# This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # GLIDE: https://github.com/openai/glide-text2im # MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py # -------------------------------------------------------- import torch import torch.nn as nn import torch.nn.functional as F import math from timm.layers.mlp import SwiGLU from timm.models.vision_transformer import PatchEmbed, Attention from tim.models.utils.funcs import build_mlp, modulate, get_parameter_dtype from tim.models.utils.rope import VisionRotaryEmbedding, rotate_half ################################################################################# # Embedding Layers for Timesteps and Class Labels # ################################################################################# class TimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__() self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size @staticmethod def positional_embedding(t, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=t.device) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat( [embedding, torch.zeros_like(embedding[:, :1])], dim=-1 ) return embedding def forward(self, t): self.timestep_embedding = self.positional_embedding t_freq = self.timestep_embedding(t, dim=self.frequency_embedding_size).to( t.dtype ) t_emb = self.mlp(t_freq) return t_emb class CaptionEmbedder(nn.Module): """ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__(self, cap_feat_dim, hidden_size): super().__init__() self.norm = nn.LayerNorm(cap_feat_dim) self.mlp = SwiGLU( in_features=cap_feat_dim, hidden_features=hidden_size * 4, out_features=hidden_size, ) def forward(self, cap_feats): """ cfg is also essential in text-to-image generation """ cap_feats = self.mlp(self.norm(cap_feats)) return cap_feats ################################################################################# # Attention Block # ################################################################################# class Attention(nn.Module): def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = False, qk_norm: bool = False, attn_drop: float = 0.0, proj_drop: float = 0.0, norm_layer: nn.Module = nn.LayerNorm, distance_aware: bool = False, ) -> None: super().__init__() assert dim % num_heads == 0, "dim should be divisible by num_heads" self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.distance_aware = distance_aware if distance_aware: self.qkv_d = nn.Linear(dim, dim * 3, bias=False) self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward( self, x: torch.Tensor, freqs_cos, freqs_sin, attn_type="fused_attn", delta_t=None, ) -> torch.Tensor: B, N, C = x.shape if self.distance_aware: qkv = self.qkv(x) + self.qkv_d(delta_t) else: qkv = self.qkv(x) if attn_type == "flash_attn": # q, k, v: (B, N, n_head, d_head) qkv = qkv.reshape(B, N, 3, self.num_heads, self.head_dim).permute( 2, 0, 1, 3, 4 ) else: # q, k, v: (B, n_head, N, d_head) qkv = qkv.reshape(B, N, 3, self.num_heads, self.head_dim).permute( 2, 0, 3, 1, 4 ) ori_dtype = qkv.dtype q, k, v = qkv.unbind(0) q, k = self.q_norm(q), self.k_norm(k) q = q * freqs_cos + rotate_half(q) * freqs_sin k = k * freqs_cos + rotate_half(k) * freqs_sin q, k = q.to(ori_dtype), k.to(ori_dtype) if attn_type == "flash_attn": from flash_attn import flash_attn_func x = flash_attn_func( q, k, v, dropout_p=self.attn_drop.p if self.training else 0.0, ) x = x.reshape(B, N, C) elif attn_type == "fused_attn": x = F.scaled_dot_product_attention( q, k, v, dropout_p=self.attn_drop.p if self.training else 0.0, ) x = x.transpose(1, 2).reshape(B, N, C) else: q = q * self.scale attn = q @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = attn @ v x = x.transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x ################################################################################# # Cross Attention Block # ################################################################################# class CrossAttention(nn.Module): def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = False, qk_norm: bool = False, attn_drop: float = 0.0, proj_drop: float = 0.0, norm_layer: nn.Module = nn.LayerNorm, ) -> None: super().