File size: 13,572 Bytes
3ed0796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import torch
from typing import Optional

class Transport:
    def __init__(self, sigma_d, T_max, T_min, enhance_target=False, w_gt=1.0, w_cond=0.0, w_start=0.0, w_end=1.0):
        self.sigma_d = sigma_d
        self.T_max = T_max
        self.T_min = T_min
        self.enhance_target = enhance_target
        self.w_gt = w_gt
        self.w_cond = w_cond
        self.w_start = w_start
        self.w_end = w_end
    
    def sample_t(self, batch_size, dtype, device):
        pass
    def c_noise(self, t: torch.Tensor):
        pass
    def interpolant(self, t: torch.Tensor):
        pass
    def target(self, x_t: torch.Tensor, v_t: torch.Tensor, x: torch.Tensor, z: torch.Tensor, t: torch.Tensor, r: torch.Tensor, dF_dv_dt: torch.Tensor, F_t_cond: torch.Tensor, F_t_uncond: torch.Tensor):
        pass
    def from_x_t_to_x_r(self, x_t: torch.Tensor, t: torch.Tensor, r: torch.Tensor, F: torch.Tensor):
        pass

class OT_FM(Transport):
    def __init__(self, P_mean=0.0, P_std=1.0, sigma_d=1.0, T_max=1.0, T_min=0.0, enhance_target=False, w_gt=1.0, w_cond=0.0, w_start=0.0, w_end=1.0):
        '''
        Flow-matching with linear path formulation from the paper:
        "SiT: Exploring Flow and Diffusion-based Generative Models with Scalable Interpolant Transformers"
        '''
        self.P_mean = P_mean
        self.P_std = P_std
        super().__init__(sigma_d, T_max, T_min, enhance_target, w_gt, w_cond, w_start, w_end)
        
    def interpolant(self, t: torch.Tensor):
        alpha_t = 1 - t
        sigma_t = t
        d_alpha_t = -1
        d_sigma_t =  1
        return alpha_t, sigma_t, d_alpha_t, d_sigma_t

    def sample_t(self, batch_size, dtype, device):
        rnd_normal = torch.randn((batch_size, ), dtype=dtype, device=device)
        sigma = (rnd_normal * self.P_std + self.P_mean).exp()
        t = sigma / (1 + sigma)     # [0, 1]
        return t

    def c_noise(self, t: torch.Tensor):
        return t
    
    def target(
        self, 
        x_t: torch.Tensor, 
        v_t: torch.Tensor, 
        x: torch.Tensor, 
        z: torch.Tensor, 
        t: torch.Tensor, 
        r: torch.Tensor, 
        dF_dv_dt: torch.Tensor,
        F_t_cond: Optional[torch.Tensor] = 0.0, 
        F_t_uncond: Optional[torch.Tensor] = 0.0, 
        enhance_target = False,
    ):
        if enhance_target:
            w_gt = torch.where((t>=self.w_start) & (t<=self.w_end), self.w_gt, 1.0)
            w_cond = torch.where((t>=self.w_start) & (t<=self.w_end), self.w_cond, 0.0)
            v_t = w_gt * v_t + w_cond * F_t_cond + (1-w_gt-w_cond) * F_t_uncond
        F_target = v_t - (t - r) * dF_dv_dt
        return F_target
    
    def from_x_t_to_x_r(self, x_t: torch.Tensor, t: torch.Tensor, r: torch.Tensor, F: torch.Tensor, s_ratio=0.0):
        x_r = x_t - (t - r) * F
        if s_ratio > 0.0:
            z = x_t + (1-t) * F
            epsilon = torch.randn_like(z)
            dt = t-r
            x_r = x_r - s_ratio * z * dt + torch.sqrt(s_ratio*2*t*dt) * epsilon
        return x_r
    



class TrigFlow(Transport):
    def __init__(self, P_mean=-1.0, P_std=1.6, sigma_d=0.5, T_max=1.57, T_min=0.0, enhance_target=False, w_gt=1.0, w_cond=0.0, w_start=0.0, w_end=1.0):
        '''
        TrigFlow formulation from the paper:
        "SIMPLIFYING, STABILIZING & SCALING CONTINUOUS-TIME CONSISTENCY MODELS"
        '''
        self.P_mean = P_mean
        self.P_std = P_std
        super().__init__(sigma_d, T_max, T_min, enhance_target, w_gt, w_cond, w_start, w_end)
        
