blanchon commited on
Commit
3ed0796
·
0 Parent(s):
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. DOCKERFILE +78 -0
  2. README.md +279 -0
  3. app.py +344 -0
  4. configs/c2i/tim_b_p4.yaml +78 -0
  5. configs/c2i/tim_xl_p1_512.yaml +85 -0
  6. configs/c2i/tim_xl_p1_512_mg.yaml +85 -0
  7. configs/c2i/tim_xl_p2_256.yaml +85 -0
  8. configs/c2i/tim_xl_p2_256_mg.yaml +85 -0
  9. configs/t2i/tim_xl_p1_t2i.yaml +81 -0
  10. pyproject.toml +32 -0
  11. requirements.txt +15 -0
  12. setup.py +12 -0
  13. tim/data/c2i_data.py +150 -0
  14. tim/data/sampler_utils.py +52 -0
  15. tim/data/t2i_data.py +126 -0
  16. tim/models/c2i/tim_model.py +458 -0
  17. tim/models/nvidia_radio/hubconf.py +192 -0
  18. tim/models/nvidia_radio/radio/__init__.py +17 -0
  19. tim/models/nvidia_radio/radio/adaptor_base.py +37 -0
  20. tim/models/nvidia_radio/radio/adaptor_generic.py +69 -0
  21. tim/models/nvidia_radio/radio/adaptor_mlp.py +174 -0
  22. tim/models/nvidia_radio/radio/adaptor_registry.py +37 -0
  23. tim/models/nvidia_radio/radio/block.py +54 -0
  24. tim/models/nvidia_radio/radio/cls_token.py +59 -0
  25. tim/models/nvidia_radio/radio/common.py +108 -0
  26. tim/models/nvidia_radio/radio/conv.py +65 -0
  27. tim/models/nvidia_radio/radio/dinov2_arch.py +1016 -0
  28. tim/models/nvidia_radio/radio/dual_hybrid_vit.py +213 -0
  29. tim/models/nvidia_radio/radio/enable_cpe_support.py +224 -0
  30. tim/models/nvidia_radio/radio/enable_damp.py +42 -0
  31. tim/models/nvidia_radio/radio/enable_spectral_reparam.py +277 -0
  32. tim/models/nvidia_radio/radio/eradio_model.py +1392 -0
  33. tim/models/nvidia_radio/radio/extra_models.py +228 -0
  34. tim/models/nvidia_radio/radio/extra_timm_models.py +206 -0
  35. tim/models/nvidia_radio/radio/feature_normalizer.py +111 -0
  36. tim/models/nvidia_radio/radio/forward_intermediates.py +138 -0
  37. tim/models/nvidia_radio/radio/hf_model.py +202 -0
  38. tim/models/nvidia_radio/radio/input_conditioner.py +49 -0
  39. tim/models/nvidia_radio/radio/open_clip_adaptor.py +41 -0
  40. tim/models/nvidia_radio/radio/radio_model.py +375 -0
  41. tim/models/nvidia_radio/radio/vision_transformer_xpos.py +357 -0
  42. tim/models/nvidia_radio/radio/vit_patch_generator.py +287 -0
  43. tim/models/nvidia_radio/radio/vitdet.py +188 -0
  44. tim/models/t2i/tim_model.py +584 -0
  45. tim/models/utils/funcs.py +53 -0
  46. tim/models/utils/norms.py +403 -0
  47. tim/models/utils/rope.py +305 -0
  48. tim/models/utils/text_encoders.py +66 -0
  49. tim/models/vae/__init__.py +61 -0
  50. tim/models/vae/dc_ae.py +178 -0
DOCKERFILE ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Get uv installer
2
+ FROM ghcr.io/astral-sh/uv:0.2.12 as uv
3
+
4
+ # Main application image
5
+ FROM nvidia/cuda:12.1.1-cudnn8-devel-ubuntu22.04
6
+
7
+ # Set home to the user's home directory
8
+ ENV DEBIAN_FRONTEND=noninteractive \
9
+ HOME=/home/user \
10
+ PATH=/home/user/.local/bin:$PATH \
11
+ GRADIO_ALLOW_FLAGGING=never \
12
+ GRADIO_NUM_PORTS=1 \
13
+ GRADIO_SERVER_NAME=0.0.0.0 \
14
+ GRADIO_THEME=huggingface \
15
+ SYSTEM=spaces
16
+
17
+ # Copy uv
18
+ COPY --from=uv /uv /uv
19
+
20
+ # Install Python, pip, venv, and system dependencies
21
+ RUN apt-get update && \
22
+ apt-get install -y --fix-missing --no-install-recommends \
23
+ python3.11 python3.11-venv python3-pip ffmpeg \
24
+ build-essential \
25
+ git \
26
+ && apt-get clean && \
27
+ rm -rf /var/lib/apt/lists/*
28
+
29
+ # Create virtual environment
30
+ RUN --mount=type=cache,target=/root/.cache/uv \
31
+ /uv venv /opt/venv
32
+
33
+ # Set environment variables
34
+ ENV VIRTUAL_ENV=/opt/venv \
35
+ PATH="/opt/venv/bin:$PATH" \
36
+ PORT=7860 \
37
+ SERVER_NAME=0.0.0.0
38
+
39
+ # Create user and set permissions (required for HF Spaces)
40
+ RUN useradd -m -u 1000 user && \
41
+ chown -R user /opt/venv
42
+
43
+ # Switch to user context
44
+ USER user
45
+ WORKDIR /app
46
+
47
+ # Set home to user's home directory and other envs
48
+ ENV HOME=/home/user \
49
+ PATH=/home/user/.local/bin:$PATH \
50
+ HF_HOME=/home/user/.cache/huggingface \
51
+ UV_CACHE_DIR=/app/.uv-cache
52
+
53
+ # Create cache directory with proper permissions
54
+ RUN mkdir -p $UV_CACHE_DIR && chown -R user:user $UV_CACHE_DIR
55
+
56
+ # Copy requirements first for caching
57
+ COPY --chown=user requirements.txt .
58
+
59
+ # Install Python packages with uv caching
60
+ RUN --mount=type=cache,target=$UV_CACHE_DIR,uid=1000,gid=1000 \
61
+ /uv pip install torch==2.8.0
62
+
63
+ # Install build dependencies for flash-attn
64
+ RUN --mount=type=cache,target=$UV_CACHE_DIR,uid=1000,gid=1000 \
65
+ /uv pip install -U --no-cache-dir setuptools wheel ninja packaging
66
+
67
+ # Install flash-attn
68
+ RUN --mount=type=cache,target=$UV_CACHE_DIR,uid=1000,gid=1000 \
69
+ /MAX_JOBS=4 uv pip install flash-attn --no-build-isolation
70
+
71
+ # Install Python packages with uv caching
72
+ RUN --mount=type=cache,target=$UV_CACHE_DIR,uid=1000,gid=1000 \
73
+ /uv pip install --no-cache-dir -r requirements.txt
74
+
75
+ # Copy application code
76
+ COPY --chown=user . .
77
+
78
+ ENTRYPOINT ["uv", "run", "app.py"]
README.md ADDED
@@ -0,0 +1,279 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: TiM
3
+ emoji: 🏆
4
+ colorFrom: blue
5
+ colorTo: red
6
+ sdk: docker
7
+ pinned: false
8
+ app_port: 7860
9
+ ---
10
+
11
+ <h1 align="center">Transition Models: Rethinking the Generative Learning Objective</h1>
12
+
13
+
14
+
15
+ <div align="center">
16
+ <a href="https://github.com/WZDTHU" target="_blank">ZiDong&nbsp;Wang</a><sup>1,2,*</sup>
17
+ &ensp; <b>&middot;</b> &ensp;
18
+ <a href="https://invictus717.github.io" target="_blank">Yiyuan&nbsp;Zhang</a><sup>1,2,*,‡</sup>
19
+ &ensp; <b>&middot;</b> &ensp;
20
+ <a href="https://yuexy.github.io/" target="_blank">Xiaoyu&nbsp;Yue</a><sup>2,3</sup>
21
+ &ensp; <b>&middot;</b> &ensp;
22
+ <a href="https://xyue.io" target="_blank">Xiangyu&nbsp;Yue</a><sup>1</sup>
23
+ &ensp; <b>&middot;</b> &ensp;
24
+ <a href="https://yg256li.github.io" target="_blank">Yangguang&nbsp;Li</a><sup>1,†</sup>
25
+ &ensp; <b>&middot;</b> &ensp;
26
+ <a href="https://wlouyang.github.io" target="_blank">Wanli&nbsp;Ouyang</a><sup>1,2</sup>
27
+ &ensp; <b>&middot;</b> &ensp;
28
+ <a href="http://leibai.site" target="_blank">Lei&nbsp;Bai</a><sup>2,†</sup>
29
+
30
+ <sup>1</sup> MMLab CUHK &emsp; <sup>2</sup>Shanghai AI Lab &emsp; <sup>3</sup>USYD <br>
31
+ <sup>*</sup>Equal Contribution &emsp; <sup>‡</sup>Project Lead &emsp; <sup>†</sup>Corresponding Authors &emsp; <br>
32
+ </div>
33
+
34
+
35
+
36
+ <h3 align="center">
37
+ <!-- [<a href="https://wzdthu.github.io/NiT">project page</a>]&emsp; -->
38
+ [<a href="https://arxiv.org/abs/2509.04394">arXiv</a>]&emsp;
39
+ [<a href="https://huggingface.co/GoodEnough/TiM-T2I">Model</a>]&emsp;
40
+ [<a href="https://huggingface.co/datasets/GoodEnough/TiM-Toy-T2I-Dataset">Dataset</a>]&emsp;
41
+ </h3>
42
+ <br>
43
+
44
+ <b>Highlights</b>: We propose Transition Models (TiM), a novel generative model that learns to navigate the entire generative trajectory with unprecedented flexibility.
45
+ * Our Transition Models (TiM) are trained to master arbitrary state-to-state transitions. This approach allows TiM to learn the entire solution manifold of the generative process, unifying the few-step and many-step regimes within a single, powerful model.
46
+ ![Figure](./assets/illustration.png)
47
+ * Despite having only 865M parameters, TiM achieves state-of-the-art performance, surpassing leading models such as SD3.5 (8B parameters) and FLUX.1 (12B parameters) across all evaluated step counts on GenEval benchmark. Importantly, unlike previous few-step generators, TiM demonstrates monotonic quality improvement as the sampling budget increases.
48
+ ![Figure](./assets/nfe_demo.png)
49
+ * Additionally, when employing our native-resolution strategy, TiM delivers exceptional fidelity at resolutions up to $4096\times4096$.
50
+ ![Figure](./assets/tim_demo.png)
51
+
52
+
53
+ ## 🚨 News
54
+
55
+ - `2025-9-5` We are delighted to introduce TiM, which is the first text-to-image generator support any-step generation, entirely trained from scratch. We have released the codes and pretrained models of TiM.
56
+
57
+
58
+
59
+ ## 1. Setup
60
+
61
+ First, clone the repo:
62
+ ```bash
63
+ git clone https://github.com/WZDTHU/TiM.git && cd TiM
64
+ ```
65
+
66
+ ### 1.1 Environment Setup
67
+
68
+ ```bash
69
+ conda create -n tim_env python=3.10
70
+ pip install torch==2.5.1 torchvision==0.20.1 --index-url https://download.pytorch.org/whl/cu118
71
+ pip install flash-attn
72
+ pip install -r requirements.txt
73
+ pip install -e .
74
+ ```
75
+
76
+
77
+ ### 1.2 Model Zoo (WIP)
78
+
79
+
80
+ #### Text-to-Image Generation
81
+
82
+ A single TiM model can perform any-step generation (one-step, few-step, and multi-step) and demonstrate monotonic quality improvement as the sampling budget increases.
83
+ | Model | Model Zoo | Model Size | VAE | 1-NFE GenEval | 8-NFE GenEval | 128-NFE GenEval |
84
+ |---------------|------------|---------|------------|-------|-------|-------|
85
+ | TiM-T2I | [🤗 HF](https://huggingface.co/GoodEnough/TiM-T2I/blob/main/t2i_model.bin) | 865M | [DC-AE](https://huggingface.co/mit-han-lab/dc-ae-f32c32-sana-1.1-diffusers) | 0.67 | 0.76 | 0.83 |
86
+
87
+
88
+
89
+ ```bash
90
+ mkdir checkpoints
91
+ wget -c "https://huggingface.co/GoodEnough/TiM-T2I/resolve/main/t2i_model.bin" -O checkpoints/t2i_model.bin
92
+ ```
93
+
94
+
95
+ #### Class-guided Image Generation:
96
+
97
+ | Model | Model Zoo | Model Size | VAE | 2-NFE FID | 500-NFE FID |
98
+ |---------------|------------|---------|------------|------------|------------|
99
+ | TiM-C2I-256 | [🤗 HF](https://huggingface.co/GoodEnough/TiM-C2I/blob/main/c2i_model_256.safetensors) | 664M | [SD-VAE](https://huggingface.co/stabilityai/sd-vae-ft-ema) | 6.14 | 1.65
100
+ | TiM-C2I-512 | [🤗 HF](https://huggingface.co/GoodEnough/TiM-C2I/blob/main/c2i_model_512.safetensors) | 664M | [DC-AE](https://huggingface.co/mit-han-lab/dc-ae-f32c32-sana-1.1-diffusers) | 4.79 | 1.69
101
+
102
+
103
+ ```bash
104
+ mkdir checkpoints
105
+ wget -c "https://huggingface.co/GoodEnough/TiM-C2I/resolve/main/c2i_model_256.safetensors" -O checkpoints/c2i_model_256.safetensors
106
+ wget -c "https://huggingface.co/GoodEnough/TiM-C2I/resolve/main/c2i_model_512.safetensors" -O checkpoints/c2i_model_512.safetensors
107
+ ```
108
+
109
+
110
+ ## 2. Sampling
111
+
112
+ #### Text-to-Image Generation
113
+
114
+ We provide the sampling scripts on three benchmarks: GenEval, DPGBench, and MJHQ30K. You can specify the sampling steps, resolutions, and CFG scale in the corresponding scripts.
115
+
116
+ Sampling with TiM-T2I model on GenEval benchmark:
117
+ ```bash
118
+ bash scripts/sample/t2i/sample_t2i_geneval.sh
119
+ ```
120
+
121
+ Sampling with TiM-T2I model on DPGBench benchmark:
122
+ ```bash
123
+ bash scripts/sample/t2i/sample_t2i_dpgbench.sh
124
+ ```
125
+
126
+ Sampling with TiM-T2I model on MJHQ30k benchmark:
127
+ ```bash
128
+ bash scripts/sample/t2i/sample_t2i_mjhq30k.sh
129
+ ```
130
+
131
+ #### Class-guided Image Generation
132
+
133
+ We provide the sampling scripts for ImageNet-256 and ImageNet-512.
134
+
135
+ Sampling with C2I model on $256\times256$ resolution:
136
+ ```bash
137
+ bash scripts/sample/c2i/sample_256x256.sh
138
+ ```
139
+
140
+ Sampling with C2I model on $512\times512$ resolution:
141
+ ```bash
142
+ bash scripts/sample/c2i/sample_512x512.sh
143
+ ```
144
+
145
+
146
+ ## 3. Evaluation
147
+
148
+
149
+ ### Text-to-Image Generation
150
+
151
+ #### GenEval
152
+
153
+ Please follow the [GenEval](https://github.com/djghosh13/geneval) to setup the conda-environment.
154
+
155
+ Given the directory of the generated images `SAMPLING_DIR` and folder of object dector `OBJECT_DETECTOR_FOLDER`, run the following codes:
156
+ ```bash
157
+ python projects/evaluate/geneval/evaluation/evaluate_images.py $SAMPLING_DIR --outfile geneval_results.jsonl --model-path $OBJECT_DETECTOR_FOLDER
158
+ ```
159
+ This will result in a JSONL file with each line corresponding to an image. Run the following codes to obtain the GenEval Score:
160
+ ```bash
161
+ python projects/evaluate/geneval/evaluation/summary_scores.py geneval_results.jsonl
162
+ ```
163
+
164
+
165
+ #### DPGBench
166
+ Please follow the [DPGBench](https://github.com/TencentQQGYLab/ELLA) to setup the conda-environment.
167
+ Given the directory of the generated images `SAMPLING_DIR` , run the following codes:
168
+ ```bash
169
+ python projects/evaluate/dpg_bench/compute_dpg_bench.py --image-root-path $SAMPLING_DIR --res-path dpgbench_results.txt --pic-num 4
170
+ ```
171
+
172
+ #### MJHQ30K
173
+ Please download [MJHQ30K](https://huggingface.co/datasets/playgroundai/MJHQ-30K) as the reference-image.
174
+
175
+
176
+ Given the directory of the reference-image direcotry `REFERENCE_DIR` and the directory of the generated images `SAMPLING_DIR`, run the following codes to calculate the FID Score:
177
+ ```bash
178
+ python projects/evaluate/mjhq30k/calculate_fid.py $REFERENCE_DIR $SAMPLING_DIR
179
+ ```
180
+
181
+ For CLIP Score, first compute the text features and save it in `MJHQ30K_TEXT_FEAT`:
182
+ ```bash
183
+ python projects/evaluate/mjhq30k/calculate_clip.py projects/evaluate/mjhq30k/meta_data.json $MJHQ30K_TEXT_FEAT/clip_feat.safetensors --save-stats
184
+ ```
185
+ Then run the following codes to calculate the CLIP Score:
186
+ ```bash
187
+ python projects/evaluate/mjhq30k/calculate_clip.py $MJHQ30K_TEXT_FEAT/clip_feat.safetensors $SAMPLING_DIR
188
+ ```
189
+
190
+
191
+
192
+ ### Class-guided Image Generation
193
+
194
+ The sampling generates a folder of samples to compute FID, Inception Score and other metrics.
195
+ <b>Note that we do not pack the generate samples as a `.npz` file, this does not affect the calculation of FID and other metrics.</b>
196
+ Please follow the [ADM's TensorFlow
197
+ evaluation suite](https://github.com/openai/guided-diffusion/tree/main/evaluations)
198
+ to setup the conda-environment and download the reference batch.
199
+
200
+ ```bash
201
+ wget -c "https://openaipublic.blob.core.windows.net/diffusion/jul-2021/ref_batches/classify_image_graph_def.pb" -O checkpoints/classify_image_graph_def.pb
202
+ ```
203
+
204
+
205
+ Given the directory of the reference batch `REFERENCE_DIR` and the directory of the generated images `SAMPLING_DIR`, run the following codes:
206
+ ```bash
207
+ python projects/evaluate/adm_evaluator.py $REFERENCE_DIR $SAMPLING_DIR
208
+ ```
209
+
210
+
211
+
212
+
213
+
214
+ ## 4. Training
215
+
216
+ ### 4.1 Dataset Setup
217
+
218
+ Currently, we provide all the [preprocessed dataset](https://huggingface.co/datasets/GoodEnough/NiT-Preprocessed-ImageNet1K) for ImageNet1K. Please use the following commands to download the preprocessed latents.
219
+
220
+ ```bash
221
+ bash tools/download_imagenet_256x256.sh
222
+ bash tools/download_imagenet_512x512.sh
223
+ ```
224
+
225
+ For text-to-image generation, we provide a [toy dataset](https://huggingface.co/datasets/GoodEnough/TiM-Toy-T2I-Dataset). Please use the following command to download this dataset.
226
+ ```bash
227
+ bash tools/download_toy_t2i_dataset.sh
228
+ ```
229
+
230
+
231
+ ### 4.2 Download Image Encoder
232
+
233
+ We use RADIO-v2.5-b as our image encoder for REPA-loss.