__init__() assert dim % num_heads == 0, "dim should be divisible by num_heads" self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim**-0.5 self.q = nn.Linear(dim, dim, bias=qkv_bias) self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward( self, x: torch.Tensor, y: torch.Tensor, freqs_cos, freqs_sin, attn_type="fused_attn", ) -> torch.Tensor: B, N, C = x.shape _, M, _ = y.shape if attn_type == "flash_attn": # q, k, v: (B, N, n_head, d_head) q = self.q(x).reshape(B, N, self.num_heads, self.head_dim) kv = ( self.kv(y) .reshape(B, M, 2, self.num_heads, self.head_dim) .permute(2, 0, 1, 3, 4) ) else: # q, k, v: (B, n_head, N, d_head) q = ( self.q(x) .reshape(B, N, self.num_heads, self.head_dim) .permute(0, 2, 1, 3) ) kv = ( self.kv(y) .reshape(B, M, 2, self.num_heads, self.head_dim) .permute(2, 0, 3, 1, 4) ) ori_dtype = q.dtype k, v = kv.unbind(0) q, k = self.q_norm(q), self.k_norm(k) q = q * freqs_cos + rotate_half(q) * freqs_sin q, k = q.to(ori_dtype), k.to(ori_dtype) if attn_type == "flash_attn": from flash_attn import flash_attn_func x = flash_attn_func( q, k, v, dropout_p=self.attn_drop.p if self.training else 0.0, ) x = x.reshape(B, N, C) elif attn_type == "fused_attn": x = F.scaled_dot_product_attention( q, k, v, dropout_p=self.attn_drop.p if self.training else 0.0, ) x = x.transpose(1, 2).reshape(B, N, C) else: q = q * self.scale attn = q @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = attn @ v x = x.transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x ################################################################################# # Core TiM Model # ################################################################################# class TiMBlock(nn.Module): """ A TiM block with adaptive layer norm zero (adaLN-Zero) conditioning. """ def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs): super().__init__() self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) distance_aware = block_kwargs.get("distance_aware", False) self.attn = Attention( hidden_size, num_heads=num_heads, qkv_bias=True, qk_norm=block_kwargs["qk_norm"], distance_aware=distance_aware, ) self.norm2_i = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.norm2_t = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.cross_attn = CrossAttention( hidden_size, num_heads=num_heads, qkv_bias=True, qk_norm=block_kwargs["qk_norm"], ) self.norm3 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) mlp_hidden_dim = int(hidden_size * mlp_ratio) self.mlp = SwiGLU( in_features=hidden_size, hidden_features=(mlp_hidden_dim * 2) // 3, bias=True, ) if block_kwargs.get("lora_hidden_size", None) != None: lora_hidden_size = block_kwargs["lora_hidden_size"] else: lora_hidden_size = (hidden_size // 4) * 3 self.adaLN_modulation = SwiGLU( in_features=hidden_size, hidden_features=lora_hidden_size, out_features=9 * hidden_size, bias=True, ) def forward(self, x, y, c, freqs_cos, freqs_sin, attn_type, delta_t=None): ( shift_msa, scale_msa, gate_msa, shift_msc, scale_msc, gate_msc, shift_mlp, scale_mlp, gate_mlp, ) = self.adaLN_modulation(c).chunk(9, dim=-1) x = x + gate_msa * self.attn( modulate(self.norm1(x), shift_msa, scale_msa), freqs_cos, freqs_sin, attn_type, delta_t, ) x = x + gate_msc * self.cross_attn( modulate(self.norm2_i(x), shift_msc, scale_msc), self.norm2_t(y), freqs_cos, freqs_sin, attn_type, ) x = x + gate_mlp * self.mlp(modulate(self.norm3(x), shift_mlp, scale_mlp)) return x class FinalLayer(nn.Module): """ The final layer of TiM. """ def __init__(self, hidden_size, patch_size, out_channels): super().__init__() self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = nn.Linear( hidden_size, patch_size * patch_size * out_channels, bias=True ) self.adaLN_modulation = SwiGLU( in_features=hidden_size, hidden_features=hidden_size // 2, out_features=2 * hidden_size, bias=True, ) def forward(self, x, c): shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1) x = modulate(self.norm_final(x), shift, scale) x = self.linear(x) return x class TiM(nn.Module): """ Diffusion model with a Transformer backbone. """ def __init__( self, input_size=32, patch_size=2, in_channels=4, hidden_size=1152, encoder_depth=8, depth=28, num_heads=16, mlp_ratio=4.0, cap_feat_dim=2048, z_dim=768, projector_dim=2048, use_checkpoint: bool = False, new_condition: str = "t-r", use_new_embed: bool = False, **block_kwargs, # qk_norm ): super().