    def interpolant(self, t: torch.Tensor):
        alpha_t = torch.cos(t)
        sigma_t = torch.sin(t)
        d_alpha_t = -torch.sin(t)
        d_sigma_t =  torch.cos(t)
        return alpha_t, sigma_t, d_alpha_t, d_sigma_t

    def sample_t(self, batch_size, dtype, device):
        rnd_normal = torch.randn((batch_size, ), dtype=dtype, device=device)
        sigma = (rnd_normal * self.P_std + self.P_mean).exp()
        t = torch.atan(sigma)       # [0, pi/2]
        return t

    def c_noise(self, t: torch.Tensor):
        return t
    
    def target(
        self, 
        x_t: torch.Tensor, 
        v_t: torch.Tensor, 
        x: torch.Tensor, 
        z: torch.Tensor, 
        t: torch.Tensor, 
        r: torch.Tensor, 
        dF_dv_dt: torch.Tensor,
        F_t_cond: Optional[torch.Tensor] = 0.0, 
        F_t_uncond: Optional[torch.Tensor] = 0.0, 
        enhance_target = False,
    ):
        if enhance_target:
            w_gt = torch.where((t>=self.w_start) & (t<=self.w_end), self.w_gt, 1.0)
            w_cond = torch.where((t>=self.w_start) & (t<=self.w_end), self.w_cond, 0.0)
            v_t = w_gt * v_t + w_cond * F_t_cond + (1-w_gt-w_cond) * F_t_uncond
        F_target = v_t - torch.tan(t - r) * (x_t + dF_dv_dt)
        return F_target
    
    def from_x_t_to_x_r(self, x_t: torch.Tensor, t: torch.Tensor, r: torch.Tensor, F: torch.Tensor, s_ratio=0.0):
        x_r = torch.cos(t - r) * x_t - torch.sin(t - r) * F
        return x_r


class EDM(Transport):
    def __init__(self, P_mean=-1.2, P_std=1.2, sigma_d=0.5, T_max=80.0, T_min=0.01, enhance_target=False, w_gt=1.0, w_cond=0.0, w_start=0.0, w_end=1.0):
        '''
        EDM formulation from the paper: 
        "Elucidating the Design Space of Diffusion-Based Generative Models"
        '''
        self.P_mean = P_mean
        self.P_std = P_std
        super().__init__(sigma_d, T_max, T_min, enhance_target, w_gt, w_cond, w_start, w_end)
        
    def interpolant(self, t: torch.Tensor):
        '''
        The d_alpha_t and d_sigma_t are easy to obtain: 
        # from sympy import *
        # from scipy.stats import *
        # t, sigma_d = symbols('t sigma_d')
        # alpha_t = sigma_d * ((t**2 + sigma_d**2) ** (-0.5))
        # sigma_t = t * ((t**2 + sigma_d**2) ** (-0.5))
        # d_alpha_t = diff(alpha_t, t)
        # d_sigma_t = diff(sigma_t, t)
        # print(d_alpha_t)
        # print(d_sigma_t)
        '''
        sigma_d = self.sigma_d
        alpha_t = 1 / (t**2 + sigma_d**2).sqrt()
        sigma_t = t / (t**2 + sigma_d**2).sqrt()
        d_alpha_t = -t / ((sigma_d ** 2 + t ** 2) ** 1.5)
        d_sigma_t =  (sigma_d ** 2) / ((sigma_d ** 2 + t ** 2) ** 1.5)
        return alpha_t, sigma_t, d_alpha_t, d_sigma_t

    def sample_t(self, batch_size, dtype, device):
        rnd_normal = torch.randn((batch_size, ), dtype=dtype, device=device)
        sigma = (rnd_normal * self.P_std + self.P_mean).exp()
        t = sigma       # t > 0
        return t
    
