_dtype) |
|
|
|
if attn_type == "flash_attn": |
|
from flash_attn import flash_attn_func |
|
|
|
x = flash_attn_func( |
|
q, |
|
k, |
|
v, |
|
dropout_p=self.attn_drop.p if self.training else 0.0, |
|
) |
|
x = x.reshape(B, N, C) |
|
elif attn_type == "fused_attn": |
|
x = F.scaled_dot_product_attention( |
|
q, |
|
k, |
|
v, |
|
dropout_p=self.attn_drop.p if self.training else 0.0, |
|
) |
|
x = x.transpose(1, 2).reshape(B, N, C) |
|
else: |
|
q = q * self.scale |
|
attn = q @ k.transpose(-2, -1) |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
x = attn @ v |
|
x = x.transpose(1, 2).reshape(B, N, C) |
|
|
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TiMBlock(nn.Module): |
|
""" |
|
A TiM block with adaptive layer norm zero (adaLN-Zero) conditioning. |
|
""" |
|
|
|
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs): |
|
super().__init__() |
|
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
distance_aware = block_kwargs.get("distance_aware", False) |
|
self.attn = Attention( |
|
hidden_size, |
|
num_heads=num_heads, |
|
qkv_bias=True, |
|
qk_norm=block_kwargs["qk_norm"], |
|
distance_aware=distance_aware, |
|
) |
|
self.norm2_i = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.norm2_t = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.cross_attn = CrossAttention( |
|
hidden_size, |
|
num_heads=num_heads, |
|
qkv_bias=True, |
|
qk_norm=block_kwargs["qk_norm"], |
|
) |
|
self.norm3 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
mlp_hidden_dim = int(hidden_size * mlp_ratio) |
|
self.mlp = SwiGLU( |
|
in_features=hidden_size, |
|
hidden_features=(mlp_hidden_dim * 2) // 3, |
|
bias=True, |
|
) |
|
if block_kwargs.get("lora_hidden_size", None) != None: |
|
lora_hidden_size = block_kwargs["lora_hidden_size"] |
|
else: |
|
lora_hidden_size = (hidden_size // 4) * 3 |
|
self.adaLN_modulation = SwiGLU( |
|
in_features=hidden_size, |
|
hidden_features=lora_hidden_size, |
|
out_features=9 * hidden_size, |
|
bias=True, |
|
) |
|
|
|
def forward(self, x, y, c, freqs_cos, freqs_sin, attn_type, delta_t=None): |
|
( |
|
shift_msa, |
|
scale_msa, |
|
gate_msa, |
|
shift_msc, |
|
scale_msc, |
|
gate_msc, |
|
shift_mlp, |
|
scale_mlp, |
|
gate_mlp, |
|
) = self.adaLN_modulation(c).chunk(9, dim=-1) |
|
x = x + gate_msa * self.attn( |
|
modulate(self.norm1(x), shift_msa, scale_msa), |
|
freqs_cos, |
|
freqs_sin, |
|
attn_type, |
|
delta_t, |
|
) |
|
x = x + gate_msc * self.cross_attn( |
|
modulate(self.norm2_i(x), shift_msc, scale_msc), |
|
self.norm2_t(y), |
|
freqs_cos, |
|
freqs_sin, |
|
attn_type, |
|
) |
|
x = x + gate_mlp * self.mlp(modulate(self.norm3(x), shift_mlp, scale_mlp)) |
|
|
|
return x |
|
|
|
|
|
class FinalLayer(nn.Module): |
|
""" |
|
The final layer of TiM. |
|
""" |
|
|
|
def __init__(self, hidden_size, patch_size, out_channels): |
|
super().__init__() |
|
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.linear = nn.Linear( |
|
hidden_size, patch_size * patch_size * out_channels, bias=True |
|
) |
|
self.adaLN_modulation = SwiGLU( |
|
in_features=hidden_size, |