__init__() self.in_channels = in_channels self.out_channels = in_channels self.patch_size = patch_size self.num_heads = num_heads self.cap_feat_dim = cap_feat_dim self.encoder_depth = encoder_depth self.use_checkpoint = use_checkpoint self.new_condition = new_condition self.use_new_embed = use_new_embed self.x_embedder = PatchEmbed( input_size, patch_size, in_channels, hidden_size, bias=True, strict_img_size=False, ) self.t_embedder = TimestepEmbedder(hidden_size) # timestep embedding type if use_new_embed: self.delta_embedder = TimestepEmbedder(hidden_size) self.y_embedder = CaptionEmbedder(cap_feat_dim, hidden_size) # Will use fixed sin-cos embedding: self.rope = VisionRotaryEmbedding(head_dim=hidden_size // num_heads) self.blocks = nn.ModuleList( [ TiMBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, **block_kwargs) for _ in range(depth) ] ) self.projector = build_mlp(hidden_size, projector_dim, z_dim) self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels) self.initialize_weights() def initialize_weights(self): # Initialize transformer layers: def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) # Initialize patch_embed like nn.Linear (instead of nn.Conv2d): w = self.x_embedder.proj.weight.data nn.init.xavier_uniform_(w.view([w.shape[0], -1])) nn.init.constant_(self.x_embedder.proj.bias, 0) # Initialize label embedding table: nn.init.normal_(self.y_embedder.mlp.fc1_g.weight, std=0.02) nn.init.normal_(self.y_embedder.mlp.fc1_x.weight, std=0.02) nn.init.normal_(self.y_embedder.mlp.fc2.weight, std=0.02) # Initialize timestep embedding MLP: nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) # Zero-out adaLN modulation layers in TiM blocks: for block in self.blocks: nn.init.constant_(block.adaLN_modulation.fc2.weight, 0) nn.init.constant_(block.adaLN_modulation.fc2.bias, 0) # Zero-out output layers: nn.init.constant_(self.final_layer.adaLN_modulation.fc2.weight, 0) nn.init.constant_(self.final_layer.adaLN_modulation.fc2.bias, 0) nn.init.constant_(self.final_layer.linear.weight, 0) nn.init.constant_(self.final_layer.linear.bias, 0) def unpatchify(self, x, H, W): """ x: (N, T, patch_size**2 * C) imgs: (N, H, W, C) """ c = self.out_channels p = self.patch_size h, w = int(H / p), int(W / p) x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) x = torch.einsum("nhwpqc->nchpwq", x) imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p)) return imgs def get_rope(self, h, w, attn_type): grid_h = torch.arange(h) grid_w = torch.arange(w) grid = torch.meshgrid(grid_h, grid_w, indexing="xy") grid = torch.stack(grid, dim=0).reshape(2, -1).unsqueeze(0) freqs_cos, freqs_sin = self.rope.get_cached_2d_rope_from_grid(grid) if attn_type == "flash_attn": # (1, N, 1, d_head) return freqs_cos.unsqueeze(2), freqs_sin.unsqueeze(2) else: # (1, 1, N, d_head) return freqs_cos.unsqueeze(1), freqs_sin.unsqueeze(1) def forward(self, x, t, r, y, attn_type="fused_attn", return_zs=False, jvp=False): """ Forward pass of TiM. x: (B, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (B,) tensor of diffusion timesteps y: (B,) tensor of class labels """ B, C, H, W = x.shape x = self.x_embedder(x) # (N, N, D), where T = H * W / patch_size ** 2 # timestep and class embedding t_embed = self.t_embedder(t).unsqueeze(1) # (B, 1, D) delta_embed = self.get_delta_embed(t, r).unsqueeze(1) # (B, 1, D) y = self.y_embedder(y) # (B, M, D) c = t_embed + delta_embed # (B, 1, D) freqs_cos, freqs_sin = self.get_rope( int(H / self.patch_size), int(W / self.patch_size), attn_type ) for i, block in enumerate(self.blocks): if not self.use_checkpoint or jvp: x = block( x, y, c, freqs_cos, freqs_sin, attn_type, delta_embed ) # (B, N, D) else: x = torch.utils.checkpoint.checkpoint( self.ckpt_wrapper(block), x, y, c, freqs_cos, freqs_sin, attn_type, delta_embed, ) if (i + 1) == self.encoder_depth: h_proj = self.projector(x) x = self.final_layer(x, c) # (B, N, patch_size ** 2 * out_channels) x = self.unpatchify(x, H, W) # (b, out_channels, H, W) if return_zs: return x, h_proj else: return x def get_delta_embed(self, t, r): if self.use_new_embed: delta_embedder = self.delta_embedder else: delta_embedder = self.t_embedder if self.new_condition == "t-r": delta_embed = delta_embedder(t - r) elif self.new_condition == "r": delta_embed = delta_embedder(r) elif self.new_condition == "t,r": delta_embed = self.t_embedder(t) + delta_embedder(r) elif self.new_condition == "t,t-r": delta_embed = self.t_embedder(t) + delta_embedder(t - r) elif self.new_condition == "r,t-r": delta_embed = self.t_embedder(r) + delta_embedder(t - r) elif self.new_condition == "t,r,t-r": delta_embed = ( self.t_embedder(t) + self.t_embedder(r) + delta_embedder(t - r) ) else: raise NotImplementedError return delta_embed def ckpt_wrapper(self, module): def ckpt_forward(*inputs): outputs = module(*inputs) return outputs return ckpt_forward @property def dtype(self) -> torch.dtype: """ `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). """ return get_parameter_dtype(self)