234
+
235
+ ```bash
236
+ wget -c "https://huggingface.co/nvidia/RADIO/resolve/main/radio-v2.5-b_half.pth.tar" -O checkpoints/radio-v2.5-b_half.pth.tar
237
+ ```
238
+
239
+
240
+ ### 4.3 Training Scripts
241
+
242
+ Specify the `image_dir` in `configs/c2i/tim_b_p4.yaml` and train the base-model (131M) on ImageNet-256:
243
+ ```bash
244
+ bash scripts/train/c2i/train_tim_c2i_b.sh
245
+ ```
246
+
247
+ Specify the `image_dir` in `configs/c2i/tim_xl_p2_256.yaml` and train the XL-model (664M) on ImageNet-256:
248
+ ```bash
249
+ bash scripts/train/c2i/train_tim_c2i_xl_256.sh
250
+ ```
251
+
252
+ Specify the `image_dir` in `configs/c2i/tim_xl_p2_512.yaml` and train the XL-model (664M) on ImageNet-512:
253
+ ```bash
254
+ bash scripts/train/c2i/train_tim_c2i_xl_512.sh
255
+ ```
256
+
257
+ Specify the `root_dir` in `configs/t2i/tim_xl_p1_t2i.yaml` and train the T2I-model (865M) on Toy-T2I-Dataset:
258
+ ```bash
259
+ bash scripts/train/t2i/train_tim_t2i.sh
260
+ ```
261
+
262
+
263
+
264
+
265
+ ## Citations
266
+ If you find the project useful, please kindly cite:
267
+ ```bibtex
268
+ @article{wang2025transition,
269
+ title={Transition Models: Rethinking the Generative Learning Objective},
270
+ author={Wang, Zidong and Zhang, Yiyuan and Yue, Xiaoyu and Yue, Xiangyu and Li, Yangguang and Ouyang, Wanli and Bai, Lei},
271
+ year={2025},
272
+ eprint={2509.04394},
273
+ archivePrefix={arXiv},
274
+ primaryClass={cs.LG}
275
+ }
276
+ ```
277
+ https://arxiv.org/abs/
278
+ ## License
279
+ This project is licensed under the Apache-2.0 license.
app.py ADDED
@@ -0,0 +1,344 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import spaces # type: ignore - ZeroGPU spaces library
3
+ import numpy as np
4
+ import random
5
+ import torch
6
+ import functools
7
+ from pathlib import Path
8
+ from PIL import Image
9
+ from omegaconf import OmegaConf # type: ignore - YAML configuration library
10
+ from tim.schedulers.transition import TransitionSchedule
11
+ from tim.utils.misc_utils import instantiate_from_config, init_from_ckpt
12
+ from tim.models.vae import get_sd_vae, get_dc_ae, sd_vae_decode, dc_ae_decode
13
+ from tim.models.utils.text_encoders import load_text_encoder, encode_prompt
14
+ # from kernels import get_kernel
15
+
16
+ # Configuration
17
+ dtype = torch.bfloat16
18
+ device = "cuda" if torch.cuda.is_available() else "cpu"
19
+ MAX_SEED = np.iinfo(np.int32).max
20
+ MAX_IMAGE_SIZE = 2048
21
+
22
+ # Global variables to store loaded components
23
+ model = None
24
+ scheduler = None
25
+ decode_func = None
26
+ config = None
27
+ text_encoder = None
28
+ tokenizer = None
29
+
30
+
31
+ def load_model_components(device: str = "cuda"):
32
+ """Load all model components once at startup"""
33
+ global model, scheduler, decode_func, config, text_encoder, tokenizer
34
+
35
+ try:
36
+ # Load configuration
37
+ config_path = "configs/t2i/tim_xl_p1_t2i.yaml"
38
+ from huggingface_hub import hf_hub_download
39
+
40
+ ckpt_path = hf_hub_download(
41
+ repo_id="blanchon/TiM-checkpoints", filename="t2i_model.bin"
42
+ )
43
+
44
+ if not Path(config_path).exists():
45
+ raise FileNotFoundError(f"Config file not found: {config_path}")
46
+ if not Path(ckpt_path).exists():
47
+ raise FileNotFoundError(f"Checkpoint file not found: {ckpt_path}")
48
+
49
+ print("Loading configuration...")
50
+ config = OmegaConf.load(config_path)
51
+ model_config = config.model
52
+
53
+ print("Loading VAE...")
54
+ # Load VAE
55
+ if "dc-ae" in model_config.vae_dir:
56
+ dc_ae = get_dc_ae(model_config.vae_dir, dtype=torch.float32, device=device)
57
+ dc_ae.enable_tiling(2560, 2560, 2560, 2560)
58
+ decode_func = functools.partial(dc_ae_decode, dc_ae, slice_vae=True)
59
+ elif "sd-vae" in model_config.vae_dir:
60
+ sd_vae = get_sd_vae(
61
+ model_config.vae_dir, dtype=torch.float32, device=device
62
+ )
63
+ decode_func = functools.partial(sd_vae_decode, sd_vae, slice_vae=True)
64
+ else:
65
+ raise ValueError("Unsupported VAE type")
66
+
67
+ # Load text encoder
68
+ text_encoder, tokenizer = load_text_encoder(
69
+ text_encoder_dir=config.model.text_encoder_dir,
70
+ device=device,
71
+ weight_dtype=dtype,
72
+ )
73
+
74
+ print("Loading main model...")
75
+ # Load main model
76
+ model = instantiate_from_config(model_config.network).to(
77
+ device=device, dtype=dtype
78
+ )
79
+ init_from_ckpt(model, checkpoint_dir=ckpt_path, ignore_keys=None, verbose=True)
80
+ model.eval()
81
+
82
+ print("Loading scheduler...")
83
+ # Load scheduler
84
+ transport = instantiate_from_config(model_config.transport)
85
+ scheduler = TransitionSchedule(
86
+ transport=transport, **OmegaConf.to_container(model_config.transition_loss)
87
+ )
88
+
89
+ print("All components loaded successfully!")
90
+
91
+ except Exception as e:
92
+ print(f"Error loading model components: {e}")
93
+ raise e
94
+
95
+
96
+ @spaces.GPU(duration=60)
97
+ def generate_image(
98
+ prompt,
99
+ seed=42,
100
+ randomize_seed=False,
101
+ width=1024,
102
+ height=1024,
103
+ guidance_scale=2.5,
104
+ num_inference_steps=16,
105
+ progress=gr.Progress(track_tqdm=True),
106
+ ):
107
+ """Generate image from text prompt"""
108
+ try:
109
+ device = "cuda" if torch.cuda.is_available() else "cpu"
110
+ print(f"Using device: {device}")
111
+ # Validate inputs
112
+ if not prompt or len(prompt.strip()) == 0:
113
+ raise ValueError("Please enter a valid prompt")
114
+
115
+ if model is None or scheduler is None:
116
+ raise RuntimeError("Model components not loaded. Please check the setup.")
117
+
118
+ # Validate dimensions
119
+ if (
120
+ width < 256
121
+ or width > MAX_IMAGE_SIZE
122
+ or height < 256
123
+ or height > MAX_IMAGE_SIZE
124
+ ):
125
+ raise ValueError(
126
+ f"Image dimensions must be between 256 and {MAX_IMAGE_SIZE}"
127
+ )
128
+
129
+ if width % 32 != 0 or height % 32 != 0:
130
+ raise ValueError("Image dimensions must be divisible by 32")
131
+
132
+ if randomize_seed:
133
+ seed = random.randint(0, MAX_SEED)
134
+
135
+ generator = torch.Generator(device=device).manual_seed(seed)
136
+
137
+ # Calculate latent dimensions
138
+ spatial_downsample = 32 if "dc-ae" in config.model.vae_dir else 8
139
+ latent_h = int(height / spatial_downsample)
140
+ latent_w = int(width / spatial_downsample)
141
+
142
+ progress(0.1, desc="Generating random latent...")
143
+
144
+ # Generate random latent
145
+ z = torch.randn(
146
+ (1, model.in_channels, latent_h, latent_w),
147
+ device=device,
148
+ dtype=dtype,
149
+ generator=generator,
150
+ )
151
+
152
+ progress(0.1, desc="Loading text encoder...")
153
+
154
+ # Load text encoder
155
+ text_encoder.set_attn_implementation("flash_attention_2")
156
+ text_encoder.to(device)
157
+
158
+ # Encode prompt
159
+ cap_features, cap_mask = encode_prompt(
160
+ tokenizer,
161
+ text_encoder.model,
162
+ device,
163
+ dtype,
164
+ [prompt],
165
+ config.model.use_last_hidden_state,
166
+ max_seq_length=config.model.max_seq_length,
167
+ )
168
+
169
+ # Encode null caption for CFG
170
+ null_cap_feat, null_cap_mask = encode_prompt(
171
+ tokenizer,
172
+ text_encoder.model,
173
+ device,
174
+ dtype,
175
+ [""],
176
+ config.model.use_last_hidden_state,
177
+ max_seq_length=config.model.max_seq_length,
178
+ )
179
+
180
+ cur_max_seq_len = cap_mask.sum(dim=-1).max()
181
+ y = cap_features[:, :cur_max_seq_len]
182
+
183
+ y_null = null_cap_feat[:, :cur_max_seq_len]
184
+ y_null = y_null.expand(y.shape[0], cur_max_seq_len, null_cap_feat.shape[-1])
185
+
186
+ # Generate image
187
+ with torch.no_grad():
188
+ samples = scheduler.sample(
189
+ model,
190
+ y,
191
+ y_null,
192
+ z,
193
+ T_max=1.0,
194
+ T_min=0.0,
195
+ num_steps=num_inference_steps,
196
+ cfg_scale=guidance_scale,
197
+ cfg_low=0.0,
198
+ cfg_high=1.0,
199
+ stochasticity_ratio=0.0,
200
+ sample_type="transition",
201
+ step_callback=lambda step: progress(
202
+ 0.1 + 0.9 * (step / num_inference_steps), desc="Generating image..."
203
+ ),
204
+ )[-1]
205
+ samples = samples.to(torch.float32)
206
+
207
+ # Decode to image
208
+ images = decode_func(samples)
209
+ images = (
210
+ torch.clamp(127.5 * images + 128.0, 0, 255)
211
+ .permute(0, 2, 3, 1)
212
+ .to(torch.uint8)
213
+ .contiguous()
214
+ )
215
+ image = Image.fromarray(images[0].cpu().numpy())
216
+
217
+ progress(1.0, desc="Complete!")
218
+
219
+ return image, seed
220
+
221
+ except Exception as e:
222
+ print(f"Error during image generation: {e}")
223
+ # Return a placeholder image or error message
224
+ error_img = Image.new("RGB", (512, 512), color="red")
225
+ return error_img, seed
226
+
227
+
228
+ # Example prompts
229
+ examples = [
230
+ ["a tiny astronaut hatching from an egg on the moon"],
231
+ ["🐶 Wearing 🕶 flying on the 🌈"],
232
+ ["an anime illustration of a wiener schnitzel"],
233
+ ["a photorealistic landscape of mountains at sunset"],
234
+ ["a majestic lion in a golden savanna at sunset"],
235
+ ["a futuristic city with flying cars and neon lights"],
236
+ ["a cozy cabin in a snowy forest with smoke coming from the chimney"],
237
+ ["a beautiful mermaid swimming in crystal clear water"],
238
+ ]
239
+
240
+ # CSS styling
241
+ css = """
242
+ #col-container {
243
+ margin: 0 auto;
244
+ max-width: 520px;
245
+ }
246
+ """
247
+
248
+ # Initialize model components
249
+ try:
250
+ # flash_attn = get_kernel("kernels-community/flash-attn")
251
+ load_model_components(device)
252
+ print("Model components loaded successfully!")
253
+ except Exception as e:
254
+ print(f"Error loading model components: {e}")
255
+ print("Please ensure config and checkpoint files are available")
256
+
257
+ # Create Gradio interface
258
+ with gr.Blocks(css=css) as demo:
259
+ with gr.Column(elem_id="col-container"):
260
+ gr.Markdown("# TiM Text-to-Image Generator")
261
+ gr.Markdown(
262
+ "Generate high-quality images from text prompts using the TiM (Transition in Matching) model"
263
+ )
264
+
265
+ with gr.Row():
266
+ prompt = gr.Text(
267
+ label="Prompt",
268
+ show_label=False,
269
+ max_lines=1,
270
+ placeholder="Enter your prompt",
271
+ container=False,
272
+ )
273
+ run_button = gr.Button("Generate", scale=0)
274
+
275
+ result = gr.Image(label="Result", show_label=False)
276
+
277
+ with gr.Accordion("Advanced Settings", open=False):
278
+ seed = gr.Slider(
279
+ label="Seed",
280
+ minimum=0,
281
+ maximum=MAX_SEED,
282
+ step=1,
283
+ value=0,
284
+ )
285
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
286
+
287
+ with gr.Row():
288
+ width = gr.Slider(
289
+ label="Width",
290
+ minimum=256,
291
+ maximum=MAX_IMAGE_SIZE,
292
+ step=32,
293
+ value=1024,
294
+ )
295
+ height = gr.Slider(
296
+ label="Height",
297
+ minimum=256,
298
+ maximum=MAX_IMAGE_SIZE,
299
+ step=32,
300
+ value=1024,
301
+ )
302
+
303
+ with gr.Row():
304
+ guidance_scale = gr.Slider(
305
+ label="Guidance Scale",
306
+ minimum=1,
307
+ maximum=15,
308
+ step=0.1,
309
+ value=2.5,
310
+ )
311
+ num_inference_steps = gr.Slider(
312
+ label="Number of inference steps",
313
+ minimum=1,
314
+ maximum=50,
315
+ step=1,
316
+ value=16,
317
+ )
318
+
319
+ gr.Examples(
320
+ examples=examples,
321
+ fn=generate_image,
322
+ inputs=[prompt],
323
+ outputs=[result, seed],
324
+ cache_examples=True,
325
+ cache_mode="lazy",
326
+ )
327
+
328
+ gr.on(
329
+ triggers=[run_button.click, prompt.submit],
330
+ fn=generate_image,
331
+ inputs=[
332
+ prompt,
333
+ seed,
334
+ randomize_seed,
335
+ width,
336
+ height,
337
+ guidance_scale,
338
+ num_inference_steps,
339
+ ],
340
+ outputs=[result, seed],
341
+ )
342
+
343
+ if __name__ == "__main__":
344
+ demo.launch()
configs/c2i/tim_b_p4.yaml ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ transport:
3
+ target: tim.schedulers.transports.OT_FM
4
+ params:
5
+ P_mean: -0.4
6
+ P_std: 1.0
7
+ sigma_d: 1.0
8
+ transition_loss:
9
+ diffusion_ratio: 0.5
10
+ consistency_ratio: 0.1
11
+ derivative_type: dde
12
+ differential_epsilon: 0.005
13
+ weight_time_type: sqrt
14
+ weight_time_tangent: True
15
+ network:
16
+ target: tim.models.c2i.tim_model.TiM
17
+ params:
18
+ input_size: 32
19
+ patch_size: 4
20
+ in_channels: 4
21
+ class_dropout_prob: 0.1
22
+ num_classes: 1000
23
+ depth: 12
24
+ hidden_size: 768
25
+ num_heads: 12
26
+ encoder_depth: 4
27
+ qk_norm: True
28
+ z_dim: 768
29
+ new_condition: t-r
30
+ use_new_embed: True
31
+ distance_aware: True
32
+ lora_hidden_size: 256
33
+ # pretrained_vae:
34
+ vae_dir: stabilityai/sd-vae-ft-ema
35
+ # repa encoder
36
+ enc_dir: checkpoints/radio/radio-v2.5-b_half.pth.tar
37
+ proj_coeff: 1.0
38
+ # ema
39
+ use_ema: True
40
+ ema_decay: 0.9999
41
+
42
+ data:
43
+ data_type: latent
44
+ dataset:
45
+ latent_dir: datasets/imagenet1k/sd-vae-ft-ema-256x256
46
+ image_dir: datasets/imagenet1k/images/train
47
+ image_size: 256
48
+ dataloader:
49
+ num_workers: 16
50
+ batch_size: 256 # Batch size (per device) for the training dataloader.
51
+
52
+
53
+
54
+ training:
55
+ tracker: null
56
+ max_train_steps: 100000
57
+ checkpointing_steps: 2000
58
+ checkpoints_total_limit: 2
59
+ resume_from_checkpoint: latest
60
+ learning_rate: 1.0e-4
61
+ learning_rate_base_batch_size: 256
62
+ scale_lr: True
63
+ lr_scheduler: constant # "linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"]
64
+ lr_warmup_steps: 0
65
+ gradient_accumulation_steps: 1
66
+ optimizer:
67
+ target: torch.optim.AdamW
68
+ params:
69
+ # betas: ${tuple:0.9, 0.999}
70
+ betas: [0.9, 0.95]
71
+ weight_decay: 1.0e-2
72
+ eps: 1.0e-6
73
+ max_grad_norm: 1.0
74
+ proportion_empty_prompts: 0.0
75
+ mixed_precision: bf16 # ["no", "fp16", "bf16"]
76
+ allow_tf32: True
77
+ validation_steps: 500
78
+ checkpoint_list: [100000, 200000, 300000]
configs/c2i/tim_xl_p1_512.yaml ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ transport:
3
+ target: tim.schedulers.transports.OT_FM
4
+ params:
5
+ P_mean: -0.4
6
+ P_std: 1.0
7
+ sigma_d: 1.0
8
+ T_max: 1.0
9
+ T_min: 0.0
10
+ enhance_target: False
11
+ w_gt: 1.0
12
+ w_cond: 0.0
13
+ w_start: 0.0
14
+ w_end: 0.0
15
+ transition_loss:
16
+ diffusion_ratio: 0.5
17
+ consistency_ratio: 0.1
18
+ derivative_type: dde
19
+ differential_epsilon: 0.005
20
+ weight_time_type: sqrt
21
+ weight_time_tangent: True
22
+ network:
23
+ target: tim.models.c2i.tim_model.TiM
24
+ params:
25
+ input_size: 16
26
+ patch_size: 1
27
+ in_channels: 32
28
+ class_dropout_prob: 0.1
29
+ num_classes: 1000
30
+ depth: 28
31
+ hidden_size: 1152
32
+ num_heads: 16
33
+ encoder_depth: 8
34
+ qk_norm: True
35
+ z_dim: 768
36
+ new_condition: t-r
37
+ use_new_embed: True
38
+ distance_aware: True
39
+ lora_hidden_size: 384
40
+ # pretrained_vae:
41
+ vae_dir: mit-han-lab/dc-ae-f32c32-sana-1.1-diffusers
42
+ # repa encoder
43
+ enc_dir: checkpoints/radio/radio-v2.5-b_half.pth.tar
44
+ proj_coeff: 1.0
45
+ # ema
46
+ use_ema: True
47
+ ema_decay: 0.9999
48
+
49
+ data:
50
+ data_type: latent
51
+ dataset:
52
+ latent_dir: datasets/imagenet1k/dc-ae-f32c32-sana-1.1-diffusers-512x512
53
+ image_dir: datasets/imagenet1k/images/train
54
+ image_size: 512
55
+ dataloader:
56
+ num_workers: 4
57
+ batch_size: 64 # Batch size (per device) for the training dataloader.
58
+
59
+
60
+
61
+ training:
62
+ tracker: null
63
+ max_train_steps: 750000
64
+ checkpointing_steps: 2000
65
+ checkpoints_total_limit: 2
66
+ resume_from_checkpoint: latest
67
+ learning_rate: 1.0e-4
68
+ learning_rate_base_batch_size: 256
69
+ scale_lr: True
70
+ lr_scheduler: constant # "linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"]
71
+ lr_warmup_steps: 0
72
+ gradient_accumulation_steps: 1
73
+ optimizer:
74
+ target: torch.optim.AdamW
75
+ params:
76
+ # betas: ${tuple:0.9, 0.999}
77
+ betas: [0.9, 0.95]
78
+ weight_decay: 1.0e-2
79
+ eps: 1.0e-6
80
+ max_grad_norm: 1.0
81
+ proportion_empty_prompts: 0.0
82
+ mixed_precision: bf16 # ["no", "fp16", "bf16"]
83
+ allow_tf32: True
84
+ validation_steps: 500
85
+ checkpoint_list: [100000, 250000, 500000]
configs/c2i/tim_xl_p1_512_mg.yaml ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ transport:
3
+ target: tim.schedulers.transports.OT_FM
4
+ params:
5
+ P_mean: -0.4
6
+ P_std: 1.0
7
+ sigma_d: 1.0
8
+ T_max: 1.0
9
+ T_min: 0.0
10
+ enhance_target: True
11
+ w_gt: 1.0
12
+ w_cond: 0.75
13
+ w_start: 0.3
14
+ w_end: 0.8
15
+ transition_loss:
16
+ diffusion_ratio: 0.5
17
+ consistency_ratio: 0.1
18
+ derivative_type: dde
19
+ differential_epsilon: 0.005
20
+ weight_time_type: sqrt
21
+ weight_time_tangent: True
22
+ network:
23
+ target: tim.models.c2i.tim_model.TiM
24
+ params:
25
+ input_size: 16
26
+ patch_size: 1
27
+ in_channels: 32
28
+ class_dropout_prob: 0.1
29
+ num_classes: 1000
30
+ depth: 28
31
+ hidden_size: 1152
32
+ num_heads: 16
33
+ encoder_depth: 8
34
+ qk_norm: True
35
+ z_dim: 768
36
+ new_condition: t-r
37
+ use_new_embed: True
38
+ distance_aware: True
39
+ lora_hidden_size: 384
40
+ # pretrained_vae:
41
+ vae_dir: mit-han-lab/dc-ae-f32c32-sana-1.1-diffusers
42
+ # repa encoder
43
+ enc_dir: checkpoints/radio/radio-v2.5-b_half.pth.tar
44
+ proj_coeff: 1.0
45
+ # ema
46
+ use_ema: True
47
+ ema_decay: 0.9999
48
+
49
+ data:
50
+ data_type: latent
51
+ dataset:
52
+ latent_dir: datasets/imagenet1k/dc-ae-f32c32-sana-1.1-diffusers-512x512
53
+ image_dir: datasets/imagenet1k/images/train
54
+ image_size: 512
55
+ dataloader:
56
+ num_workers: 4
57
+ batch_size: 64 # Batch size (per device) for the training dataloader.