    def c_noise(self, t: torch.Tensor):
        return torch.log(t) / 4
    
    def target(
        self, 
        x_t: torch.Tensor, 
        v_t: torch.Tensor, 
        x: torch.Tensor, 
        z: torch.Tensor, 
        t: torch.Tensor, 
        r: torch.Tensor, 
        dF_dv_dt: torch.Tensor,
        F_t_cond: Optional[torch.Tensor] = 0.0, 
        F_t_uncond: Optional[torch.Tensor] = 0.0, 
        enhance_target = False,
    ):
        sigma_d = self.sigma_d
        alpha_hat_t = t / (sigma_d * (t**2 + sigma_d**2).sqrt())
        sigma_hat_t = - sigma_d / (t**2 + sigma_d**2).sqrt()
        d_alpha_hat_t = -t**2/(sigma_d*(sigma_d**2 + t**2)**(3/2)) + 1/(sigma_d*(sigma_d**2 + t**2).sqrt())
        d_sigma_hat_t = sigma_d * t / ((sigma_d**2 + t**2)**(3/2))
        diffusion_target = alpha_hat_t * x + sigma_hat_t * z
        Bt_dv_dBt = (t - r) * (sigma_d**2 + t**2) * (sigma_d**3 + t**2) / (
            2*t*(r - t)*(sigma_d**2 + t**2) - t*(r - t)*(sigma_d**3 + t**2) + (sigma_d**2 + t**2)*(sigma_d**3 + t**2)
        )
        if enhance_target:
            w_gt = torch.where((t>=self.w_start) & (t<=self.w_end), self.w_gt, 1.0)
            w_cond = torch.where((t>=self.w_start) & (t<=self.w_end), self.w_cond, 0.0)
            diffusion_target = w_gt * diffusion_target + w_cond * F_t_cond + (1-w_gt-w_cond) * F_t_uncond
        F_target = diffusion_target + Bt_dv_dBt * (d_alpha_hat_t*x + d_sigma_hat_t*z -dF_dv_dt)
        return F_target


    def from_x_t_to_x_r(self, x_t: torch.Tensor, t: torch.Tensor, r: torch.Tensor, F: torch.Tensor, s_ratio=0.0):
        sigma_d = self.sigma_d
        ratio = (t**2 + sigma_d**2).sqrt() / (r**2 + sigma_d**2).sqrt() / (sigma_d**3 + t**2)
        A_t = (sigma_d**3 + t*r) * ratio
        B_t = (sigma_d**2) * (t-r) * ratio
        x_r = A_t * x_t + B_t * F
        return x_r
    

class VP_SDE(Transport):
    def __init__(self, beta_min=0.1, beta_d=19.9, epsilon_t=1e-5, T=1000, sigma_d=1.0, enhance_target=False, w_gt=1.0, w_cond=0.0, w_start=0.0, w_end=1.0):
        '''
        Variance preserving (VP) formulation from the paper:
        "Score-Based Generative Modeling through Stochastic Differential Equations".
        '''
        self.beta_min = beta_min
        self.beta_d = beta_d
        self.epsilon_t = epsilon_t
        self.T = T
        super().__init__(sigma_d, 1.0, epsilon_t, enhance_target, w_gt, w_cond, w_start, w_end)
        
    def interpolant(self, t: torch.Tensor):
        '''
        The d_alpha_t and d_sigma_t are easy to obtain: 
        # from sympy import *
        # from scipy.stats import *
        # t, beta_d, beta_min = symbols('t beta_d beta_min')
        # sigma = sqrt(exp(0.5 * beta_d * (t ** 2) + beta_min * t) - 1)
        # d_sigma_d_t = diff(sigma, t)
        # print(d_sigma_d_t)
        # sigma = symbols('sigma')
        # alpha_t = (sigma**2 + 1) ** (-0.5)
        # sigma_t = sigma * (sigma**2 + 1) ** (-0.5)
        # d_alpha_d_sigma = diff(alpha_t, sigma)
        # print(d_alpha_d_sigma)
        # d_sigma_d_sigma = diff(sigma_t, sigma)
        # print(d_sigma_d_sigma)
        '''
        beta_t = self.beta(t)
        alpha_t = 1 / torch.sqrt(beta_t**2 + 1) 
        sigma_t = beta_t / torch.sqrt(beta_t**2 + 1)
        d_alpha_t = -0.5 * (self.beta_d * t + self.beta_min) / (beta_t**2 + 1).sqrt()
        d_sigma_t =  0.5 * (self.beta_d * t + self.beta_min) / (beta_t * (beta_t**2 + 1).sqrt())
        return alpha_t, sigma_t, d_alpha_t, d_sigma_t
    
    def beta(self, t: torch.Tensor):
        return torch.sqrt((0.5 * self.beta_d * (t ** 2) + self. beta_min * t).exp() - 1)