|
hidden_features=hidden_size // 2, |
|
out_features=2 * hidden_size, |
|
bias=True, |
|
) |
|
|
|
def forward(self, x, c): |
|
shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1) |
|
x = modulate(self.norm_final(x), shift, scale) |
|
x = self.linear(x) |
|
|
|
return x |
|
|
|
|
|
class TiM(nn.Module): |
|
""" |
|
Diffusion model with a Transformer backbone. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_size=32, |
|
patch_size=2, |
|
in_channels=4, |
|
hidden_size=1152, |
|
encoder_depth=8, |
|
depth=28, |
|
num_heads=16, |
|
mlp_ratio=4.0, |
|
cap_feat_dim=2048, |
|
z_dim=768, |
|
projector_dim=2048, |
|
use_checkpoint: bool = False, |
|
new_condition: str = "t-r", |
|
use_new_embed: bool = False, |
|
**block_kwargs, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = in_channels |
|
self.patch_size = patch_size |
|
self.num_heads = num_heads |
|
self.cap_feat_dim = cap_feat_dim |
|
self.encoder_depth = encoder_depth |
|
self.use_checkpoint = use_checkpoint |
|
self.new_condition = new_condition |
|
self.use_new_embed = use_new_embed |
|
|
|
self.x_embedder = PatchEmbed( |
|
input_size, |
|
patch_size, |
|
in_channels, |
|
hidden_size, |
|
bias=True, |
|
strict_img_size=False, |
|
) |
|
self.t_embedder = TimestepEmbedder(hidden_size) |
|
if use_new_embed: |
|
self.delta_embedder = TimestepEmbedder(hidden_size) |
|
self.y_embedder = CaptionEmbedder(cap_feat_dim, hidden_size) |
|
|
|
self.rope = VisionRotaryEmbedding(head_dim=hidden_size // num_heads) |
|
|
|
self.blocks = nn.ModuleList( |
|
[ |
|
TiMBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, **block_kwargs) |
|
for _ in range(depth) |
|
] |
|
) |
|
self.projector = build_mlp(hidden_size, projector_dim, z_dim) |
|
self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels) |
|
self.initialize_weights() |
|
|
|
def initialize_weights(self): |
|
|
|
def _basic_init(module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.xavier_uniform_(module.weight) |
|
if module.bias is not None: |
|
nn.init.constant_(module.bias, 0) |
|
|
|
self.apply(_basic_init) |
|
|
|
|
|
w = self.x_embedder.proj.weight.data |
|
nn.init.xavier_uniform_(w.view([w.shape[0], -1])) |
|
nn.init.constant_(self.x_embedder.proj.bias, 0) |
|
|
|
|
|
nn.init.normal_(self.y_embedder.mlp.fc1_g.weight, std=0.02) |
|
nn.init.normal_(self.y_embedder.mlp.fc1_x.weight, std=0.02) |
|
nn.init.normal_(self.y_embedder.mlp.fc2.weight, std=0.02) |
|
|
|
|
|
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) |
|
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) |
|
|
|
|
|
for block in self.blocks: |
|
nn.init.constant_(block.adaLN_modulation.fc2.weight, 0) |
|
nn.init.constant_(block.adaLN_modulation.fc2.bias, 0) |
|
|
|
|
|
nn.init.constant_(self.final_layer.adaLN_modulation.fc2.weight, 0) |
|
nn.init.constant_(self.final_layer.adaLN_modulation.fc2.bias, 0) |
|
nn.init.constant_(self.final_layer.linear.weight, 0) |
|
nn.init.constant_(self.final_layer.linear.bias, 0) |
|
|
|
def unpatchify(self, x, H, W): |
|
""" |
|
x: (N, T, patch_size**2 * C) |