58
+
59
+
60
+
61
+ training:
62
+ tracker: null
63
+ max_train_steps: 750000
64
+ checkpointing_steps: 2000
65
+ checkpoints_total_limit: 2
66
+ resume_from_checkpoint: latest
67
+ learning_rate: 1.0e-4
68
+ learning_rate_base_batch_size: 256
69
+ scale_lr: True
70
+ lr_scheduler: constant # "linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"]
71
+ lr_warmup_steps: 0
72
+ gradient_accumulation_steps: 1
73
+ optimizer:
74
+ target: torch.optim.AdamW
75
+ params:
76
+ # betas: ${tuple:0.9, 0.999}
77
+ betas: [0.9, 0.95]
78
+ weight_decay: 1.0e-2
79
+ eps: 1.0e-6
80
+ max_grad_norm: 1.0
81
+ proportion_empty_prompts: 0.0
82
+ mixed_precision: bf16 # ["no", "fp16", "bf16"]
83
+ allow_tf32: True
84
+ validation_steps: 500
85
+ checkpoint_list: [100000, 250000, 500000]
configs/c2i/tim_xl_p2_256.yaml ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ transport:
3
+ target: tim.schedulers.transports.OT_FM
4
+ params:
5
+ P_mean: -0.4
6
+ P_std: 1.0
7
+ sigma_d: 1.0
8
+ T_max: 1.0
9
+ T_min: 0.0
10
+ enhance_target: False
11
+ w_gt: 1.0
12
+ w_cond: 0.0
13
+ w_start: 0.0
14
+ w_end: 0.0
15
+ transition_loss:
16
+ diffusion_ratio: 0.5
17
+ consistency_ratio: 0.1
18
+ derivative_type: dde
19
+ differential_epsilon: 0.005
20
+ weight_time_type: sqrt
21
+ weight_time_tangent: True
22
+ network:
23
+ target: tim.models.c2i.tim_model.TiM
24
+ params:
25
+ input_size: 32
26
+ patch_size: 2
27
+ in_channels: 4
28
+ class_dropout_prob: 0.1
29
+ num_classes: 1000
30
+ depth: 28
31
+ hidden_size: 1152
32
+ num_heads: 16
33
+ encoder_depth: 8
34
+ qk_norm: True
35
+ z_dim: 768
36
+ new_condition: t-r
37
+ use_new_embed: True
38
+ distance_aware: True
39
+ lora_hidden_size: 384
40
+ # pretrained_vae:
41
+ vae_dir: stabilityai/sd-vae-ft-ema
42
+ # repa encoder
43
+ enc_dir: checkpoints/radio/radio-v2.5-b_half.pth.tar
44
+ proj_coeff: 1.0
45
+ # ema
46
+ use_ema: True
47
+ ema_decay: 0.9999
48
+
49
+ data:
50
+ data_type: latent
51
+ dataset:
52
+ latent_dir: datasets/imagenet1k/sd-vae-ft-ema-256x256
53
+ image_dir: datasets/imagenet1k/images/train
54
+ image_size: 256
55
+ dataloader:
56
+ num_workers: 4
57
+ batch_size: 64 # Batch size (per device) for the training dataloader.
58
+
59
+
60
+
61
+ training:
62
+ tracker: null
63
+ max_train_steps: 750000
64
+ checkpointing_steps: 2000
65
+ checkpoints_total_limit: 2
66
+ resume_from_checkpoint: latest
67
+ learning_rate: 1.0e-4
68
+ learning_rate_base_batch_size: 256
69
+ scale_lr: True
70
+ lr_scheduler: constant # "linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"]
71
+ lr_warmup_steps: 0
72
+ gradient_accumulation_steps: 1
73
+ optimizer:
74
+ target: torch.optim.AdamW
75
+ params:
76
+ # betas: ${tuple:0.9, 0.999}
77
+ betas: [0.9, 0.95]
78
+ weight_decay: 1.0e-2
79
+ eps: 1.0e-6
80
+ max_grad_norm: 1.0
81
+ proportion_empty_prompts: 0.0
82
+ mixed_precision: bf16 # ["no", "fp16", "bf16"]
83
+ allow_tf32: True
84
+ validation_steps: 500
85
+ checkpoint_list: [100000, 250000, 500000]
configs/c2i/tim_xl_p2_256_mg.yaml ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ transport:
3
+ target: tim.schedulers.transports.OT_FM
4
+ params:
5
+ P_mean: -0.4
6
+ P_std: 1.0
7
+ sigma_d: 1.0
8
+ T_max: 1.0
9
+ T_min: 0.0
10
+ enhance_target: True
11
+ w_gt: 1.0
12
+ w_cond: 0.75
13
+ w_start: 0.3
14
+ w_end: 0.8
15
+ transition_loss:
16
+ diffusion_ratio: 0.5
17
+ consistency_ratio: 0.1
18
+ derivative_type: dde
19
+ differential_epsilon: 0.005
20
+ weight_time_type: sqrt
21
+ weight_time_tangent: True
22
+ network:
23
+ target: tim.models.c2i.tim_model.TiM
24
+ params:
25
+ input_size: 32
26
+ patch_size: 2
27
+ in_channels: 4
28
+ class_dropout_prob: 0.1
29
+ num_classes: 1000
30
+ depth: 28
31
+ hidden_size: 1152
32
+ num_heads: 16
33
+ encoder_depth: 8
34
+ qk_norm: True
35
+ z_dim: 768
36
+ new_condition: t-r
37
+ use_new_embed: True
38
+ distance_aware: True
39
+ lora_hidden_size: 384
40
+ # pretrained_vae:
41
+ vae_dir: stabilityai/sd-vae-ft-ema
42
+ # repa encoder
43
+ enc_dir: checkpoints/radio/radio-v2.5-b_half.pth.tar
44
+ proj_coeff: 1.0
45
+ # ema
46
+ use_ema: True
47
+ ema_decay: 0.9999
48
+
49
+ data:
50
+ data_type: latent
51
+ dataset:
52
+ latent_dir: datasets/imagenet1k/sd-vae-ft-ema-256x256
53
+ image_dir: datasets/imagenet1k/images/train
54
+ image_size: 256
55
+ dataloader:
56
+ num_workers: 4
57
+ batch_size: 64 # Batch size (per device) for the training dataloader.
58
+
59
+
60
+
61
+ training:
62
+ tracker: null
63
+ max_train_steps: 750000
64
+ checkpointing_steps: 2000
65
+ checkpoints_total_limit: 2
66
+ resume_from_checkpoint: latest
67
+ learning_rate: 1.0e-4
68
+ learning_rate_base_batch_size: 256
69
+ scale_lr: True
70
+ lr_scheduler: constant # "linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"]
71
+ lr_warmup_steps: 0
72
+ gradient_accumulation_steps: 1
73
+ optimizer:
74
+ target: torch.optim.AdamW
75
+ params:
76
+ # betas: ${tuple:0.9, 0.999}
77
+ betas: [0.9, 0.95]
78
+ weight_decay: 1.0e-2
79
+ eps: 1.0e-6
80
+ max_grad_norm: 1.0
81
+ proportion_empty_prompts: 0.0
82
+ mixed_precision: bf16 # ["no", "fp16", "bf16"]
83
+ allow_tf32: True
84
+ validation_steps: 500
85
+ checkpoint_list: [100000, 250000, 500000]
configs/t2i/tim_xl_p1_t2i.yaml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ transport:
3
+ target: tim.schedulers.transports.OT_FM
4
+ params:
5
+ P_mean: 0.0
6
+ P_std: 1.6
7
+ sigma_d: 1.0
8
+ transition_loss:
9
+ diffusion_ratio: 0.5
10
+ consistency_ratio: 0.1
11
+ derivative_type: dde
12
+ differential_epsilon: 0.005
13
+ weight_time_type: sqrt
14
+ weight_time_tangent: True
15
+ network:
16
+ target: tim.models.t2i.tim_model.TiM
17
+ params:
18
+ input_size: 16
19
+ patch_size: 1
20
+ in_channels: 32
21
+ depth: 28
22
+ hidden_size: 1152
23
+ cap_feat_dim: 1152
24
+ num_heads: 16
25
+ encoder_depth: 8
26
+ qk_norm: True
27
+ z_dim: 768
28
+ new_condition: t-r
29
+ use_new_embed: True
30
+ distance_aware: True
31
+ lora_hidden_size: 384
32
+ # pretrained_vae:
33
+ vae_dir: mit-han-lab/dc-ae-f32c32-sana-1.1-diffusers
34
+ # text encoder
35
+ text_encoder_dir: google/gemma-3-1b-it
36
+ proportion_empty_prompts: 0.1
37
+ use_last_hidden_state: True
38
+ max_seq_length: 256
39
+ # repa encoder
40
+ enc_dir: checkpoints/radio/radio-v2.5-b_half.pth.tar
41
+ proj_coeff: 1.0
42
+ # ema
43
+ use_ema: True
44
+ ema_decay: 0.9999
45
+
46
+ data:
47
+ data_type: image_ms
48
+ dataset:
49
+ root_dir: datasets/t2i_toy_dataset
50
+ packed_json: datasets/t2i_toy_dataset/bucket_sampler.json
51
+ jsonl_dir: datasets/t2i_toy_dataset/data_info.jsonl
52
+ dataloader:
53
+ num_workers: 4
54
+ batch_size: 128 # Batch size (per device) for the training dataloader.
55
+
56
+
57
+ training:
58
+ tracker: null
59
+ max_train_steps: 500000
60
+ checkpointing_steps: 1000
61
+ checkpoints_total_limit: 2
62
+ resume_from_checkpoint: latest
63
+ learning_rate: 1.0e-4
64
+ learning_rate_base_batch_size: 512
65
+ scale_lr: True
66
+ lr_scheduler: constant # "linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"]
67
+ lr_warmup_steps: 0
68
+ gradient_accumulation_steps: 1
69
+ optimizer:
70
+ target: torch.optim.AdamW
71
+ params:
72
+ # betas: ${tuple:0.9, 0.999}
73
+ betas: [0.9, 0.95]
74
+ weight_decay: 1.0e-2
75
+ eps: 1.0e-6
76
+ max_grad_norm: 1.0
77
+ proportion_empty_prompts: 0.0
78
+ mixed_precision: bf16 # ["no", "fp16", "bf16"]
79
+ allow_tf32: True
80
+ validation_steps: 500
81
+ checkpoint_list: [100000, 200000, 300000, 400000]
pyproject.toml ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [project]
2
+ name = "tim"
3
+ version = "0.1.0"
4
+ description = "Add your description here"
5
+ readme = "README.md"
6
+ requires-python = ">=3.10"
7
+ dependencies = [
8
+ "accelerate>=0.33.0",
9
+ "bitsandbytes>=0.47.0",
10
+ "diffusers==0.33.1",
11
+ "einops>=0.8.1",
12
+ "flash-attn>=2.8.3",
13
+ "gradio>=5.44.1",
14
+ "imageio==2.34.2",
15
+ "imageio-ffmpeg==0.5.1",
16
+ "kernels>=0.10.0",
17
+ "moviepy==1.0.3",
18
+ "numpy==1.26.0",
19
+ "omegaconf>=2.3.0",
20
+ "pillow==9.5.0",
21
+ "safetensors>=0.6.2",
22
+ "sentencepiece>=0.2.0",
23
+ "spaces>=0.40.1",
24
+ "streamlit>=1.38.0",
25
+ "timm>=1.0.19",
26
+ "torch>=2.8.0",
27
+ "torchdiffeq>=0.2.5",
28
+ "torchvision>=0.23.0",
29
+ "transformers>=4.44.2",
30
+ "triton>=3.4.0",
31
+ "wandb>=0.21.3",
32
+ ]
requirements.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ gradio>=4.0.0
2
+ spaces>=0.28.0
3
+ torch==2.8.0
4
+ torchvision
5
+ diffusers
6
+ transformers>=4.25.0
7
+ omegaconf
8
+ einops
9
+ numpy
10
+ Pillow
11
+ safetensors
12
+ tqdm
13
+ accelerate
14
+ kernels
15
+ timm
setup.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from setuptools import find_packages, setup
2
+
3
+ setup(
4
+ name="tim",
5
+ version="0.0.1",
6
+ description="",
7
+ packages=find_packages(),
8
+ install_requires=[
9
+ "torch",
10
+ "numpy",
11
+ ],
12
+ )
tim/data/c2i_data.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import datetime
4
+ import torchvision
5
+ import numpy as np
6
+ import torch
7
+
8
+ from omegaconf import OmegaConf
9
+ from PIL import Image
10
+ from torch.utils.data import DataLoader, Dataset
11
+ from torchvision.datasets import ImageFolder
12
+ from torchvision import transforms
13
+ from torchvision.transforms.functional import hflip
14
+ from accelerate.logging import get_logger
15
+ from safetensors.torch import load_file
16
+ from .sampler_utils import get_train_sampler
17
+
18
+
19
+ logger = get_logger(__name__, log_level="INFO")
20
+
21
+
22
+ def center_crop_arr(pil_image, image_size):
23
+ """
24
+ Center cropping implementation from ADM.
25
+ https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126
26
+ """
27
+ while min(*pil_image.size) >= 2 * image_size:
28
+ pil_image = pil_image.resize(
29
+ tuple(x // 2 for x in pil_image.size), resample=Image.Resampling.BOX
30
+ )
31
+
32
+ scale = image_size / min(*pil_image.size)
33
+ pil_image = pil_image.resize(
34
+ tuple(round(x * scale) for x in pil_image.size), resample=Image.Resampling.BICUBIC
35
+ )
36
+
37
+ arr = np.array(pil_image)
38
+ crop_y = (arr.shape[0] - image_size) // 2
39
+ crop_x = (arr.shape[1] - image_size) // 2
40
+ return Image.fromarray(arr[crop_y: crop_y + image_size, crop_x: crop_x + image_size])
41
+
42
+ class ImagenetDictWrapper(Dataset):
43
+ def __init__(self, dataset):
44
+ super().__init__()
45
+ self.dataset = dataset
46
+
47
+ def __getitem__(self, i):
48
+ x, y = self.dataset[i]
49
+ return {"image": x, "label": y}
50
+
51
+ def __len__(self):
52
+ return len(self.dataset)
53
+
54
+ class ImagenetLatentDataset(Dataset):
55
+ def __init__(self, latent_dir, image_dir, image_size):
56
+ super().__init__()
57
+ self.RandomHorizontalFlipProb = 0.5
58
+ self.transform = transforms.Compose([
59
+ transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, image_size)),
60
+ transforms.Lambda(lambda pil_image: (pil_image, hflip(pil_image))),
61
+ transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])), # returns a 4D tensor
62
+ transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
63
+ ])
64
+
65
+ self.dataset = []
66
+ for class_folder in os.listdir(image_dir):
67
+ if os.path.isfile(os.path.join(image_dir, class_folder)):
68
+ continue
69
+ latent_class_folder = os.path.join(latent_dir, class_folder)
70
+ image_class_folder = os.path.join(image_dir, class_folder)
71
+ for file in os.listdir(image_class_folder):
72
+ self.dataset.append(
73
+ dict(
74
+ latent=os.path.join(latent_class_folder, file.split('.')[0]+'.safetensors'),
75
+ image=os.path.join(image_class_folder, file)
76
+ )
77
+ )
78
+
79
+ def __len__(self):
80
+ return len(self.dataset)
81
+
82
+ def __getitem__(self, idx):
83
+ data_item = dict()
84
+ data = load_file(self.dataset[idx]['latent'])
85
+ image = self.transform(Image.open(self.dataset[idx]['image']).convert("RGB"))
86
+ if torch.rand(1) < self.RandomHorizontalFlipProb:
87
+ data_item['latent'] = data['latent'][0]
88
+ data_item['image'] = image[0]
89
+ else:
90
+ data_item['latent'] = data['latent'][1]
91
+ data_item['image'] = image[1]
92
+ data_item['label'] = data['label']
93
+ return data_item
94
+
95
+
96
+
97
+ class C2ILoader():
98
+ def __init__(self, data_config):
99
+ super().__init__()
100
+
101
+ self.batch_size = data_config.dataloader.batch_size
102
+ self.num_workers = data_config.dataloader.num_workers
103
+
104
+ self.data_type = data_config.data_type
105
+
106
+ if data_config.data_type == 'image':
107
+ self.train_dataset = ImagenetDictWrapper(**OmegaConf.to_container(data_config.dataset))
108
+ elif data_config.data_type == 'latent':
109
+ self.train_dataset = ImagenetLatentDataset(**OmegaConf.to_container(data_config.dataset))
110
+ else:
111
+ raise NotImplementedError
112
+
113
+
114
+ self.test_dataset = None
115
+ self.val_dataset = None
116
+
117
+ def train_len(self):
118
+ return len(self.train_dataset)
119
+
120
+ def train_dataloader(self, rank, world_size, global_batch_size, max_steps, resume_steps, seed):
121
+
122
+ sampler = get_train_sampler(
123
+ self.train_dataset, rank, world_size, global_batch_size, max_steps, resume_steps, seed
124
+ )
125
+ return DataLoader(
126
+ self.train_dataset,
127
+ batch_size=self.batch_size,
128
+ sampler=sampler,
129
+ num_workers=self.num_workers,
130
+ pin_memory=True,
131
+ drop_last=True,
132
+ prefetch_factor=2,
133
+ )
134
+
135
+ def test_dataloader(self):
136
+ return None
137
+
138
+ def val_dataloader(self):
139
+ return DataLoader(
140
+ self.train_dataset,
141
+ batch_size=self.batch_size,
142
+ shuffle=self.shuffle,
143
+ num_workers=self.num_workers,
144
+ pin_memory=True,
145
+ drop_last=True
146
+ )
147
+
148
+
149
+
150
+
tim/data/sampler_utils.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import json
3
+
4
+ # from https://github.com/Alpha-VLLM/LLaMA2-Accessory/blob/main/Large-DiT-ImageNet/train.py#L60
5
+ def get_train_sampler(dataset, rank, world_size, global_batch_size, max_steps,
6
+ resume_step, seed):
7
+ sample_indices = torch.empty([max_steps * global_batch_size // world_size],
8
+ dtype=torch.long)
9
+ epoch_id, fill_ptr, offs = 0, 0, 0
10
+ while fill_ptr < sample_indices.size(0):
11
+ g = torch.Generator()
12
+ g.manual_seed(seed + epoch_id)
13
+ epoch_sample_indices = torch.randperm(len(dataset), generator=g)
14
+ epoch_id += 1
15
+ epoch_sample_indices = epoch_sample_indices[
16
+ (rank + offs) % world_size::world_size
17
+ ]
18
+ offs = (offs + world_size - len(dataset) % world_size) % world_size
19
+ epoch_sample_indices = epoch_sample_indices[
20
+ :sample_indices.size(0) - fill_ptr
21
+ ]
22
+ sample_indices[fill_ptr: fill_ptr + epoch_sample_indices.size(0)] = \
23
+ epoch_sample_indices
24
+ fill_ptr += epoch_sample_indices.size(0)
25
+ return sample_indices[resume_step * global_batch_size // world_size:].tolist()
26
+
27
+
28
+
29
+
30
+ def get_packed_batch_sampler(
31
+ dataset, rank, world_size, max_steps, resume_step, seed
32
+ ):
33
+ sample_indices = [None for _ in range(max_steps)]
34
+ epoch_id, fill_ptr, offs = 0, 0, 0
35
+ while fill_ptr < len(sample_indices):
36
+ g = torch.Generator()
37
+ g.manual_seed(seed + epoch_id)
38
+ epoch_sample_indices = torch.randperm(len(dataset), generator=g)
39
+ epoch_id += 1
40
+ epoch_sample_indices = epoch_sample_indices[
41
+ (rank + offs) % world_size::world_size
42
+ ]
43
+ offs = (offs + world_size - len(dataset) % world_size) % world_size
44
+ epoch_sample_indices = epoch_sample_indices[
45
+ :len(sample_indices) - fill_ptr
46
+ ]
47
+ sample_indices[fill_ptr: fill_ptr + epoch_sample_indices.size(0)] = [
48
+ dataset[i] for i in epoch_sample_indices
49
+ ]
50
+ fill_ptr += epoch_sample_indices.size(0)
51
+ return sample_indices[resume_step:]
52
+
tim/data/t2i_data.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import csv
3
+ import json
4
+ import os
5
+ import random
6
+ import ast
7
+ import numpy as np
8
+ from omegaconf import OmegaConf
9
+ from torchvision import transforms
10
+ from torch.utils.data import DataLoader, Dataset
11
+ from PIL import Image
12
+ from tqdm import tqdm
13
+ from safetensors.torch import save_file, load_file
14
+ from .sampler_utils import get_train_sampler, get_packed_batch_sampler
15
+
16
+
17
+
18
+ def resize_arr(pil_image, height, width):
19
+ pil_image = pil_image.resize((width, height), resample=Image.Resampling.BICUBIC)
20
+
21
+ return pil_image
22
+
23
+
24
+ class T2IDatasetMS(Dataset):
25
+ def __init__(self, root_dir, packed_json, jsonl_dir) -> None:
26
+ super().__init__()
27
+ self.root_dir = root_dir
28
+ self.dataset = []
29
+ with open(packed_json, 'r') as fp:
30
+ self.packed_dataset = json.load(fp)
31
+
32
+ with open(jsonl_dir, 'r') as fp:
33
+ self.dataset = [json.loads(line) for line in fp]
34
+
35
+
36
+ def __len__(self):
37
+ return len(self.dataset)
38
+
39
+ def get_one_data(self, data_meta):
40
+ data_item = dict()
41
+ image_file = os.path.join(self.root_dir, data_meta['image_file'])
42
+
43
+ image = Image.open(image_file).convert("RGB")
44
+
45
+ bucket = data_meta['bucket']
46
+ resolutions = bucket.split('-')[-1].split('x')
47
+ height, width = int(int(resolutions[0])/32)*32, int(int(resolutions[1])/32)*32
48
+ transform = transforms.Compose([
49
+ transforms.Lambda(lambda pil_image: resize_arr(pil_image, height, width)),
50
+ transforms.ToTensor(),
51
+ transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True),
52
+ ])
53
+ image = transform(image)
54
+
55
+ data_item['image'] = image
56
+ data_item['caption'] = random.choice(data_meta['captions']).encode('unicode-escape').decode('utf-8')
57
+
58
+ return data_item
59
+
60
+ def __getitem__(self, index):
61
+ data_meta = self.dataset[index]
62
+ # data_item = self.get_one_data(data_meta)
63
+ try:
64
+ data_item = self.get_one_data(data_meta)
65
+ except:
66
+ print(f"Warning: {data_meta['image_file']} does not exist", flush=True)
67
+ data_item = None
68
+
69
+ return data_item
70
+
71
+
72
+
73
+ def bucket_collate_fn(batch):
74
+ caption = []
75
+ image = []
76
+ for data in batch:
77
+ if data == None:
78
+ continue
79
+ caption.append(data['caption'])
80
+ image.append(data['image'])
81
+ image = torch.stack(image)
82
+ return dict(image=image, caption=caption)
83
+
84
+
85
+
86
+
87
+ class T2ILoader():
88
+ def __init__(self, data_config):
89
+ super().__init__()
90
+
91
+ self.batch_size = data_config.dataloader.batch_size
92
+ self.num_workers = data_config.dataloader.num_workers
93
+
94
+ self.data_type = data_config.data_type
95
+
96
+ if self.data_type == 'image_ms':
97
+ self.train_dataset = T2IDatasetMS(**OmegaConf.to_container(data_config.dataset))
98
+ else:
99
+ raise
100
+ self.test_dataset = None
101
+ self.val_dataset = None
102
+
103
+ def train_len(self):
104
+ return len(self.train_dataset)
105
+
106
+ def train_dataloader(self, rank, world_size, global_batch_size, max_steps, resume_steps, seed):
107
+ batch_sampler = get_packed_batch_sampler(
108
+ self.train_dataset.packed_dataset, rank, world_size, max_steps, resume_steps, seed
109
+ )
110
+ return DataLoader(
111
+ self.train_dataset,
112
+ batch_sampler=batch_sampler,
113
+ collate_fn=bucket_collate_fn,
114
+ num_workers=self.num_workers,
115
+ pin_memory=True,
116
+ )
117
+
118
+ def test_dataloader(self):
119
+ return None
120
+
121
+ def val_dataloader(self):
122
+ return None
123
+
124
+
125
+
126
+
tim/models/c2i/tim_model.py ADDED
@@ -0,0 +1,458 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This source code is licensed under the license found in the
2
+ # LICENSE file in the root directory of this source tree.