    def sample_t(self, batch_size, dtype, device):
        rnd_uniform = torch.rand((batch_size, ), dtype=dtype, device=device)
        t = 1 + rnd_uniform * (self.epsilon_t - 1) # [epsilon_t, 1]
        return t
    
    def c_noise(self, t: torch.Tensor):
        return (self.T - 1) * t 
    
    def target(
        self, 
        x_t: torch.Tensor, 
        v_t: torch.Tensor, 
        x: torch.Tensor, 
        z: torch.Tensor, 
        t: torch.Tensor, 
        r: torch.Tensor, 
        dF_dv_dt: torch.Tensor,
        F_t_cond: Optional[torch.Tensor] = 0.0, 
        F_t_uncond: Optional[torch.Tensor] = 0.0, 
        enhance_target = False,
    ):
        if enhance_target:
            w_gt = torch.where((t>=self.w_start) & (t<=self.w_end), self.w_gt, 1.0)
            w_cond = torch.where((t>=self.w_start) & (t<=self.w_end), self.w_cond, 0.0)
            z = w_gt * z + w_cond * F_t_cond + (1-w_gt-w_cond) * F_t_uncond
        beta_t = self.beta(t)
        beta_r = self.beta(r)
        d_beta_t = (self.beta_d * t + self.beta_min) * (beta_t ** 2 + 1) / (2 * beta_t)
        F_target = z - dF_dv_dt * (beta_t - beta_r) / d_beta_t
        return F_target
    
    def from_x_t_to_x_r(self, x_t: torch.Tensor, t: torch.Tensor, r: torch.Tensor, F: torch.Tensor, s_ratio=0.0):
        beta_t = self.beta(t)
        beta_r = self.beta(r)
        A_t = (beta_t ** 2 + 1).sqrt() / (beta_r ** 2 + 1).sqrt()
        B_t = (beta_r - beta_t) / (beta_r ** 2 + 1).sqrt()
        x_r = A_t * x_t + B_t * F
        return x_r




class VE_SDE(Transport):
    def __init__(self, sigma_min=0.02, sigma_max=100, sigma_d=1.0, enhance_target=False, w_gt=1.0, w_cond=0.0, w_start=0.0, w_end=1.0):
        '''
        Variance exploding (VE) formulation from the paper: 
        "Score-Based Generative Modeling through Stochastic Differential Equations".
        '''
        self.sigma_min = sigma_min
        self.sigma_max = sigma_max
        super().__init__(sigma_d, sigma_max, sigma_min, enhance_target, w_gt, w_cond, w_start, w_end)
        
    def interpolant(self, t: torch.Tensor):
        alpha_t = 1 
        sigma_t = t
        d_alpha_t =  0
        d_sigma_t = 1
        return alpha_t, sigma_t, d_alpha_t, d_sigma_t

    def sample_t(self, batch_size, dtype, device):
        rnd_uniform = torch.rand((batch_size, ), dtype=dtype, device=device)
        t = self.sigma_min * ((self.sigma_max / self.sigma_min) ** rnd_uniform) # [sigma_min, sigma_max]
        return t
    
    def c_noise(self, t: torch.Tensor):
        return torch.log(0.5 * t)
    
    def target(
        self, 
        x_t: torch.Tensor, 
        v_t: torch.Tensor, 
        x: torch.Tensor, 
        z: torch.Tensor, 
        t: torch.Tensor, 
        r: torch.Tensor, 
        dF_dv_dt: torch.Tensor,
        F_t_cond: Optional[torch.Tensor] = 0.0, 
        F_t_uncond: Optional[torch.Tensor] = 0.0, 
        enhance_target = False,
    ):
        if enhance_target:
            w_gt = torch.where((t>=self.w_start) & (t<=self.w_end), self.w_gt, 1.0)
            w_cond = torch.where((t>=self.w_start) & (t<=self.w_end), self.w_cond, 0.0)
            z = w_gt * z + w_cond * (-F_t_cond) + (1-w_gt-w_cond) * (-F_t_uncond)
        F_target = (r - t) * dF_dv_dt - z
        return F_target
    

    def from_x_t_to_x_r(self, x_t: torch.Tensor, t: torch.Tensor, r: torch.Tensor, F: torch.Tensor, s_ratio=0.0):
        x_r = x_t + (t - r) * F
        return x_r