|
imgs: (N, H, W, C) |
|
""" |
|
c = self.out_channels |
|
p = self.patch_size |
|
h, w = int(H / p), int(W / p) |
|
|
|
x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) |
|
x = torch.einsum("nhwpqc->nchpwq", x) |
|
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p)) |
|
return imgs |
|
|
|
def get_rope(self, h, w, attn_type): |
|
grid_h = torch.arange(h) |
|
grid_w = torch.arange(w) |
|
grid = torch.meshgrid(grid_h, grid_w, indexing="xy") |
|
grid = torch.stack(grid, dim=0).reshape(2, -1).unsqueeze(0) |
|
freqs_cos, freqs_sin = self.rope.get_cached_2d_rope_from_grid(grid) |
|
if attn_type == "flash_attn": |
|
return freqs_cos.unsqueeze(2), freqs_sin.unsqueeze(2) |
|
else: |
|
return freqs_cos.unsqueeze(1), freqs_sin.unsqueeze(1) |
|
|
|
def forward(self, x, t, r, y, attn_type="fused_attn", return_zs=False, jvp=False): |
|
""" |
|
Forward pass of TiM. |
|
x: (B, C, H, W) tensor of spatial inputs (images or latent representations of images) |
|
t: (B,) tensor of diffusion timesteps |
|
y: (B,) tensor of class labels |
|
""" |
|
B, C, H, W = x.shape |
|
x = self.x_embedder(x) |
|
|
|
|
|
t_embed = self.t_embedder(t).unsqueeze(1) |
|
delta_embed = self.get_delta_embed(t, r).unsqueeze(1) |
|
y = self.y_embedder(y) |
|
c = t_embed + delta_embed |
|
|
|
freqs_cos, freqs_sin = self.get_rope( |
|
int(H / self.patch_size), int(W / self.patch_size), attn_type |
|
) |
|
|
|
for i, block in enumerate(self.blocks): |
|
if not self.use_checkpoint or jvp: |
|
x = block( |
|
x, y, c, freqs_cos, freqs_sin, attn_type, delta_embed |
|
) |
|
else: |
|
x = torch.utils.checkpoint.checkpoint( |
|
self.ckpt_wrapper(block), |
|
x, |
|
y, |
|
c, |
|
freqs_cos, |
|
freqs_sin, |
|
attn_type, |
|
delta_embed, |
|
) |
|
if (i + 1) == self.encoder_depth: |
|
h_proj = self.projector(x) |
|
x = self.final_layer(x, c) |
|
x = self.unpatchify(x, H, W) |
|
|
|
if return_zs: |
|
return x, h_proj |
|
else: |
|
return x |
|
|
|
def get_delta_embed(self, t, r): |
|
if self.use_new_embed: |
|
delta_embedder = self.delta_embedder |
|
else: |
|
delta_embedder = self.t_embedder |
|
if self.new_condition == "t-r": |
|
delta_embed = delta_embedder(t - r) |
|
elif self.new_condition == "r": |
|
delta_embed = delta_embedder(r) |
|
elif self.new_condition == "t,r": |
|
delta_embed = self.t_embedder(t) + delta_embedder(r) |
|
elif self.new_condition == "t,t-r": |
|
delta_embed = self.t_embedder(t) + delta_embedder(t - r) |
|
elif self.new_condition == "r,t-r": |
|
delta_embed = self.t_embedder(r) + delta_embedder(t - r) |
|
elif self.new_condition == "t,r,t-r": |
|
delta_embed = ( |
|
self.t_embedder(t) + self.t_embedder(r) + delta_embedder(t - r) |
|
) |
|
else: |
|
raise NotImplementedError |
|
return delta_embed |
|
|
|
def ckpt_wrapper(self, module): |
|
def ckpt_forward(*inputs): |
|
outputs = module(*inputs) |
|
return outputs |
|
|
|
return ckpt_forward |
|
|
|
@property |
|
def dtype(self) -> torch.dtype: |
|
""" |
|
`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). |
|
""" |
|
return get_parameter_dtype(self) |
|
|