3
+ # --------------------------------------------------------
4
+ # References:
5
+ # GLIDE: https://github.com/openai/glide-text2im
6
+ # MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
7
+ # --------------------------------------------------------
8
+
9
+ import torch
10
+ import torch.nn as nn
11
+ import torch.nn.functional as F
12
+ import math
13
+ from timm.layers.mlp import SwiGLU
14
+ from timm.models.vision_transformer import PatchEmbed, Attention
15
+ from tim.models.utils.funcs import build_mlp, modulate, get_parameter_dtype
16
+ from tim.models.utils.rope import VisionRotaryEmbedding, rotate_half
17
+
18
+
19
+ #################################################################################
20
+ # Embedding Layers for Timesteps and Class Labels #
21
+ #################################################################################
22
+ class TimestepEmbedder(nn.Module):
23
+ """
24
+ Embeds scalar timesteps into vector representations.
25
+ """
26
+
27
+ def __init__(self, hidden_size, frequency_embedding_size=256):
28
+ super().__init__()
29
+ self.mlp = nn.Sequential(
30
+ nn.Linear(frequency_embedding_size, hidden_size, bias=True),
31
+ nn.SiLU(),
32
+ nn.Linear(hidden_size, hidden_size, bias=True),
33
+ )
34
+ self.frequency_embedding_size = frequency_embedding_size
35
+
36
+ @staticmethod
37
+ def positional_embedding(t, dim, max_period=10000):
38
+ """
39
+ Create sinusoidal timestep embeddings.
40
+ :param t: a 1-D Tensor of N indices, one per batch element.
41
+ These may be fractional.
42
+ :param dim: the dimension of the output.
43
+ :param max_period: controls the minimum frequency of the embeddings.
44
+ :return: an (N, D) Tensor of positional embeddings.
45
+ """
46
+ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
47
+ half = dim // 2
48
+ freqs = torch.exp(
49
+ -math.log(max_period)
50
+ * torch.arange(start=0, end=half, dtype=torch.float32)
51
+ / half
52
+ ).to(device=t.device)
53
+ args = t[:, None].float() * freqs[None]
54
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
55
+ if dim % 2:
56
+ embedding = torch.cat(
57
+ [embedding, torch.zeros_like(embedding[:, :1])], dim=-1
58
+ )
59
+ return embedding
60
+
61
+ def forward(self, t):
62
+ self.timestep_embedding = self.positional_embedding
63
+ t_freq = self.timestep_embedding(t, dim=self.frequency_embedding_size).to(
64
+ t.dtype
65
+ )
66
+ t_emb = self.mlp(t_freq)
67
+ return t_emb
68
+
69
+
70
+ class LabelEmbedder(nn.Module):
71
+ """
72
+ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
73
+ """
74
+
75
+ def __init__(self, num_classes, hidden_size, dropout_prob):
76
+ super().__init__()
77
+ use_cfg_embedding = dropout_prob > 0
78
+ self.embedding_table = nn.Embedding(
79
+ num_classes + use_cfg_embedding, hidden_size
80
+ )
81
+ self.num_classes = num_classes
82
+ self.dropout_prob = dropout_prob
83
+
84
+ def forward(self, labels):
85
+ embeddings = self.embedding_table(labels)
86
+ return embeddings
87
+
88
+
89
+ #################################################################################
90
+ # Attention Block #
91
+ #################################################################################
92
+
93
+
94
+ class Attention(nn.Module):
95
+ def __init__(
96
+ self,
97
+ dim: int,
98
+ num_heads: int = 8,
99
+ qkv_bias: bool = False,
100
+ qk_norm: bool = False,
101
+ attn_drop: float = 0.0,
102
+ proj_drop: float = 0.0,
103
+ norm_layer: nn.Module = nn.LayerNorm,
104
+ distance_aware: bool = False,
105
+ ) -> None:
106
+ super().__init__()
107
+ assert dim % num_heads == 0, "dim should be divisible by num_heads"
108
+ self.num_heads = num_heads
109
+ self.head_dim = dim // num_heads
110
+ self.scale = self.head_dim**-0.5
111
+
112
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
113
+ self.distance_aware = distance_aware
114
+ if distance_aware:
115
+ self.qkv_d = nn.Linear(dim, dim * 3, bias=False)
116
+ self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
117
+ self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
118
+ self.attn_drop = nn.Dropout(attn_drop)
119
+ self.proj = nn.Linear(dim, dim)
120
+ self.proj_drop = nn.Dropout(proj_drop)
121
+
122
+ def forward(
123
+ self,
124
+ x: torch.Tensor,
125
+ freqs_cos,
126
+ freqs_sin,
127
+ attn_type="fused_attn",
128
+ delta_t=None,
129
+ ) -> torch.Tensor:
130
+ B, N, C = x.shape
131
+ if self.distance_aware:
132
+ qkv = self.qkv(x) + self.qkv_d(delta_t)
133
+ else:
134
+ qkv = self.qkv(x)
135
+ if attn_type == "flash_attn": # q, k, v: (B, N, n_head, d_head)
136
+ qkv = qkv.reshape(B, N, 3, self.num_heads, self.head_dim).permute(
137
+ 2, 0, 1, 3, 4
138
+ )
139
+ else: # q, k, v: (B, n_head, N, d_head)
140
+ qkv = qkv.reshape(B, N, 3, self.num_heads, self.head_dim).permute(
141
+ 2, 0, 3, 1, 4
142
+ )
143
+ ori_dtype = qkv.dtype
144
+ q, k, v = qkv.unbind(0)
145
+ q, k = self.q_norm(q), self.k_norm(k)
146
+
147
+ q = q * freqs_cos + rotate_half(q) * freqs_sin
148
+ k = k * freqs_cos + rotate_half(k) * freqs_sin
149
+ q, k = q.to(ori_dtype), k.to(ori_dtype)
150
+
151
+ if attn_type == "flash_attn":
152
+ from flash_attn import flash_attn_func
153
+
154
+ x = flash_attn_func(
155
+ q,
156
+ k,
157
+ v,
158
+ dropout_p=self.attn_drop.p if self.training else 0.0,
159
+ )
160
+ x = x.reshape(B, N, C)
161
+ elif attn_type == "fused_attn":
162
+ x = F.scaled_dot_product_attention(
163
+ q,
164
+ k,
165
+ v,
166
+ dropout_p=self.attn_drop.p if self.training else 0.0,
167
+ )
168
+ x = x.transpose(1, 2).reshape(B, N, C)
169
+ else:
170
+ q = q * self.scale
171
+ attn = q @ k.transpose(-2, -1)
172
+ attn = attn.softmax(dim=-1)
173
+ attn = self.attn_drop(attn)
174
+ x = attn @ v
175
+ x = x.transpose(1, 2).reshape(B, N, C)
176
+
177
+ x = self.proj(x)
178
+ x = self.proj_drop(x)
179
+ return x
180
+
181
+
182
+ #################################################################################
183
+ # Core TiM Model #
184
+ #################################################################################
185
+
186
+
187
+ class TiMBlock(nn.Module):
188
+ """
189
+ A TiM block with adaptive layer norm zero (adaLN-Zero) conditioning.
190
+ """
191
+
192
+ def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs):
193
+ super().__init__()
194
+ self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
195
+ distance_aware = block_kwargs.get("distance_aware", False)
196
+ self.attn = Attention(
197
+ hidden_size,
198
+ num_heads=num_heads,
199
+ qkv_bias=True,
200
+ qk_norm=block_kwargs["qk_norm"],
201
+ distance_aware=distance_aware,
202
+ )
203
+ self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
204
+ mlp_hidden_dim = int(hidden_size * mlp_ratio)
205
+ self.mlp = SwiGLU(
206
+ in_features=hidden_size,
207
+ hidden_features=(mlp_hidden_dim * 2) // 3,
208
+ bias=True,
209
+ )
210
+ if block_kwargs.get("lora_hidden_size", None) != None:
211
+ lora_hidden_size = block_kwargs["lora_hidden_size"]
212
+ else:
213
+ lora_hidden_size = (hidden_size // 4) * 3
214
+ self.adaLN_modulation = SwiGLU(
215
+ in_features=hidden_size,
216
+ hidden_features=lora_hidden_size,
217
+ out_features=6 * hidden_size,
218
+ bias=True,
219
+ )
220
+
221
+ def forward(self, x, c, freqs_cos, freqs_sin, attn_type, delta_t=None):
222
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
223
+ self.adaLN_modulation(c).chunk(6, dim=-1)
224
+ )
225
+ x = x + gate_msa * self.attn(
226
+ modulate(self.norm1(x), shift_msa, scale_msa),
227
+ freqs_cos,
228
+ freqs_sin,
229
+ attn_type,
230
+ delta_t,
231
+ )
232
+ x = x + gate_mlp * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
233
+
234
+ return x
235
+
236
+
237
+ class FinalLayer(nn.Module):
238
+ """
239
+ The final layer of TiM.
240
+ """
241
+
242
+ def __init__(self, hidden_size, patch_size, out_channels):
243
+ super().__init__()
244
+ self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
245
+ self.linear = nn.Linear(
246
+ hidden_size, patch_size * patch_size * out_channels, bias=True
247
+ )
248
+ self.adaLN_modulation = SwiGLU(
249
+ in_features=hidden_size,
250
+ hidden_features=hidden_size // 2,
251
+ out_features=2 * hidden_size,
252
+ bias=True,
253
+ )
254
+
255
+ def forward(self, x, c):
256
+ shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1)
257
+ x = modulate(self.norm_final(x), shift, scale)
258
+ x = self.linear(x)
259
+
260
+ return x
261
+
262
+
263
+ class TiM(nn.Module):
264
+ def __init__(
265
+ self,
266
+ input_size=32,
267
+ patch_size=2,
268
+ in_channels=4,
269
+ hidden_size=1152,
270
+ encoder_depth=8,
271
+ depth=28,
272
+ num_heads=16,
273
+ mlp_ratio=4.0,
274
+ class_dropout_prob=0.1,
275
+ num_classes=1000,
276
+ z_dim=768,
277
+ projector_dim=2048,
278
+ use_checkpoint: bool = False,
279
+ new_condition: str = "t-r",
280
+ use_new_embed: bool = False,
281
+ **block_kwargs, # qk_norm
282
+ ):
283
+ super().__init__()
284
+ self.in_channels = in_channels
285
+ self.out_channels = in_channels
286
+ self.patch_size = patch_size
287
+ self.num_heads = num_heads
288
+ self.num_classes = num_classes
289
+ self.encoder_depth = encoder_depth
290
+ self.use_checkpoint = use_checkpoint
291
+ self.new_condition = new_condition
292
+ self.use_new_embed = use_new_embed
293
+
294
+ self.x_embedder = PatchEmbed(
295
+ input_size,
296
+ patch_size,
297
+ in_channels,
298
+ hidden_size,
299
+ bias=True,
300
+ strict_img_size=False,
301
+ )
302
+ self.t_embedder = TimestepEmbedder(hidden_size) # timestep embedding type
303
+ if use_new_embed:
304
+ self.delta_embedder = TimestepEmbedder(hidden_size)
305
+ self.y_embedder = LabelEmbedder(num_classes, hidden_size, class_dropout_prob)
306
+ # Will use fixed sin-cos embedding:
307
+ self.rope = VisionRotaryEmbedding(head_dim=hidden_size // num_heads)
308
+
309
+ self.blocks = nn.ModuleList(
310
+ [
311
+ TiMBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, **block_kwargs)
312
+ for _ in range(depth)
313
+ ]
314
+ )
315
+ self.projector = build_mlp(hidden_size, projector_dim, z_dim)
316
+ self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels)
317
+ self.initialize_weights()
318
+
319
+ def initialize_weights(self):
320
+ # Initialize transformer layers:
321
+ def _basic_init(module):
322
+ if isinstance(module, nn.Linear):
323
+ torch.nn.init.xavier_uniform_(module.weight)
324
+ if module.bias is not None:
325
+ nn.init.constant_(module.bias, 0)
326
+
327
+ self.apply(_basic_init)
328
+
329
+ # Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
330
+ w = self.x_embedder.proj.weight.data
331
+ nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
332
+ nn.init.constant_(self.x_embedder.proj.bias, 0)
333
+
334
+ # Initialize label embedding table:
335
+ nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02)
336
+
337
+ # Initialize timestep embedding MLP:
338
+ nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
339
+ nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
340
+
341
+ # Zero-out adaLN modulation layers in TiM blocks:
342
+ for block in self.blocks:
343
+ nn.init.constant_(block.adaLN_modulation.fc2.weight, 0)
344
+ nn.init.constant_(block.adaLN_modulation.fc2.bias, 0)
345
+
346
+ # Zero-out output layers:
347
+ nn.init.constant_(self.final_layer.adaLN_modulation.fc2.weight, 0)
348
+ nn.init.constant_(self.final_layer.adaLN_modulation.fc2.bias, 0)
349
+
350
+ nn.init.constant_(self.final_layer.linear.weight, 0)
351
+ nn.init.constant_(self.final_layer.linear.bias, 0)
352
+
353
+ def unpatchify(self, x, H, W):
354
+ """
355
+ x: (N, T, patch_size**2 * C)
356
+ imgs: (N, H, W, C)
357
+ """
358
+ c = self.out_channels
359
+ p = self.patch_size
360
+ h, w = int(H / p), int(W / p)
361
+
362
+ x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
363
+ x = torch.einsum("nhwpqc->nchpwq", x)
364
+ imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
365
+ return imgs
366
+
367
+ def get_rope(self, h, w, attn_type):
368
+ grid_h = torch.arange(h)
369
+ grid_w = torch.arange(w)
370
+ grid = torch.meshgrid(grid_h, grid_w, indexing="xy")
371
+ grid = torch.stack(grid, dim=0).reshape(2, -1).unsqueeze(0)
372
+ freqs_cos, freqs_sin = self.rope.get_cached_2d_rope_from_grid(grid)
373
+ if attn_type == "flash_attn": # (1, N, 1, d_head)
374
+ return freqs_cos.unsqueeze(2), freqs_sin.unsqueeze(2)
375
+ else: # (1, 1, N, d_head)
376
+ return freqs_cos.unsqueeze(1), freqs_sin.unsqueeze(1)
377
+
378
+ def forward(self, x, t, r, y, attn_type="fused_attn", return_zs=False, jvp=False):
379
+ """
380
+ Forward pass of TiM.
381
+ x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
382
+ t: (N,) tensor of diffusion timesteps
383
+ y: (N,) tensor of class labels
384
+ """
385
+ B, C, H, W = x.shape
386
+ x = self.x_embedder(x) # (N, T, D), where T = H * W / patch_size ** 2
387
+
388
+ # timestep and class embedding
389
+ t_embed = self.t_embedder(t).unsqueeze(1) # (N, 1, D)
390
+ delta_embed = self.get_delta_embed(t, r).unsqueeze(1) # (N, 1, D)
391
+ y = self.y_embedder(y).unsqueeze(1) # (N, 1, D)
392
+ c = t_embed + delta_embed + y # (N, 1, D)
393
+ freqs_cos, freqs_sin = self.get_rope(
394
+ int(H / self.patch_size), int(W / self.patch_size), attn_type
395
+ )
396
+
397
+ for i, block in enumerate(self.blocks):
398
+ if (not self.use_checkpoint) or jvp:
399
+ x = block(
400
+ x, c, freqs_cos, freqs_sin, attn_type, delta_embed
401
+ ) # (N, T, D)
402
+ else:
403
+ x = torch.utils.checkpoint.checkpoint(
404
+ self.ckpt_wrapper(block),
405
+ x,
406
+ c,
407
+ freqs_cos,
408
+ freqs_sin,
409
+ attn_type,
410
+ delta_embed,
411
+ )
412
+ if (i + 1) == self.encoder_depth:
413
+ h_proj = self.projector(x)
414
+
415
+ x = self.final_layer(x, c) # (N, T, patch_size ** 2 * out_channels)
416
+ x = self.unpatchify(x, H, W) # (N, out_channels, H, W)
417
+
418
+ if return_zs:
419
+ return x, h_proj
420
+ else:
421
+ return x
422
+
423
+ def get_delta_embed(self, t, r):
424
+ if self.use_new_embed:
425
+ delta_embedder = self.delta_embedder
426
+ else:
427
+ delta_embedder = self.t_embedder
428
+ if self.new_condition == "t-r":
429
+ delta_embed = delta_embedder(t - r)
430
+ elif self.new_condition == "r":
431
+ delta_embed = delta_embedder(r)
432
+ elif self.new_condition == "t,r":
433
+ delta_embed = self.t_embedder(t) + delta_embedder(r)
434
+ elif self.new_condition == "t,t-r":
435
+ delta_embed = self.t_embedder(t) + delta_embedder(t - r)
436
+ elif self.new_condition == "r,t-r":
437
+ delta_embed = self.t_embedder(r) + delta_embedder(t - r)
438
+ elif self.new_condition == "t,r,t-r":
439
+ delta_embed = (
440
+ self.t_embedder(t) + self.t_embedder(r) + delta_embedder(t - r)
441
+ )
442
+ else:
443
+ raise NotImplementedError
444
+ return delta_embed
445
+
446
+ def ckpt_wrapper(self, module):
447
+ def ckpt_forward(*inputs):
448
+ outputs = module(*inputs)
449
+ return outputs
450
+
451
+ return ckpt_forward
452
+
453
+ @property
454
+ def dtype(self) -> torch.dtype:
455
+ """
456
+ `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
457
+ """
458
+ return get_parameter_dtype(self)
tim/models/nvidia_radio/hubconf.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ dependencies = ["torch", "timm", "einops"]
10
+
11
+ import os
12
+ from typing import Dict, Any, Optional, Union, List
13
+ import warnings
14
+
15
+ import torch
16
+ from torch.hub import load_state_dict_from_url
17
+
18
+ from timm.models import clean_state_dict
19
+
20
+ from .radio.adaptor_registry import adaptor_registry
21
+ from .radio.common import DEFAULT_VERSION, RadioResource, RESOURCE_MAP
22
+ from .radio.enable_damp import configure_damp_from_args
23
+ from .radio.enable_spectral_reparam import disable_spectral_reparam, configure_spectral_reparam_from_args
24
+ from .radio.feature_normalizer import FeatureNormalizer, IntermediateFeatureNormalizer
25
+ from .radio.radio_model import RADIOModel, create_model_from_args
26
+ from .radio.input_conditioner import get_default_conditioner
27
+ from .radio.vitdet import apply_vitdet_arch, VitDetArgs
28
+
29
+
30
+ def radio_model(
31
+ version: str = "",
32
+ progress: bool = True,
33
+ adaptor_names: Union[str, List[str]] = None,
34
+ vitdet_window_size: Optional[int] = None,
35
+ return_checkpoint: bool = False,
36
+ support_packing: bool=False,
37
+ **kwargs,
38
+ ) -> RADIOModel:
39
+ if not version:
40
+ version = DEFAULT_VERSION
41
+
42
+ if os.path.isfile(version):
43
+ chk = torch.load(version, map_location="cpu", weights_only=False)
44
+ resource = RadioResource(version, patch_size=None, max_resolution=None, preferred_resolution=None)
45
+ else:
46
+ resource = RESOURCE_MAP[version]
47
+ chk = load_state_dict_from_url(
48
+ resource.url, progress=progress, map_location="cpu", weights_only=False,
49
+ )
50
+
51
+ if "state_dict_ema" in chk:
52
+ state_dict = chk["state_dict_ema"]
53
+ chk['args'].spectral_reparam = False
54
+ else:
55
+ state_dict = chk["state_dict"]
56
+
57
+ args = chk["args"]
58
+ args.support_packing = support_packing
59
+ mod = create_model_from_args(args)
60
+
61
+ mod_state_dict = get_prefix_state_dict(state_dict, "base_model.")
62
+
63
+ if args.spectral_reparam:
64
+ configure_spectral_reparam_from_args(mod, args, state_dict_guidance=mod_state_dict)
65
+
66
+ if getattr(args, 'damp', None):
67
+ configure_damp_from_args(mod, args)
68
+
69
+ state_dict = clean_state_dict(state_dict)
70
+
71
+ key_warn = mod.load_state_dict(mod_state_dict, strict=False)
72
+ if key_warn.missing_keys:
73
+ warnings.warn(f'Missing keys in state dict: {key_warn.missing_keys}')
74
+ if key_warn.unexpected_keys:
75
+ warnings.warn(f'Unexpected keys in state dict: {key_warn.unexpected_keys}')
76
+
77
+ if chk['args'].spectral_reparam:
78
+ # Spectral reparametrization uses PyTorch's "parametrizations" API. The idea behind
79
+ # the method is that instead of there being a `weight` tensor for certain Linear layers
80
+ # in the model, we make it a dynamically computed function. During training, this
81
+ # helps stabilize the model. However, for downstream use cases, it shouldn't be necessary.
82
+ # Disabling it in this context means that instead of having `w' = f(w)`, we just compute `w' = f(w)`
83
+ # once, during this function call, and replace the parametrization with the realized weights.
84
+ # This makes the model run faster, and also use less memory.
85
+ disable_spectral_reparam(mod)
86
+ chk['args'].spectral_reparam = False
87
+
88
+ conditioner = get_default_conditioner()
89
+ conditioner.load_state_dict(get_prefix_state_dict(state_dict, "input_conditioner."))
90
+
91
+ dtype = getattr(chk['args'], 'dtype', torch.float32)
92
+ mod.to(dtype=dtype)
93
+ conditioner.dtype = dtype
94
+
95
+ cls_token_per_teacher = getattr(chk['args'], 'cls_token_per_teacher', True)
96
+ if cls_token_per_teacher:
97
+ name_to_idx_map = dict()
98
+ for i, t in enumerate(chk['args'].teachers):
99
+ if t.get('use_summary', True):
100
+ name = t['name']
101
+ if name not in name_to_idx_map:
102
+ name_to_idx_map[name] = i
103
+ summary_idxs = torch.tensor(sorted(name_to_idx_map.values()), dtype=torch.int64)
104
+ else:
105
+ summary_idxs = torch.tensor([0], dtype=torch.int64)
106
+
107
+ if adaptor_names is None:
108
+ adaptor_names = []
109
+ elif isinstance(adaptor_names, str):
110
+ adaptor_names = [adaptor_names]
111
+
112
+ teachers = chk["args"].teachers
113
+ adaptors = dict()
114
+ for adaptor_name in adaptor_names:
115
+ for tidx, tconf in enumerate(teachers):
116
+ if tconf["name"] == adaptor_name:
117
+ break
118
+ else:
119
+ raise ValueError(f'Unable to find the specified adaptor name. Known names: {list(t["name"] for t in teachers)}')
120
+
121
+ ttype = tconf["type"]
122
+
123
+ pf_idx_head = f'_heads.{tidx}'
124
+ pf_name_head = f'_heads.{adaptor_name}'
125
+ pf_idx_feat = f'_feature_projections.{tidx}'
126
+ pf_name_feat = f'_feature_projections.{adaptor_name}'
127
+
128
+ adaptor_state = dict()
129
+ for k, v in state_dict.items():
130
+ if k.startswith(pf_idx_head):
131
+ adaptor_state['summary' + k[len(pf_idx_head):]] = v
132
+ elif k.startswith(pf_name_head):
133
+ adaptor_state['summary' + k[len(pf_name_head):]] = v
134
+ elif k.startswith(pf_idx_feat):
135
+ adaptor_state['feature' + k[len(pf_idx_feat):]] = v
136
+ elif k.startswith(pf_name_feat):
137
+ adaptor_state['feature' + k[len(pf_name_feat):]] = v
138
+
139
+ adaptor = adaptor_registry.create_adaptor(ttype, chk["args"], tconf, adaptor_state)
140
+ adaptor.head_idx = tidx if cls_token_per_teacher else 0
141
+ adaptors[adaptor_name] = adaptor
142
+
143
+ feat_norm_sd = get_prefix_state_dict(state_dict, '_feature_normalizer.')
144
+ feature_normalizer = None
145
+ if feat_norm_sd:
146
+ feature_normalizer = FeatureNormalizer(feat_norm_sd['mean'].shape[0], dtype=dtype)
147
+ feature_normalizer.load_state_dict(feat_norm_sd)
148
+
149
+ inter_feat_norm_sd = get_prefix_state_dict(state_dict, '_intermediate_feature_normalizer.')
150
+ inter_feature_normalizer = None
151
+ if inter_feat_norm_sd:
152
+ inter_feature_normalizer = IntermediateFeatureNormalizer(
153
+ *inter_feat_norm_sd['means'].shape[:2],
154
+ rot_per_layer=inter_feat_norm_sd['rotation'].ndim == 3,
155
+ dtype=dtype
156
+ )
157
+ inter_feature_normalizer.load_state_dict(inter_feat_norm_sd)
158
+
159
+ radio = RADIOModel(
160
+ mod,
161
+ conditioner,
162
+ summary_idxs=summary_idxs,
163
+ patch_size=resource.patch_size,
164
+ max_resolution=resource.max_resolution,
165
+ window_size=vitdet_window_size,
166
+ preferred_resolution=resource.preferred_resolution,
167
+ adaptors=adaptors,
168
+ feature_normalizer=feature_normalizer,
169
+ inter_feature_normalizer=inter_feature_normalizer,
170
+ )
171
+
172
+ if vitdet_window_size is not None:
173
+ apply_vitdet_arch(
174
+ mod,
175
+ VitDetArgs(
176
+ vitdet_window_size,
177
+ radio.num_summary_tokens,
178
+ num_windowed=resource.vitdet_num_windowed,
179
+ num_global=resource.vitdet_num_global,
180
+ ),
181
+ )
182
+
183
+ if return_checkpoint:
184
+ return radio, chk
185
+ return radio
186
+
187
+
188
+ def get_prefix_state_dict(state_dict: Dict[str, Any], prefix: str):
189
+ mod_state_dict = {
190
+ k[len(prefix) :]: v for k, v in state_dict.items() if k.startswith(prefix)
191
+ }
192
+ return mod_state_dict
tim/models/nvidia_radio/radio/__init__.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ # Register the adaptors
10
+ from .adaptor_registry import adaptor_registry
11
+ from . import open_clip_adaptor
12
+ from .adaptor_base import AdaptorInput, RadioOutput, AdaptorBase
13
+
14
+ # Enable support for other model types via the timm register_model mechanism
15
+ from . import extra_timm_models
16
+ from . import extra_models
17
+ from . import vision_transformer_xpos
tim/models/nvidia_radio/radio/adaptor_base.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+ from argparse import Namespace
9
+ from typing import NamedTuple, Optional
10
+
11
+ import torch
12
+ from torch import nn
13
+ import torch.nn.functional as F
14
+
15
+
16
+ class AdaptorInput(NamedTuple):
17
+ images: torch.Tensor
18
+ summary: torch.Tensor
19
+ features: torch.Tensor
20
+ feature_fmt: str
21
+ patch_size: int
22
+
23
+
24
+ class RadioOutput(NamedTuple):
25
+ summary: torch.Tensor
26
+ features: torch.Tensor
27
+
28
+ def to(self, *args, **kwargs):
29
+ return RadioOutput(
30
+ self.summary.to(*args, **kwargs) if self.summary is not None else None,
31
+ self.features.to(*args, **kwargs) if self.features is not None else None,
32
+ )
33
+
34
+
35
+ class AdaptorBase(nn.Module):
36
+ def forward(self, input: AdaptorInput) -> RadioOutput:
37
+ raise NotImplementedError("Subclasses must implement this!")
tim/models/nvidia_radio/radio/adaptor_generic.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+ from argparse import Namespace
9
+
10
+ import torch
11
+ from torch import nn
12
+ import torch.nn.functional as F
13
+
14
+ from .adaptor_base import AdaptorBase, AdaptorInput, RadioOutput
15
+ from .adaptor_mlp import create_mlp_from_state, create_mlp_from_config
16
+
17
+
18
+ class GenericAdaptor(AdaptorBase):
19
+ def __init__(self, main_config: Namespace, adaptor_config, state, mlp_config=None):
20
+ super().__init__()
21
+
22
+ extra_args = dict()
23
+ ups = None
24
+ ups_rank = None
25
+ if adaptor_config is not None:
26
+ ups = adaptor_config.get('fd_upsample_factor', None)
27
+ ups_rank = adaptor_config.get('fd_upsample_rank', None)
28
+ elif mlp_config is not None:
29
+ ups = mlp_config["feature"].get('upsample_factor', None)
30
+ ups_rank = mlp_config["feature"].get('upsample_rank', None)
31
+ if ups is not None:
32
+ extra_args['upsample_factor'] = ups
33
+ extra_args['upsample_rank'] = ups_rank
34
+
35
+ if state is not None:
36
+ spectral_heads = getattr(main_config, 'spectral_heads', False)
37
+ self.head_mlp = create_mlp_from_state(main_config.mlp_version, state, 'summary.', spectral_weights=spectral_heads)
38
+ self.feat_mlp = create_mlp_from_state(main_config.mlp_version, state, 'feature.', spectral_weights=spectral_heads, **extra_args)
39
+ else:
40
+ assert mlp_config is not None, "Config must not be None if state is None"
41
+
42
+ self.head_mlp = create_mlp_from_config(
43
+ main_config.mlp_version,
44
+ mlp_config["summary"]["input_dim"],
45
+ mlp_config["summary"]["hidden_dim"],
46
+ mlp_config["summary"]["output_dim"],
47
+ mlp_config["summary"]["num_inner"],
48
+ )
49
+ self.feat_mlp = create_mlp_from_config(
50
+ main_config.mlp_version,
51
+ mlp_config["feature"]["input_dim"],
52
+ mlp_config["feature"]["hidden_dim"],
53
+ mlp_config["feature"]["output_dim"],
54
+ mlp_config["feature"]["num_inner"],
55
+ **extra_args
56
+ )
57
+
58
+ def forward(self, input: AdaptorInput) -> RadioOutput:
59
+ # Convert input'd type to the type of the first parameter of the adaptor.
60
+ first_param = next(self.parameters())
61
+ summary = self.head_mlp(input.summary.to(dtype=first_param.dtype)).to(dtype=input.summary.dtype)
62
+ feat = self.feat_mlp(input.features.to(dtype=first_param.dtype), images=input.images, patch_size=input.patch_size).to(dtype=input.features.dtype)
63
+
64
+ if input.feature_fmt == 'NCHW':
65
+ feat = (feat.reshape(feat.shape[0], input.images.shape[-2] // input.patch_size * self.feat_mlp.upsample_factor, input.images.shape[-1] // input.patch_size * self.feat_mlp.upsample_factor, feat.shape[2])
66
+ .permute(0, 3, 1, 2)
67
+ )
68
+
69
+ return RadioOutput(summary, feat)
tim/models/nvidia_radio/radio/adaptor_mlp.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+ import math
9
+ from typing import Dict, Optional
10
+
11
+ import torch
12
+ from torch import nn
13
+
14
+ from einops import rearrange
15
+ from timm.models.vision_transformer import Block
16
+
17
+ from .enable_spectral_reparam import disable_spectral_reparam, enable_spectral_reparam
18
+
19
+
20
+ class MLP(nn.Module):
21
+ def __init__(self, input_size: int, hidden_size: int, output_size: int,
22
+ num_inner: int = 0, device: torch.device = None, **kwargs):
23
+ super(MLP, self).__init__()
24
+ self.fc1 = nn.Linear(input_size, hidden_size, device=device)
25
+ self.norm = nn.LayerNorm(hidden_size, device=device)
26
+ self.relu = nn.ReLU()
27
+
28
+ inner = []
29
+ for _ in range(num_inner):
30
+ inner.extend([
31
+ nn.Linear(hidden_size, hidden_size, device=device),
32
+ nn.LayerNorm(hidden_size, device=device),
33
+ nn.ReLU(),
34
+ ])
35
+ if inner:
36
+ self.inner = nn.Sequential(*inner)
37
+ else:
38
+ self.inner = nn.Identity()
39
+
40
+ self.fc2 = nn.Linear(hidden_size, output_size, device=device)
41
+
42
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
43
+ x = self.fc1(x)
44
+ x = self.norm(x)
45
+ x = self.relu(x)
46
+ x = self.inner(x)
47
+ x = self.fc2(x)
48
+ return x
49
+
50
+
51
+ class MLP2(nn.Module):
52
+ def __init__(self, input_size: int, hidden_size: int, output_size: int,
53
+ num_inner: int = 0,
54
+ pre_norm: bool = False, device: torch.device = None,
55
+ upsample_factor: int = 1,
56
+ upsample_rank: int = None,
57
+ from_config: bool = False,
58
+ **kwargs):
59
+ super().__init__()
60
+
61
+ self.pre_norm = nn.Sequential(
62
+ nn.LayerNorm(input_size),
63
+ nn.GELU(),
64
+ ) if pre_norm else nn.Identity()
65
+
66
+ self.upsample_factor = upsample_factor
67
+ sq_ups = upsample_factor ** 2
68
+
69
+ self._real_output_dim = output_size // sq_ups
70
+
71
+ # hidden_size *= upsample_factor
72
+ # output_size *= (upsample_factor ** 2)
73
+
74
+ self.fc1 = nn.Linear(input_size, hidden_size, device=device)
75
+
76
+ blocks = []
77
+ for _ in range(num_inner):
78
+ blocks.append(nn.Sequential(
79
+ nn.LayerNorm(hidden_size, device=device),
80
+ nn.GELU(),
81
+ nn.Linear(hidden_size, hidden_size, device=device),
82
+ ))
83
+ self.blocks = nn.ModuleList(blocks)
84
+
85
+ self.final = nn.Sequential(
86
+ nn.LayerNorm(hidden_size, device=device),
87
+ nn.GELU(),
88
+ nn.Linear(hidden_size, output_size, device=device),
89
+ )
90
+
91
+ def forward(self, x: torch.Tensor, images: Optional[torch.Tensor] = None, patch_size: Optional[int] = None) -> torch.Tensor:
92
+ x = self.pre_norm(x)
93
+ x = self.fc1(x)
94
+ for block in self.blocks:
95
+ x = x + block(x)
96
+ x = self.final(x)
97
+
98
+ if self.upsample_factor > 1:
99
+ if images is None:
100
+ raise ValueError(f'`images` cannot be `None` when the head\'s `upsample_factor > 1`!')
101
+ if patch_size is None:
102
+ raise ValueError(f'`patch_size` cannot be `None` when the head\'s `upsample_factor > 1`!')
103
+ h, w = tuple(d // patch_size for d in images.shape[-2:])
104
+ x = rearrange(x, 'b (h w) (u1 u2 c) -> b (h u1 w u2) c',
105
+ h=h, w=w, u1=self.upsample_factor, u2=self.upsample_factor,
106
+ c=self._real_output_dim)
107
+
108
+ return x
109
+
110
+
111
+ MLP_FACTORY = {
112
+ 'v1': MLP,
113
+ 'v2': MLP2,
114
+ }
115
+
116
+
117
+ def strip_prefix(state: Dict[str, torch.Tensor], prefix: str):
118
+ state = {
119
+ k[len(prefix):]: v
120
+ for k, v in state.items()
121
+ if k.startswith(prefix)
122
+ }
123
+ return state
124
+
125
+
126
+ def get_mlp_info_from_state(version: str, state: Dict[str, torch.Tensor], prefix: str = '', spectral_weights: bool = False):
127
+ state = strip_prefix(state, prefix)
128
+
129
+ weight_suffix = 'weight' if not spectral_weights else 'parametrizations.weight.original'
130
+
131
+ if version == 'v1':
132
+ hidden_dim, input_dim = state[f'fc1.{weight_suffix}'].shape
133
+ output_dim = state[f'fc2.{weight_suffix}'].shape[0]
134
+
135
+ for num_inner in range(1000):
136
+ k = f'inner.{num_inner}.0.weight'
137
+ if k not in state:
138
+ break
139
+ elif version == 'v2':
140
+ hidden_dim, input_dim = state[f'fc1.{weight_suffix}'].shape
141
+ output_dim = state[f'final.2.{weight_suffix}'].shape[0]
142
+
143
+ for num_inner in range(1000):
144
+ k = f'blocks.{num_inner}.0.weight'
145
+ if k not in state:
146
+ break
147
+ else:
148
+ raise ValueError(f'Unsupported MLP version: {version}')
149
+
150
+ return input_dim, hidden_dim, output_dim, num_inner
151
+
152
+
153
+ def create_mlp_from_config(version: str, input_dim: int, hidden_dim: int, output_dim: int, num_inner: int, **kwargs):
154
+ ret: nn.Module = MLP_FACTORY[version](input_dim, hidden_dim, output_dim, num_inner, from_config=True, **kwargs)
155
+
156
+ return ret
157
+
158
+
159
+ def create_mlp_from_state(version: str, state: Dict[str, torch.Tensor], prefix: str = '', spectral_weights: bool = False, **kwargs):
160
+ state = strip_prefix(state, prefix)
161
+
162
+ input_dim, hidden_dim, output_dim, num_inner = get_mlp_info_from_state(version, state, spectral_weights=spectral_weights)
163
+
164
+ ret: nn.Module = create_mlp_from_config(version, input_dim, hidden_dim, output_dim, num_inner, **kwargs)
165
+
166
+ if spectral_weights:
167
+ enable_spectral_reparam(ret, init_norm_to_current=False, state_dict_guidance=state)
168
+
169
+ ret.load_state_dict(state)
170
+
171
+ if spectral_weights:
172
+ disable_spectral_reparam(ret)
173
+
174
+ return ret
tim/models/nvidia_radio/radio/adaptor_registry.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+ from argparse import Namespace
9
+ from typing import Dict, Any
10
+
11
+ import torch
12
+
13
+ from .adaptor_generic import GenericAdaptor, AdaptorBase
14
+
15
+ dict_t = Dict[str, Any]
16
+ state_t = Dict[str, torch.Tensor]
17
+
18
+
19
+ class AdaptorRegistry:
20
+ def __init__(self):
21
+ self._registry = {}
22
+
23
+ def register_adaptor(self, name):
24
+ def decorator(factory_function):
25
+ if name in self._registry:
26
+ raise ValueError(f"Model '{name}' already registered")
27
+ self._registry[name] = factory_function
28
+ return factory_function
29
+ return decorator
30
+
31
+ def create_adaptor(self, name, main_config: Namespace, adaptor_config: dict_t, state: state_t) -> AdaptorBase:
32
+ if name not in self._registry:
33
+ return GenericAdaptor(main_config, adaptor_config, state)
34
+ return self._registry[name](main_config, adaptor_config, state)
35
+
36
+ # Creating an instance of the registry
37
+ adaptor_registry = AdaptorRegistry()
tim/models/nvidia_radio/radio/block.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ """
3
+ Block modules
4
+ """
5
+
6
+ import torch
7
+ import torch.nn as nn
8
+ from timm.models.layers import DropPath
9
+
10
+ from .conv import Conv
11
+ # from .transformer import TransformerBlock
12
+
13
+ __all__ = ('C2f', 'Bottleneck',)
14
+
15
+ class C2f(nn.Module):
16
+ """Faster Implementation of CSP Bottleneck with 2 convolutions."""
17
+
18
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, drop_path=None): # ch_in, ch_out, number, shortcut, groups, expansion
19
+ super().__init__()
20
+ if drop_path is None:
21
+ drop_path = [0.0] * n
22
+
23
+ self.c = int(c2 * e) # hidden channels
24
+ self.cv1 = Conv(c1, 2 * self.c, 1, 1)
25
+ self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
26
+ self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0, drop_path=drop_path[i]) for i in range(n))
27
+
28
+ def forward(self, x):
29
+ """Forward pass through C2f layer."""
30
+ y = list(self.cv1(x).chunk(2, 1))
31
+ y.extend(m(y[-1]) for m in self.m)
32
+ return self.cv2(torch.cat(y, 1))
33
+
34
+ def forward_split(self, x):
35
+ """Forward pass using split() instead of chunk()."""
36
+ y = list(self.cv1(x).split((self.c, self.c), 1))
37
+ y.extend(m(y[-1]) for m in self.m)
38
+ return self.cv2(torch.cat(y, 1))
39
+
40
+
41
+ class Bottleneck(nn.Module):
42
+ """Standard bottleneck."""
43
+
44
+ def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5, drop_path=0.0): # ch_in, ch_out, shortcut, groups, kernels, expand
45
+ super().__init__()
46
+ c_ = int(c2 * e) # hidden channels
47
+ self.cv1 = Conv(c1, c_, k[0], 1)
48
+ self.cv2 = Conv(c_, c2, k[1], 1, g=g)
49
+ self.add = shortcut and c1 == c2
50
+ self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
51
+
52
+ def forward(self, x):
53
+ """'forward()' applies the YOLOv5 FPN to input data."""
54
+ return x + self.drop_path1(self.cv2(self.cv1(x))) if self.add else self.cv2(self.cv1(x))
tim/models/nvidia_radio/radio/cls_token.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+ from typing import Optional
9
+
10
+ import torch
11
+ from torch import nn
12
+
13
+
14
+ class ClsToken(nn.Module):
15
+ def __init__(self, ndim: int,
16
+ num_tokens: int = 1,
17
+ enabled: bool = True,
18
+ register_multiple: Optional[int] = None,
19
+ num_registers: Optional[int] = None,
20
+ ):
21
+ super().__init__()
22
+
23
+ self.ndim = ndim
24
+ self.enabled = enabled
25
+ self.num_registers = 0
26
+ self.num_tokens = num_tokens
27
+ if enabled:
28
+ if num_registers:
29
+ self.num_registers = num_registers
30
+ elif register_multiple:
31
+ self.num_registers = register_multiple - (num_tokens % register_multiple)
32
+
33
+ scale = ndim ** -0.5
34
+ self.token = nn.Parameter(torch.randn(num_tokens + self.num_registers, ndim) * scale)
35
+ else:
36
+ self.token = None
37
+
38
+ self.num_patches = self.num_tokens + self.num_registers
39
+
40
+ def disable(self):
41
+ self.token = None
42
+ self.enabled = False
43
+
44
+ def forward(self, x: torch.Tensor):
45
+ if self.token is None:
46
+ return x
47
+
48
+ token = self.token.unsqueeze(0).expand(x.shape[0], -1, -1)
49
+ x = torch.cat([
50
+ token,
51
+ x,
52
+ ], dim=1)
53
+
54
+ return x
55
+
56
+ def no_weight_decay(self):
57
+ return [
58
+ 'token',
59
+ ]
tim/models/nvidia_radio/radio/common.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ from dataclasses import dataclass
10
+ from typing import Optional
11
+
12
+ from .radio_model import Resolution
13
+
14
+
15
+ @dataclass
16
+ class RadioResource:
17
+ url: str
18
+ patch_size: int
19
+ max_resolution: int
20
+ preferred_resolution: Resolution
21
+ vitdet_num_windowed: Optional[int] = None
22
+ vitdet_num_global: Optional[int] = None
23
+
24
+
25
+ RESOURCE_MAP = {
26
+ # RADIOv2.5
27
+ "radio_v2.5-b": RadioResource(
28
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio-v2.5-b_half.pth.tar?download=true",
29
+ patch_size=16,
30
+ max_resolution=2048,
31
+ preferred_resolution=(768, 768),
32
+ vitdet_num_global=4,
33
+ ),
34
+ "radio_v2.5-l": RadioResource(
35
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio-v2.5-l_half.pth.tar?download=true",
36
+ patch_size=16,
37
+ max_resolution=2048,
38
+ preferred_resolution=(768, 768),
39
+ vitdet_num_global=4,
40
+ ),
41
+ "radio_v2.5-h": RadioResource(
42
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.5-h.pth.tar?download=true",
43
+ patch_size=16,
44
+ max_resolution=2048,
45
+ preferred_resolution=(768, 768),
46
+ vitdet_num_global=4,
47
+ ),
48
+ "radio_v2.5-h-norm": RadioResource(
49
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.5-h-norm.pth.tar?download=true",
50
+ patch_size=16,
51
+ max_resolution=2048,
52
+ preferred_resolution=(768, 768),
53
+ vitdet_num_global=4,
54
+ ),
55
+ "radio_v2.5-g": RadioResource(
56
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.5-g.pth.tar?download=true",
57
+ patch_size=14,
58
+ max_resolution=1792,
59
+ preferred_resolution=(896, 896),
60
+ vitdet_num_global=8,
61
+ ),
62
+ # RADIO
63
+ "radio_v2.1": RadioResource(
64
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.1_bf16.pth.tar?download=true",
65
+ patch_size=16,
66
+ max_resolution=2048,
67
+ preferred_resolution=Resolution(432, 432),
68
+ vitdet_num_windowed=5,
69
+ ),
70
+ "radio_v2": RadioResource(
71
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.pth.tar?download=true",
72
+ patch_size=16,
73
+ max_resolution=2048,
74
+ preferred_resolution=Resolution(432, 432),
75
+ vitdet_num_windowed=5,
76
+ ),
77
+ "radio_v1": RadioResource(
78
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v1.pth.tar?download=true",
79
+ patch_size=14,
80
+ max_resolution=1050,
81
+ preferred_resolution=Resolution(378, 378),
82
+ ),
83
+ # E-RADIO
84
+ "e-radio_v2": RadioResource(
85
+ "https://huggingface.co/nvidia/RADIO/resolve/main/eradio_v2.pth.tar?download=true",
86
+ patch_size=16,
87
+ max_resolution=2048,
88
+ preferred_resolution=Resolution(512, 512),
89
+ ),
90
+ # C-RADIO
91
+ "c-radio_v2.5-g": RadioResource(
92
+ "https://huggingface.co/nvidia/C-RADIOv2-g/resolve/main/c-radio_v2-g_half.pth.tar",
93
+ patch_size=16,
94
+ max_resolution=2048,
95
+ preferred_resolution=(768, 768),
96
+ vitdet_num_global=8,
97
+ ),
98
+ "c-radio_v3-l": RadioResource(
99
+ # NOTE: Currently, this model cannot be loaded via TorchHub. Instead, use the transformers API at https://huggingface.co/nvidia/C-RADIOv3-L
100
+ # and accept the license terms.
101
+ "https://huggingface.co/nvidia/C-RADIOv3-L/resolve/main/c-radio-v3_l_half.pth.tar?download=true",
102
+ patch_size=16,
103
+ max_resolution=2048,
104
+ preferred_resolution=Resolution(512, 512),
105
+ ),
106
+ }
107
+
108
+ DEFAULT_VERSION = "radio_v2.5-h"
tim/models/nvidia_radio/radio/conv.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics YOLO 🚀, AGPL-3.0 license
2
+ """
3
+ Convolution modules
4
+ """
5
+
6
+ import math
7
+
8
+ import numpy as np
9
+ import torch
10
+ import torch.nn as nn
11
+
12
+ __all__ = ('Conv', 'LightConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus', 'GhostConv',
13
+ 'ChannelAttention', 'SpatialAttention', 'CBAM', 'Concat', 'RepConv')
14
+
15
+
16
+ def autopad(k, p=None, d=1): # kernel, padding, dilation
17
+ """Pad to 'same' shape outputs."""
18
+ if d > 1:
19
+ k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
20
+ if p is None:
21
+ p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
22
+ return p
23
+
24
+ # Pavlo's implementation with switch to deploy
25
+ class Conv(nn.Module):
26
+ default_act = nn.SiLU() # default activation
27
+
28
+ def __init__(self, a, b, kernel_size=1, stride=1, padding=None, g=1, dilation=1, bn_weight_init=1, bias=False, act=True):
29
+ super().__init__()
30
+
31
+ self.conv = torch.nn.Conv2d(a, b, kernel_size, stride, autopad(kernel_size, padding, dilation), dilation, g, bias=False)
32
+ if 1:
33
+ self.bn = torch.nn.BatchNorm2d(b)
34
+ torch.nn.init.constant_(self.bn.weight, bn_weight_init)
35
+ torch.nn.init.constant_(self.bn.bias, 0)
36
+ self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
37
+
38
+
39
+ def forward(self,x):
40
+ x = self.conv(x)
41
+ x = self.bn(x)
42
+ x = self.act(x)
43
+ return x
44
+
45
+ @torch.no_grad()
46
+ def switch_to_deploy(self):
47
+ if not isinstance(self.bn, nn.Identity):
48
+ # return 1
49
+ c, bn = self.conv, self.bn
50
+ w = bn.weight / (bn.running_var + bn.eps) ** 0.5
51
+ w = c.weight * w[:, None, None, None]
52
+ b = bn.bias - bn.running_mean * bn.weight / \
53
+ (bn.running_var + bn.eps)**0.5
54
+ # m = torch.nn.Conv2d(w.size(1) * c.groups,
55
+ # w.size(0),
56
+ # w.shape[2:],
57
+ # stride=c.stride,
58
+ # padding=c.padding,
59
+ # dilation=c.dilation,
60
+ # groups=c.groups)
61
+ self.conv.weight.data.copy_(w)
62
+ self.conv.bias = nn.Parameter(b)
63
+ # self.conv.bias.data.copy_(b)
64
+ # self.conv = m.to(c.weight.device)
65
+ self.bn = nn.Identity()
tim/models/nvidia_radio/radio/dinov2_arch.py ADDED
@@ -0,0 +1,1016 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ #
3
+ # This source code is licensed under the Apache License, Version 2.0
4
+ # found in the LICENSE file in the root directory of this source tree.
5
+
6
+ # References:
7
+ # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
8
+ # https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
9
+
10
+ # Nvidia
11
+ # NOTE: We re-define this model architecture primarily so that we don't have to worry about version compatibility breaking,
12
+ # but also because Huggingface does a string replace of `gamma` to something else when loading the model state,
13
+ # and this breaks loading of this model.
14
+
15
+ from enum import Enum
16
+ from functools import partial
17
+ import logging
18
+ import math
19
+ import os
20
+ import sys
21
+ from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union
22
+ import warnings
23
+
24
+ import torch
25
+ from torch import nn
26
+ from torch.nn import functional as F
27
+ from torch.nn.init import trunc_normal_
28
+
29
+ _torch_has_sdpa = hasattr(F, 'scaled_dot_product_attention')
30
+
31
+
32
+ XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None
33
+ try:
34
+ if XFORMERS_ENABLED:
35
+ from xformers.ops import fmha, scaled_index_add, index_select_cat, SwiGLU, memory_efficient_attention, unbind
36
+
37
+ XFORMERS_AVAILABLE = True
38
+ else:
39
+ raise ImportError
40
+ except ImportError:
41
+ XFORMERS_AVAILABLE = False
42
+
43
+
44
+ def make_2tuple(x):
45
+ if isinstance(x, tuple):
46
+ assert len(x) == 2
47
+ return x
48
+
49
+ assert isinstance(x, int)
50
+ return (x, x)
51
+
52
+
53
+ class PatchEmbed(nn.Module):
54
+ """
55
+ 2D image to patch embedding: (B,C,H,W) -> (B,N,D)
56
+
57
+ Args:
58
+ img_size: Image size.
59
+ patch_size: Patch token size.
60
+ in_chans: Number of input image channels.
61
+ embed_dim: Number of linear projection output channels.
62
+ norm_layer: Normalization layer.
63
+ """
64
+
65
+ def __init__(
66
+ self,
67
+ img_size: Union[int, Tuple[int, int]] = 224,
68
+ patch_size: Union[int, Tuple[int, int]] = 16,
69
+ in_chans: int = 3,
70
+ embed_dim: int = 768,
71
+ norm_layer: Optional[Callable] = None,
72
+ flatten_embedding: bool = True,
73
+ ) -> None:
74
+ super().__init__()
75
+
76
+ image_HW = make_2tuple(img_size)
77
+ patch_HW = make_2tuple(patch_size)
78
+ patch_grid_size = (
79
+ image_HW[0] // patch_HW[0],
80
+ image_HW[1] // patch_HW[1],
81
+ )
82
+
83
+ self.img_size = image_HW
84
+ self.patch_size = patch_HW
85
+ self.patches_resolution = patch_grid_size
86
+ self.num_patches = patch_grid_size[0] * patch_grid_size[1]
87
+
88
+ self.in_chans = in_chans
89
+ self.embed_dim = embed_dim
90
+
91
+ self.flatten_embedding = flatten_embedding
92
+
93
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW)
94
+ self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
95
+
96
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
97
+ _, _, H, W = x.shape
98
+ patch_H, patch_W = self.patch_size
99
+
100
+ assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}"
101
+ assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}"
102
+
103
+ x = self.proj(x) # B C H W
104
+ H, W = x.size(2), x.size(3)
105
+ x = x.flatten(2).transpose(1, 2) # B HW C
106
+ x = self.norm(x)
107
+ if not self.flatten_embedding:
108
+ x = x.reshape(-1, H, W, self.embed_dim) # B H W C
109
+ return x
110
+
111
+ def flops(self) -> float:
112
+ Ho, Wo = self.patches_resolution
113
+ flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
114
+ if self.norm is not None:
115
+ flops += Ho * Wo * self.embed_dim
116
+ return flops
117
+
118
+
119
+ class Attention(nn.Module):
120
+ def __init__(
121
+ self,
122
+ dim: int,
123
+ num_heads: int = 8,
124
+ qkv_bias: bool = False,
125
+ proj_bias: bool = True,
126
+ attn_drop: float = 0.0,
127
+ proj_drop: float = 0.0,
128
+ ) -> None:
129
+ super().__init__()
130
+ self.num_heads = num_heads
131
+ head_dim = dim // num_heads
132
+ self.scale = head_dim**-0.5
133
+
134
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
135
+ self.attn_drop = nn.Dropout(attn_drop)
136
+ self.proj = nn.Linear(dim, dim, bias=proj_bias)
137
+ self.proj_drop = nn.Dropout(proj_drop)
138
+
139
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
140
+ B, N, C = x.shape
141
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
142
+
143
+ q, k, v = qkv[0], qkv[1], qkv[2]
144
+ if _torch_has_sdpa:
145
+ x = F.scaled_dot_product_attention(
146
+ q, k, v,
147
+ is_causal=False,
148
+ dropout_p=self.attn_drop.p if self.training else 0.,
149
+ scale=self.scale,
150
+ )
151
+ else:
152
+ q = q * self.scale
153
+ attn = q @ k.transpose(-2, -1)
154
+
155
+ attn = attn.softmax(dim=-1)
156
+ attn = self.attn_drop(attn)
157
+ x = attn @ v
158
+
159
+ x = x.transpose(1, 2).reshape(B, N, C)
160
+ x = self.proj(x)
161
+ x = self.proj_drop(x)
162
+ return x
163
+
164
+
165
+ class MemEffAttention(Attention):
166
+ def forward(self, x: torch.Tensor, attn_bias=None) -> torch.Tensor:
167
+ if not XFORMERS_AVAILABLE:
168
+ if attn_bias is not None:
169
+ raise AssertionError("xFormers is required for using nested tensors")
170
+ return super().forward(x)
171
+
172
+ B, N, C = x.shape
173
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
174
+
175
+ q, k, v = unbind(qkv, 2)
176
+
177
+ x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
178
+ x = x.reshape([B, N, C])
179
+
180
+ x = self.proj(x)
181
+ x = self.proj_drop(x)
182
+ return x
183
+
184
+
185
+ class Mlp(nn.Module):
186
+ def __init__(
187
+ self,
188
+ in_features: int,
189
+ hidden_features: Optional[int] = None,
190
+ out_features: Optional[int] = None,
191
+ act_layer: Callable[..., nn.Module] = nn.GELU,
192
+ drop: float = 0.0,
193
+ bias: bool = True,
194
+ ) -> None:
195
+ super().__init__()
196
+ out_features = out_features or in_features
197
+ hidden_features = hidden_features or in_features
198
+ self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
199
+ self.act = act_layer()
200
+ self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
201
+ self.drop = nn.Dropout(drop)
202
+
203
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
204
+ x = self.fc1(x)
205
+ x = self.act(x)
206
+ x = self.drop(x)
207
+ x = self.fc2(x)
208
+ x = self.drop(x)
209
+ return x
210
+
211
+
212
+ class SwiGLUFFN(nn.Module):
213
+ def __init__(
214
+ self,
215
+ in_features: int,
216
+ hidden_features: Optional[int] = None,
217
+ out_features: Optional[int] = None,
218
+ act_layer: Callable[..., nn.Module] = None,
219
+ drop: float = 0.0,
220
+ bias: bool = True,
221
+ ) -> None:
222
+ super().__init__()
223
+ out_features = out_features or in_features
224
+ hidden_features = hidden_features or in_features
225
+ self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias)
226
+ self.w3 = nn.Linear(hidden_features, out_features, bias=bias)
227
+
228
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
229
+ x12 = self.w12(x)
230
+ x1, x2 = x12.chunk(2, dim=-1)
231
+ hidden = F.silu(x1) * x2
232
+ return self.w3(hidden)
233
+
234
+
235
+ if not XFORMERS_AVAILABLE:
236
+ SwiGLU = SwiGLUFFN
237
+
238
+
239
+ class SwiGLUFFNFused(SwiGLU):
240
+ def __init__(
241
+ self,
242
+ in_features: int,
243
+ hidden_features: Optional[int] = None,
244
+ out_features: Optional[int] = None,
245
+ act_layer: Callable[..., nn.Module] = None,
246
+ drop: float = 0.0,
247
+ bias: bool = True,
248
+ ) -> None:
249
+ out_features = out_features or in_features
250
+ hidden_features = hidden_features or in_features
251
+ hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
252
+ super().__init__(
253
+ in_features=in_features,
254
+ hidden_features=hidden_features,
255
+ out_features=out_features,
256
+ bias=bias,
257
+ )
258
+
259
+
260
+ def drop_path(x, drop_prob: float = 0.0, training: bool = False):
261
+ if drop_prob == 0.0 or not training:
262
+ return x
263
+ keep_prob = 1 - drop_prob
264
+ shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
265
+ random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
266
+ if keep_prob > 0.0:
267
+ random_tensor.div_(keep_prob)
268
+ output = x * random_tensor
269
+ return output
270
+
271
+
272
+ class DropPath(nn.Module):
273
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
274
+
275
+ def __init__(self, drop_prob=None):
276
+ super(DropPath, self).__init__()
277
+ self.drop_prob = drop_prob
278
+
279
+ def forward(self, x):
280
+ return drop_path(x, self.drop_prob, self.training)
281
+
282
+
283
+ class LayerScale(nn.Module):
284
+ def __init__(
285
+ self,
286
+ dim: int,
287
+ init_values: Union[float, torch.Tensor] = 1e-5,
288
+ inplace: bool = False,
289
+ ) -> None:
290
+ super().__init__()
291
+ self.inplace = inplace
292
+ self.grandma = nn.Parameter(init_values * torch.ones(dim))
293
+
294
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
295
+ return x.mul_(self.grandma) if self.inplace else x * self.grandma
296
+
297
+ def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
298
+ # Huggingface is absurd and it will rename strings that contain `gamma`, which means that the normal DINO implementation
299
+ # of LayerScale won't work with HFHub. So we rename the variable to 'grandma', and support loading checkpoints in either
300
+ # format
301
+ key_a = f'{prefix}gamma'
302
+ key_b = f'{prefix}grandma'
303
+ if key_a in state_dict:
304
+ gamma = state_dict[key_a]
305
+ elif key_b in state_dict:
306
+ gamma = state_dict[key_b]
307
+ else:
308
+ if strict:
309
+ raise KeyError(f"Couldn't find the key {key_a} nor {key_b} in the state dict!")
310
+ else:
311
+ missing_keys.append(key_a)
312
+ missing_keys.append(key_b)
313
+ unexpected_keys.extend(state_dict.keys())
314
+ gamma = None
315
+
316
+ if gamma is not None:
317
+ self.grandma.data.copy_(gamma)
318
+
319
+ # return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
320
+
321
+
322
+ class Block(nn.Module):
323
+ def __init__(
324
+ self,
325
+ dim: int,
326
+ num_heads: int,
327
+ mlp_ratio: float = 4.0,
328
+ qkv_bias: bool = False,
329
+ proj_bias: bool = True,
330
+ ffn_bias: bool = True,
331
+ drop: float = 0.0,
332
+ attn_drop: float = 0.0,
333
+ init_values=None,
334
+ drop_path: float = 0.0,
335
+ act_layer: Callable[..., nn.Module] = nn.GELU,
336
+ norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
337
+ attn_class: Callable[..., nn.Module] = Attention,
338
+ ffn_layer: Callable[..., nn.Module] = Mlp,
339
+ ) -> None:
340
+ super().__init__()
341
+ # print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}")
342
+ self.norm1 = norm_layer(dim)
343
+ self.attn = attn_class(
344
+ dim,
345
+ num_heads=num_heads,
346
+ qkv_bias=qkv_bias,
347
+ proj_bias=proj_bias,
348
+ attn_drop=attn_drop,
349
+ proj_drop=drop,
350
+ )
351
+ self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
352
+ self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
353
+
354
+ self.norm2 = norm_layer(dim)
355
+ mlp_hidden_dim = int(dim * mlp_ratio)
356
+ self.mlp = ffn_layer(
357
+ in_features=dim,
358
+ hidden_features=mlp_hidden_dim,
359
+ act_layer=act_layer,
360
+ drop=drop,
361
+ bias=ffn_bias,
362
+ )
363
+ self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
364
+ self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
365
+
366
+ self.sample_drop_ratio = drop_path
367
+
368
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
369
+ def attn_residual_func(x: torch.Tensor) -> torch.Tensor:
370
+ return self.ls1(self.attn(self.norm1(x)))
371
+
372
+ def ffn_residual_func(x: torch.Tensor) -> torch.Tensor:
373
+ return self.ls2(self.mlp(self.norm2(x)))
374
+
375
+ if self.training and self.sample_drop_ratio > 0.1:
376
+ # the overhead is compensated only for a drop path rate larger than 0.1
377
+ x = drop_add_residual_stochastic_depth(
378
+ x,
379
+ residual_func=attn_residual_func,
380
+ sample_drop_ratio=self.sample_drop_ratio,
381
+ )
382
+ x = drop_add_residual_stochastic_depth(
383
+ x,
384
+ residual_func=ffn_residual_func,
385
+ sample_drop_ratio=self.sample_drop_ratio,
386
+ )
387
+ elif self.training and self.sample_drop_ratio > 0.0:
388
+ x = x + self.drop_path1(attn_residual_func(x))
389
+ x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2
390
+ else:
391
+ x = x + attn_residual_func(x)
392
+ x = x + ffn_residual_func(x)
393
+ return x
394
+
395
+
396
+ class NestedTensorBlock(Block):
397
+ def forward_nested(self, x_list: List[torch.Tensor]) -> List[torch.Tensor]:
398
+ """
399
+ x_list contains a list of tensors to nest together and run
400
+ """
401
+ assert isinstance(self.attn, MemEffAttention)
402
+
403
+ if self.training and self.sample_drop_ratio > 0.0:
404
+
405
+ def attn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor:
406
+ return self.attn(self.norm1(x), attn_bias=attn_bias)
407
+
408
+ def ffn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor:
409
+ return self.mlp(self.norm2(x))
410
+
411
+ x_list = drop_add_residual_stochastic_depth_list(
412
+ x_list,
413
+ residual_func=attn_residual_func,
414
+ sample_drop_ratio=self.sample_drop_ratio,
415
+ scaling_vector=self.ls1.grandma if isinstance(self.ls1, LayerScale) else None,
416
+ )
417
+ x_list = drop_add_residual_stochastic_depth_list(
418
+ x_list,
419
+ residual_func=ffn_residual_func,
420
+ sample_drop_ratio=self.sample_drop_ratio,
421
+ scaling_vector=self.ls2.grandma if isinstance(self.ls1, LayerScale) else None,
422
+ )
423
+ return x_list
424
+ else:
425
+
426
+ def attn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor:
427
+ return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias))
428
+
429
+ def ffn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor:
430
+ return self.ls2(self.mlp(self.norm2(x)))
431
+
432
+ attn_bias, x = get_attn_bias_and_cat(x_list)
433
+ x = x + attn_residual_func(x, attn_bias=attn_bias)
434
+ x = x + ffn_residual_func(x)
435
+ return attn_bias.split(x)
436
+
437
+ def forward(self, x_or_x_list):
438
+ if isinstance(x_or_x_list, torch.Tensor):
439
+ return super().forward(x_or_x_list)
440
+ elif isinstance(x_or_x_list, list):
441
+ if not XFORMERS_AVAILABLE:
442
+ raise AssertionError("xFormers is required for using nested tensors")
443
+ return self.forward_nested(x_or_x_list)
444
+ else:
445
+ raise AssertionError
446
+
447
+
448
+ def drop_add_residual_stochastic_depth(
449
+ x: torch.Tensor,
450
+ residual_func: Callable[[torch.Tensor], torch.Tensor],
451
+ sample_drop_ratio: float = 0.0,
452
+ ) -> torch.Tensor:
453
+ # 1) extract subset using permutation
454
+ b, n, d = x.shape
455
+ sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
456
+ brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
457
+ x_subset = x[brange]
458
+
459
+ # 2) apply residual_func to get residual
460
+ residual = residual_func(x_subset)
461
+
462
+ x_flat = x.flatten(1)
463
+ residual = residual.flatten(1)
464
+
465
+ residual_scale_factor = b / sample_subset_size
466
+
467
+ # 3) add the residual
468
+ x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
469
+ return x_plus_residual.view_as(x)
470
+
471
+
472
+ def get_branges_scales(x, sample_drop_ratio=0.0):
473
+ b, n, d = x.shape
474
+ sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
475
+ brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
476
+ residual_scale_factor = b / sample_subset_size
477
+ return brange, residual_scale_factor
478
+
479
+
480
+ def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None):
481
+ if scaling_vector is None:
482
+ x_flat = x.flatten(1)
483
+ residual = residual.flatten(1)
484
+ x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
485
+ else:
486
+ x_plus_residual = scaled_index_add(
487
+ x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor
488
+ )
489
+ return x_plus_residual
490
+
491
+
492
+ attn_bias_cache: Dict[Tuple, Any] = {}
493
+
494
+
495
+ def get_attn_bias_and_cat(x_list, branges=None):
496
+ """
497
+ this will perform the index select, cat the tensors, and provide the attn_bias from cache
498
+ """
499
+ batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list]
500
+ all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list))
501
+ if all_shapes not in attn_bias_cache.keys():
502
+ seqlens = []
503
+ for b, x in zip(batch_sizes, x_list):
504
+ for _ in range(b):
505
+ seqlens.append(x.shape[1])
506
+ attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens)
507
+ attn_bias._batch_sizes = batch_sizes
508
+ attn_bias_cache[all_shapes] = attn_bias
509
+
510
+ if branges is not None:
511
+ cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1])
512
+ else:
513
+ tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list)
514
+ cat_tensors = torch.cat(tensors_bs1, dim=1)
515
+
516
+ return attn_bias_cache[all_shapes], cat_tensors
517
+
518
+
519
+ def drop_add_residual_stochastic_depth_list(
520
+ x_list: List[torch.Tensor],
521
+ residual_func: Callable[[torch.Tensor, Any], torch.Tensor],
522
+ sample_drop_ratio: float = 0.0,
523
+ scaling_vector=None,
524
+ ) -> torch.Tensor:
525
+ # 1) generate random set of indices for dropping samples in the batch
526
+ branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list]
527
+ branges = [s[0] for s in branges_scales]
528
+ residual_scale_factors = [s[1] for s in branges_scales]
529
+
530
+ # 2) get attention bias and index+concat the tensors
531
+ attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges)
532
+
533
+ # 3) apply residual_func to get residual, and split the result
534
+ residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) # type: ignore
535
+
536
+ outputs = []
537
+ for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors):
538
+ outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x))
539
+ return outputs
540
+
541
+
542
+ def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module:
543
+ if not depth_first and include_root:
544
+ fn(module=module, name=name)
545
+ for child_name, child_module in module.named_children():
546
+ child_name = ".".join((name, child_name)) if name else child_name
547
+ named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True)
548
+ if depth_first and include_root:
549
+ fn(module=module, name=name)
550
+ return module
551
+
552
+
553
+ class BlockChunk(nn.ModuleList):
554
+ def forward(self, x):
555
+ for b in self:
556
+ x = b(x)
557
+ return x
558
+
559
+
560
+ class DinoVisionTransformer(nn.Module):
561
+ def __init__(
562
+ self,
563
+ img_size=224,
564
+ patch_size=16,
565
+ in_chans=3,
566
+ embed_dim=768,
567
+ depth=12,
568
+ num_heads=12,
569
+ mlp_ratio=4.0,
570
+ qkv_bias=True,
571
+ ffn_bias=True,
572
+ proj_bias=True,
573
+ drop_path_rate=0.0,
574
+ drop_path_uniform=False,
575
+ init_values=None, # for layerscale: None or 0 => no layerscale
576
+ embed_layer=PatchEmbed,
577
+ act_layer=nn.GELU,
578
+ block_fn=Block,
579
+ ffn_layer="mlp",
580
+ block_chunks=1,
581
+ num_register_tokens=0,
582
+ interpolate_antialias=False,
583
+ interpolate_offset=0.1,
584
+ ):
585
+ """
586
+ Args:
587
+ img_size (int, tuple): input image size
588
+ patch_size (int, tuple): patch size
589
+ in_chans (int): number of input channels
590
+ embed_dim (int): embedding dimension
591
+ depth (int): depth of transformer
592
+ num_heads (int): number of attention heads
593
+ mlp_ratio (int): ratio of mlp hidden dim to embedding dim
594
+ qkv_bias (bool): enable bias for qkv if True
595
+ proj_bias (bool): enable bias for proj in attn if True
596
+ ffn_bias (bool): enable bias for ffn if True
597
+ drop_path_rate (float): stochastic depth rate
598
+ drop_path_uniform (bool): apply uniform drop rate across blocks
599
+ weight_init (str): weight init scheme
600
+ init_values (float): layer-scale init values
601
+ embed_layer (nn.Module): patch embedding layer
602
+ act_layer (nn.Module): MLP activation layer
603
+ block_fn (nn.Module): transformer block class
604
+ ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity"
605
+ block_chunks: (int) split block sequence into block_chunks units for FSDP wrap
606
+ num_register_tokens: (int) number of extra cls tokens (so-called "registers")
607
+ interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings
608
+ interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings
609
+ """
610
+ super().__init__()
611
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
612
+
613
+ self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
614
+ self.num_tokens = 1
615
+ self.n_blocks = depth
616
+ self.num_heads = num_heads
617
+ self.patch_size = patch_size
618
+ self.num_register_tokens = num_register_tokens
619
+ self.interpolate_antialias = interpolate_antialias
620
+ self.interpolate_offset = interpolate_offset
621
+
622
+ self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
623
+ num_patches = self.patch_embed.num_patches
624
+
625
+ self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
626
+ self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
627
+ assert num_register_tokens >= 0
628
+ self.register_tokens = (
629
+ nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None
630
+ )
631
+
632
+ if drop_path_uniform is True:
633
+ dpr = [drop_path_rate] * depth
634
+ else:
635
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
636
+
637
+ if ffn_layer == "mlp":
638
+ ffn_layer = Mlp
639
+ elif ffn_layer == "swiglufused" or ffn_layer == "swiglu":
640
+ ffn_layer = SwiGLUFFNFused
641
+ elif ffn_layer == "identity":
642
+ def f(*args, **kwargs):
643
+ return nn.Identity()
644
+
645
+ ffn_layer = f
646
+ else:
647
+ raise NotImplementedError
648
+
649
+ blocks_list = [
650
+ block_fn(
651
+ dim=embed_dim,
652
+ num_heads=num_heads,
653
+ mlp_ratio=mlp_ratio,
654
+ qkv_bias=qkv_bias,
655
+ proj_bias=proj_bias,
656
+ ffn_bias=ffn_bias,
657
+ drop_path=dpr[i],
658
+ norm_layer=norm_layer,
659
+ act_layer=act_layer,
660
+ ffn_layer=ffn_layer,
661
+ init_values=init_values,
662
+ )
663
+ for i in range(depth)
664
+ ]
665
+ if block_chunks > 0:
666
+ self.chunked_blocks = True
667
+ chunked_blocks = []
668
+ chunksize = depth // block_chunks
669
+ for i in range(0, depth, chunksize):
670
+ # this is to keep the block index consistent if we chunk the block list
671
+ chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize])
672
+ self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks])
673
+ else:
674
+ self.chunked_blocks = False
675
+ self.blocks = nn.ModuleList(blocks_list)
676
+
677
+ self.norm = norm_layer(embed_dim)
678
+ self.head = nn.Identity()
679
+
680
+ self.mask_token = nn.Parameter(torch.zeros(1, embed_dim))
681
+
682
+ def interpolate_pos_encoding(self, x, w, h):
683
+ previous_dtype = x.dtype
684
+ npatch = x.shape[1] - 1
685
+ N = self.pos_embed.shape[1] - 1
686
+ if npatch == N and w == h:
687
+ return self.pos_embed
688
+ pos_embed = self.pos_embed.float()
689
+ class_pos_embed = pos_embed[:, 0]
690
+ patch_pos_embed = pos_embed[:, 1:]
691
+ dim = x.shape[-1]
692
+ w0 = w // self.patch_size
693
+ h0 = h // self.patch_size
694
+ M = int(math.sqrt(N)) # Recover the number of patches in each dimension
695
+ assert N == M * M
696
+ kwargs = {}
697
+ if self.interpolate_offset:
698
+ # Historical kludge: add a small number to avoid floating point error in the interpolation, see https://github.com/facebookresearch/dino/issues/8
699
+ # Note: still needed for backward-compatibility, the underlying operators are using both output size and scale factors
700
+ sx = float(w0 + self.interpolate_offset) / M
701
+ sy = float(h0 + self.interpolate_offset) / M
702
+ kwargs["scale_factor"] = (sx, sy)
703
+ else:
704
+ # Simply specify an output size instead of a scale factor
705
+ kwargs["size"] = (w0, h0)
706
+ patch_pos_embed = nn.functional.interpolate(
707
+ patch_pos_embed.reshape(1, M, M, dim).permute(0, 3, 1, 2),
708
+ mode="bicubic",
709
+ antialias=self.interpolate_antialias,
710
+ **kwargs,
711
+ )
712
+ assert (w0, h0) == patch_pos_embed.shape[-2:]
713
+ patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
714
+ return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype)
715
+
716
+ def prepare_tokens_with_masks(self, x, masks=None):
717
+ B, nc, w, h = x.shape
718
+ x = self.patch_embed(x)
719
+ if masks is not None:
720
+ x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x)
721
+
722
+ x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
723
+ x = x + self.interpolate_pos_encoding(x, w, h)
724
+
725
+ if self.register_tokens is not None:
726
+ x = torch.cat(
727
+ (
728
+ x[:, :1],
729
+ self.register_tokens.expand(x.shape[0], -1, -1),
730
+ x[:, 1:],
731
+ ),
732
+ dim=1,
733
+ )
734
+
735
+ return x
736
+
737
+ def forward_features_list(self, x_list, masks_list):
738
+ x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)]
739
+ for blk in self.blocks:
740
+ x = blk(x)
741
+
742
+ all_x = x
743
+ output = []
744
+ for x, masks in zip(all_x, masks_list):
745
+ x_norm = self.norm(x)
746
+ output.append(
747
+ {
748
+ "x_norm_clstoken": x_norm[:, 0],
749
+ "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
750
+ "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
751
+ "x_prenorm": x,
752
+ "masks": masks,
753
+ }
754
+ )
755
+ return output
756
+
757
+ def forward_features(self, x, masks=None):
758
+ if isinstance(x, list):
759
+ return self.forward_features_list(x, masks)
760
+
761
+ x = self.prepare_tokens_with_masks(x, masks)
762
+
763
+ for blk in self.blocks:
764
+ x = blk(x)
765
+
766
+ x_norm = self.norm(x)
767
+ return {
768
+ "x_norm_clstoken": x_norm[:, 0],
769
+ "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
770
+ "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
771
+ "x_prenorm": x,
772
+ "masks": masks,
773
+ }
774
+
775
+ def _get_intermediate_layers_not_chunked(self, x, n=1):
776
+ x = self.prepare_tokens_with_masks(x)
777
+ # If n is an int, take the n last blocks. If it's a list, take them
778
+ output, total_block_len = [], len(self.blocks)
779
+ blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
780
+ for i, blk in enumerate(self.blocks):
781
+ x = blk(x)
782
+ if i in blocks_to_take:
783
+ output.append(x)
784
+ assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
785
+ return output
786
+
787
+ def _get_intermediate_layers_chunked(self, x, n=1):
788
+ x = self.prepare_tokens_with_masks(x)
789
+ output, i, total_block_len = [], 0, len(self.blocks[-1])
790
+ # If n is an int, take the n last blocks. If it's a list, take them
791
+ blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
792
+ for block_chunk in self.blocks:
793
+ for blk in block_chunk[i:]: # Passing the nn.Identity()
794
+ x = blk(x)
795
+ if i in blocks_to_take:
796
+ output.append(x)
797
+ i += 1
798
+ assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
799
+ return output
800
+
801
+ def get_intermediate_layers(
802
+ self,
803
+ x: torch.Tensor,
804
+ n: Union[int, Sequence] = 1, # Layers or n last layers to take
805
+ reshape: bool = False,
806
+ return_class_token: bool = False,
807
+ norm=True,
808
+ ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
809
+ if self.chunked_blocks:
810
+ outputs = self._get_intermediate_layers_chunked(x, n)
811
+ else:
812
+ outputs = self._get_intermediate_layers_not_chunked(x, n)
813
+ if norm:
814
+ outputs = [self.norm(out) for out in outputs]
815
+ class_tokens = [out[:, 0] for out in outputs]
816
+ outputs = [out[:, 1 + self.num_register_tokens :] for out in outputs]
817
+ if reshape:
818
+ B, _, w, h = x.shape
819
+ outputs = [
820
+ out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous()
821
+ for out in outputs
822
+ ]
823
+ if return_class_token:
824
+ return tuple(zip(outputs, class_tokens))
825
+ return tuple(outputs)
826
+
827
+ def forward(self, *args, is_training=False, **kwargs):
828
+ ret = self.forward_features(*args, **kwargs)
829
+ if is_training:
830
+ return ret
831
+ else:
832
+ return self.head(ret["x_norm_clstoken"])
833
+
834
+
835
+ def vit_small(patch_size=16, num_register_tokens=0, **kwargs):
836
+ model = DinoVisionTransformer(
837
+ patch_size=patch_size,
838
+ embed_dim=384,
839
+ depth=12,
840
+ num_heads=6,
841
+ mlp_ratio=4,
842
+ block_fn=partial(Block, attn_class=MemEffAttention),
843
+ num_register_tokens=num_register_tokens,
844
+ **kwargs,
845
+ )
846
+ return model
847
+
848
+
849
+ def vit_base(patch_size=16, num_register_tokens=0, **kwargs):
850
+ model = DinoVisionTransformer(
851
+ patch_size=patch_size,
852
+ embed_dim=768,
853
+ depth=12,
854
+ num_heads=12,
855
+ mlp_ratio=4,
856
+ block_fn=partial(Block, attn_class=MemEffAttention),
857
+ num_register_tokens=num_register_tokens,
858
+ **kwargs,
859
+ )
860
+ return model
861
+
862
+
863
+ def vit_large(patch_size=16, num_register_tokens=0, **kwargs):
864
+ model = DinoVisionTransformer(
865
+ patch_size=patch_size,
866
+ embed_dim=1024,
867
+ depth=24,
868
+ num_heads=16,
869
+ mlp_ratio=4,
870
+ block_fn=partial(Block, attn_class=MemEffAttention),
871
+ num_register_tokens=num_register_tokens,
872
+ **kwargs,
873
+ )
874
+ return model
875
+
876
+
877
+ def vit_giant2(patch_size=16, num_register_tokens=0, **kwargs):
878
+ """
879
+ Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
880
+ """
881
+ model = DinoVisionTransformer(
882
+ patch_size=patch_size,
883
+ embed_dim=1536,
884
+ depth=40,
885
+ num_heads=24,
886
+ mlp_ratio=4,
887
+ block_fn=partial(Block, attn_class=MemEffAttention),
888
+ num_register_tokens=num_register_tokens,
889
+ **kwargs,
890
+ )
891
+ return model
892
+
893
+
894
+ class Weights(Enum):
895
+ LVD142M = "LVD142M"
896
+
897
+
898
+ def _make_dinov2_model(
899
+ *,
900
+ arch_name: str = "vit_large",
901
+ img_size: int = 518,
902
+ patch_size: int = 14,
903
+ init_values: float = 1.0,
904
+ ffn_layer: str = "mlp",
905
+ block_chunks: int = 0,
906
+ num_register_tokens: int = 0,
907
+ interpolate_antialias: bool = False,
908
+ interpolate_offset: float = 0.1,
909
+ weights: Union[Weights, str] = Weights.LVD142M,
910
+ **kwargs,
911
+ ):
912
+ if isinstance(weights, str):
913
+ try:
914
+ weights = Weights[weights]
915
+ except KeyError:
916
+ raise AssertionError(f"Unsupported weights: {weights}")
917
+
918
+ vit_kwargs = dict(
919
+ img_size=img_size,
920
+ patch_size=patch_size,
921
+ init_values=init_values,
922
+ ffn_layer=ffn_layer,
923
+ block_chunks=block_chunks,
924
+ num_register_tokens=num_register_tokens,
925
+ interpolate_antialias=interpolate_antialias,
926
+ interpolate_offset=interpolate_offset,
927
+ )
928
+ vit_kwargs.update(**kwargs)
929
+ model = sys.modules[__name__].__dict__[arch_name](**vit_kwargs)
930
+
931
+ return model
932
+
933
+
934
+ def dinov2_vits14(**kwargs):
935
+ """
936
+ DINOv2 ViT-S/14 model (optionally) pretrained on the LVD-142M dataset.
937
+ """
938
+ return _make_dinov2_model(arch_name="vit_small", **kwargs)
939
+
940
+
941
+ def dinov2_vitb14(**kwargs):
942
+ """
943
+ DINOv2 ViT-B/14 model (optionally) pretrained on the LVD-142M dataset.
944
+ """
945
+ return _make_dinov2_model(arch_name="vit_base", **kwargs)
946
+
947
+
948
+ def dinov2_vitl14(**kwargs):
949
+ """
950
+ DINOv2 ViT-L/14 model (optionally) pretrained on the LVD-142M dataset.
951
+ """
952
+ return _make_dinov2_model(arch_name="vit_large", **kwargs)
953
+
954
+
955
+ def dinov2_vitg14(**kwargs):
956
+ """
957
+ DINOv2 ViT-g/14 model (optionally) pretrained on the LVD-142M dataset.
958
+ """
959
+ return _make_dinov2_model(
960
+ arch_name="vit_giant2",
961
+ ffn_layer="swiglufused",
962
+ **kwargs,
963
+ )
964
+
965
+
966
+ def dinov2_vits14_reg(**kwargs):
967
+ """
968
+ DINOv2 ViT-S/14 model with registers (optionally) pretrained on the LVD-142M dataset.
969
+ """
970
+ return _make_dinov2_model(
971
+ arch_name="vit_small",
972
+ num_register_tokens=4,
973
+ interpolate_antialias=True,
974
+ interpolate_offset=0.0,
975
+ **kwargs,
976
+ )
977
+
978
+
979
+ def dinov2_vitb14_reg(**kwargs):
980
+ """
981
+ DINOv2 ViT-B/14 model with registers (optionally) pretrained on the LVD-142M dataset.
982
+ """
983
+ return _make_dinov2_model(
984
+ arch_name="vit_base",
985
+ num_register_tokens=4,
986
+ interpolate_antialias=True,
987
+ interpolate_offset=0.0,
988
+ **kwargs,
989
+ )
990
+
991
+
992
+ def dinov2_vitl14_reg(**kwargs):
993
+ """
994
+ DINOv2 ViT-L/14 model with registers (optionally) pretrained on the LVD-142M dataset.
995
+ """
996
+ return _make_dinov2_model(
997
+ arch_name="vit_large",
998
+ num_register_tokens=4,
999
+ interpolate_antialias=True,
1000
+ interpolate_offset=0.0,
1001
+ **kwargs,
1002
+ )
1003
+
1004
+
1005
+ def dinov2_vitg14_reg(**kwargs):
1006
+ """
1007
+ DINOv2 ViT-g/14 model with registers (optionally) pretrained on the LVD-142M dataset.
1008
+ """
1009
+ return _make_dinov2_model(
1010
+ arch_name="vit_giant2",
1011
+ ffn_layer="swiglufused",
1012
+ num_register_tokens=4,
1013
+ interpolate_antialias=True,
1014
+ interpolate_offset=0.0,
1015
+ **kwargs,
1016
+ )
tim/models/nvidia_radio/radio/dual_hybrid_vit.py ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from logging import getLogger
2
+ from typing import Tuple
3
+
4
+ import torch
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+
8
+ from timm.models import register_model
9
+ from timm.models import vision_transformer as tvit
10
+ from timm.models import convnext as tconv
11
+
12
+ from einops import rearrange
13
+
14
+ from . import extra_timm_models as et
15
+
16
+
17
+ class Fuser(nn.Module):
18
+ def __init__(self, src_dim: int, tgt_dim: int, gated: bool = True):
19
+ super().__init__()
20
+ self.gated = gated
21
+
22
+ mid_dim = max(src_dim, tgt_dim) * 2
23
+
24
+ self.fwd = nn.Sequential(
25
+ nn.Conv2d(src_dim, mid_dim, kernel_size=3, stride=1, padding=1),
26
+ nn.GELU(),
27
+ nn.Conv2d(mid_dim, tgt_dim * (2 if gated else 1), kernel_size=3, stride=1, padding=1),
28
+ )
29
+
30
+ def forward(self, src: torch.Tensor, tgt: torch.Tensor) -> torch.Tensor:
31
+ if src.ndim == 3:
32
+ shape = tgt.shape[-2:]
33
+ else:
34
+ shape = src.shape[-2:]
35
+
36
+ nd = shape[0] * shape[1]
37
+
38
+ if src.ndim == 3:
39
+ src = src[:, -nd:].reshape(src.shape[0], src.shape[2], *shape)
40
+
41
+ if tgt.ndim == 3:
42
+ tgt_pre = tgt[:, :-nd]
43
+ tgt = tgt[:, -nd:].reshape(tgt.shape[0], tgt.shape[2], *shape)
44
+ else:
45
+ tgt_pre = None
46
+
47
+ pred = self.fwd(src)
48
+
49
+ if self.gated:
50
+ g, pred = torch.chunk(pred, 2, dim=1)
51
+
52
+ g = F.sigmoid(g)
53
+
54
+ pred = g * pred
55
+
56
+ tgt = tgt + pred
57
+
58
+ if tgt_pre is not None:
59
+ tgt = rearrange(tgt, 'b c h w -> b (h w) c')
60
+ tgt = torch.cat([tgt_pre, tgt], dim=1)
61
+
62
+ return tgt
63
+
64
+
65
+ class AttnDownsample(nn.Module):
66
+ def __init__(self, dim: int, window_size: int, num_heads: int = 16):
67
+ super().__init__()
68
+ self.q = nn.Parameter(torch.randn(1, num_heads, 1, dim // num_heads) * 0.01)
69
+ self.kv = nn.Linear(dim, dim * 2)
70
+ self.proj = nn.Linear(dim, dim)
71
+ self.window_size = window_size
72
+ self.num_heads = num_heads
73
+ self.head_dim = dim // num_heads
74
+ self.scale = self.head_dim ** -0.5
75
+
76
+ def forward(self, x: torch.Tensor, twod_shape: Tuple[int, int]) -> torch.Tensor:
77
+ ntok = twod_shape[0] * twod_shape[1]
78
+ x_pre = x[:, :-ntok]
79
+
80
+ B = x.shape[0]
81
+ ds_hw = tuple(s // self.window_size for s in twod_shape)
82
+
83
+ x_spat = rearrange(
84
+ x[:, -ntok:],
85
+ 'b (h d1 w d2) c -> (b h w) (d1 d2) c',
86
+ h=ds_hw[0], w=ds_hw[1],
87
+ d1=self.window_size, d2=self.window_size,
88
+ )
89
+
90
+ B, N, C = x_spat.shape
91
+
92
+ k, v = self.kv(x_spat).reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
93
+
94
+ q = (self.q * self.scale).expand(B, -1, -1, -1)
95
+ attn = q @ k.transpose(-2, -1)
96
+ attn = F.softmax(attn, dim=-1)
97
+ x = attn @ v
98
+
99
+ x = x.transpose(1, 2).reshape(B, C)
100
+ x = self.proj(x)
101
+
102
+ x = rearrange(x, '(b h w) c -> b (h w) c', b=x_pre.shape[0], h=ds_hw[0], w=ds_hw[1])
103
+
104
+ x = torch.cat([x_pre, x], dim=1)
105
+ return x
106
+
107
+
108
+ class HybridModel(nn.Module):
109
+ def __init__(self, vit: tvit.VisionTransformer, conv: tconv.ConvNeXt, pretrained: bool = False,
110
+ concatenate: bool = False, **kwargs):
111
+ super().__init__()
112
+ self.conv = conv
113
+ self.vit = vit
114
+ self.concatenate = concatenate
115
+
116
+ conv.stages = nn.ModuleList(conv.stages)
117
+ vit.blocks = nn.ModuleList(vit.blocks)
118
+
119
+ self._half_vit_idx = len(vit.blocks) // 2 + 1
120
+
121
+ self._half_conv_idx = None
122
+ x = torch.empty(1, 3, 256, 256)
123
+ x = self.conv.stem(x)
124
+ for i in range(len(conv.stages)):
125
+ x = conv.stages[i](x)
126
+ if self._half_conv_idx is None and x.shape[-2:] == (16, 16):
127
+ self._half_conv_idx = i + 1
128
+ half_conv_dim = x.shape[1]
129
+ final_conv_dim = x.shape[1]
130
+
131
+ self.vit_to_conv_fusion = Fuser(vit.embed_dim, half_conv_dim)
132
+ self.conv_to_vit_fusion = Fuser(half_conv_dim, vit.embed_dim)
133
+ self.vit_ds = AttnDownsample(vit.embed_dim, window_size=2)
134
+
135
+ embed_dim = vit.embed_dim + (final_conv_dim if concatenate else 0)
136
+ if not concatenate:
137
+ self.final_fuse = Fuser(final_conv_dim, vit.embed_dim, gated=False)
138
+ self.final_block = tvit.Block(embed_dim, num_heads=16)
139
+
140
+ self.embed_dim = embed_dim
141
+
142
+ @property
143
+ def patch_size(self):
144
+ return 32
145
+
146
+ @property
147
+ def no_fsdp_wrap_types(self):
148
+ return {tvit.VisionTransformer, tconv.ConvNeXt}
149
+
150
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
151
+ return self.forward_features(x)
152
+
153
+ def forward_features(self, x: torch.Tensor) -> torch.Tensor:
154
+ y_vit = self.vit.patch_generator(x)
155
+
156
+ for i in range(self._half_vit_idx):
157
+ y_vit = self.vit.blocks[i](y_vit)
158
+
159
+ y_conv = self.conv.stem(x)
160
+ for i in range(self._half_conv_idx):
161
+ y_conv = self.conv.stages[i](y_conv)
162
+
163
+ y_vit, y_conv = self.conv_to_vit_fusion(y_conv, y_vit), self.vit_to_conv_fusion(y_vit, y_conv)
164
+
165
+ y_vit = self.vit_ds(y_vit, y_conv.shape[-2:])
166
+
167
+ for i in range(self._half_vit_idx, len(self.vit.blocks)):
168
+ y_vit = self.vit.blocks[i](y_vit)
169
+
170
+ for i in range(self._half_conv_idx, len(self.conv.stages)):
171
+ y_conv = self.conv.stages[i](y_conv)
172
+
173
+ if self.concatenate:
174
+ y_conv = rearrange(y_conv, 'b c h w -> b (h w) c')
175
+ # Average pool across the board, and replicate for each cls/register token
176
+ conv_summary = y_conv.mean(dim=1, keepdim=True).expand(-1, self.vit.patch_generator.num_cls_patches, -1)
177
+ y_conv = torch.cat([conv_summary, y_conv], dim=1)
178
+ y = torch.cat([y_vit, y_conv], dim=2)
179
+ else:
180
+ y = self.final_fuse(y_conv, y_vit)
181
+ y = self.final_block(y)
182
+
183
+ summary = y[:, :self.vit.patch_generator.num_cls_tokens]
184
+ features = y[:, self.vit.patch_generator.num_cls_patches:]
185
+
186
+ return summary, features
187
+
188
+
189
+ @register_model
190
+ def hybrid_base(pretrained=False, concatenate: bool = False, weight_init: str = 'skip', **kwargs):
191
+ cfg = dict(num_classes=0, **kwargs)
192
+ conv = tconv.convnextv2_base(pretrained=pretrained, **cfg)
193
+ vit = tvit.vit_base_patch16_224(pretrained=pretrained, weight_init=weight_init, **cfg)
194
+
195
+ return HybridModel(vit, conv, pretrained, concatenate=concatenate)
196
+
197
+
198
+ @register_model
199
+ def hybrid_large(pretrained=False, concatenate: bool = False, weight_init: str = 'skip', **kwargs):
200
+ cfg = dict(num_classes=0, **kwargs)
201
+ conv = tconv.convnextv2_large(pretrained=pretrained, **cfg)
202
+ vit = tvit.vit_large_patch16_224(pretrained=pretrained, weight_init=weight_init, **cfg)
203
+
204
+ return HybridModel(vit, conv, pretrained, concatenate=concatenate)
205
+
206
+
207
+ @register_model
208
+ def hybrid_huge(pretrained=False, concatenate: bool = False, weight_init: str = 'skip', **kwargs):
209
+ cfg = dict(num_classes=0, **kwargs)
210
+ conv = tconv.convnextv2_huge(pretrained=pretrained, **cfg)
211
+ vit = et.vit_huge_patch16_224(pretrained=pretrained, weight_init=weight_init, **cfg)
212
+
213
+ return HybridModel(vit, conv, pretrained, concatenate=concatenate)
tim/models/nvidia_radio/radio/enable_cpe_support.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ from typing import List, Optional, Set, Tuple, Union
10
+ from types import MethodType
11
+
12
+ import torch
13
+ from torch import nn
14
+
15
+ from timm.models import VisionTransformer, checkpoint_seq
16
+ from timm.models.vision_transformer import Attention, Block
17
+
18
+ from .feature_normalizer import IntermediateFeatureNormalizerBase, NullIntermediateFeatureNormalizer
19
+
20
+ from .extra_models import DinoWrapper
21
+ from .vit_patch_generator import ViTPatchGenerator
22
+ from .forward_intermediates import forward_intermediates
23
+ from .dual_hybrid_vit import HybridModel
24
+ from flash_attn import flash_attn_varlen_func
25
+
26
+
27
+ def _attn_forward_pack(self: Attention, x: torch.Tensor, cu_seqlens: torch.Tensor) -> torch.Tensor:
28
+ N, C = x.shape
29
+ qkv = self.qkv(x).reshape(N, 3, self.num_heads, self.head_dim).permute(1, 0, 2, 3)
30
+ q, k, v = qkv.unbind(0)
31
+ q, k = self.q_norm(q), self.k_norm(k)
32
+ max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
33
+
34
+ x = flash_attn_varlen_func(
35
+ q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen
36
+ ).reshape(N, -1)
37
+
38
+ x = self.proj(x)
39
+ x = self.proj_drop(x)
40
+ return x
41
+
42
+ def _block_forward_pack(self: Block, x: torch.Tensor, cu_seqlens: torch.Tensor) -> torch.Tensor:
43
+ x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x), cu_seqlens)))
44
+ x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
45
+ return x
46
+
47
+ def _forward_cpe_pack(self: VisionTransformer, images: List[torch.Tensor]) -> torch.Tensor:
48
+ device = images[0].device
49
+ x = []
50
+ seqlens = []
51
+ for image in images:
52
+ # image: [1, c, H, W] -> x: [n_cls+h*w, D], h=H/p and w=W/p
53
+ _image = self.patch_generator(image).squeeze(0)
54
+ x.append(_image)
55
+ seqlens.append(_image.shape[0])
56
+
57
+ x = torch.cat(x, dim=0)
58
+ seqlens = torch.tensor(seqlens, device=device, dtype=torch.int)
59
+
60
+ cu_seqlens = torch.cat([
61
+ torch.tensor([0], device=device, dtype=torch.int32),
62
+ torch.cumsum(seqlens, dim=0, dtype=torch.int32)
63
+ ])
64
+ if getattr(self, 'grad_checkpointing', False) and not torch.jit.is_scripting():
65
+ for block in self.blocks:
66
+ x = checkpoint_seq(block, x, cu_seqlens)
67
+ else:
68
+ for block in self.blocks:
69
+ x = block(x, cu_seqlens)
70
+ x = self.norm(x)
71
+ return x, cu_seqlens
72
+
73
+ def _forward_cpe(self: VisionTransformer, x: torch.Tensor) -> torch.Tensor:
74
+ x = self.patch_generator(x)
75
+ if getattr(self, 'grad_checkpointing', False) and not torch.jit.is_scripting():
76
+ x = checkpoint_seq(self.blocks, x)
77
+ else:
78
+ x = self.blocks(x)
79
+ x = self.norm(x)
80
+ return x
81
+
82
+
83
+ def _take_indices(
84
+ num_blocks: int,
85
+ n: Optional[Union[int, List[int], Tuple[int]]],
86
+ ) -> Tuple[Set[int], int]:
87
+ if isinstance(n, int):
88
+ assert n >= 0
89
+ take_indices = {x for x in range(num_blocks - n, num_blocks)}
90
+ else:
91
+ take_indices = {num_blocks + idx if idx < 0 else idx for idx in n}
92
+ return take_indices, max(take_indices)
93
+
94
+
95
+ def _forward_intermediates_cpe(
96
+ self,
97
+ x: torch.Tensor,
98
+ norm: bool = False,
99
+ **kwargs,
100
+ ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
101
+ return forward_intermediates(
102
+ self,
103
+ patch_extractor=self.patch_generator,
104
+ num_summary_tokens=self.patch_generator.num_skip,
105
+ num_cls_tokens=self.patch_generator.num_cls_tokens,
106
+ norm=self.norm if norm else lambda y: y,
107
+ x=x,
108
+ **kwargs,
109
+ )
110
+
111
+
112
+ def _forward_cpe_dinov2(self: DinoWrapper, x: torch.Tensor) -> torch.Tensor:
113
+ y = _forward_cpe(self.inner, x)
114
+
115
+ return y[:, 0], y[:, self.num_summary_tokens:]
116
+
117
+
118
+ def _forward_intermediates_cpe_dinov2(self: DinoWrapper, *args, **kwargs):
119
+ return _forward_intermediates_cpe(self.inner, *args, **kwargs)
120
+
121
+
122
+ def _enable_cpe_for_timm_vit(model: VisionTransformer,
123
+ max_img_size: Union[int, Tuple[int, int]] = 1024,
124
+ num_cls_tokens: int = 1,
125
+ pos_dropout: float = 0.1,
126
+ register_multiple: int = Optional[None],
127
+ num_registers: int = Optional[None],
128
+ support_packing: bool = False,
129
+ ):
130
+ if not isinstance(model, VisionTransformer):
131
+ raise ValueError("CPE only support for VisionTransformer models!")
132
+
133
+ patch_size = model.patch_embed.patch_size[0]
134
+ embed_dim = model.embed_dim
135
+ input_dims = model.patch_embed.img_size
136
+ normalize_patches = not isinstance(model.patch_embed.norm, nn.Identity)
137
+ cls_token = model.cls_token is not None
138
+
139
+ max_img_size = int(round(max_img_size / patch_size) * patch_size)
140
+
141
+ patch_generator = ViTPatchGenerator(
142
+ patch_size=patch_size,
143
+ embed_dim=embed_dim,
144
+ input_dims=input_dims,
145
+ normalize_patches=normalize_patches,
146
+ cls_token=cls_token,
147
+ max_input_dims=max_img_size,
148
+ pos_dropout=pos_dropout,
149
+ num_cls_tokens=num_cls_tokens,
150
+ register_multiple=register_multiple,
151
+ num_registers=num_registers,
152
+ )
153
+
154
+ model.patch_generator = patch_generator
155
+ model.patch_embed = None
156
+ model.cls_token = None
157
+ model.pos_embed = None
158
+ model.pos_drop = None
159
+ model.patch_size = patch_size
160
+ model.num_cls_tokens = num_cls_tokens
161
+ model.num_registers = patch_generator.num_registers
162
+
163
+ model.forward_features = MethodType(_forward_cpe, model)
164
+ model.forward_intermediates = MethodType(_forward_intermediates_cpe, model)
165
+ if support_packing:
166
+ model.forward_features = MethodType(_forward_cpe_pack, model)
167
+ for block in model.blocks:
168
+ block.forward = MethodType(_block_forward_pack, block)
169
+ block.attn.forward = MethodType(_attn_forward_pack, block.attn)
170
+
171
+
172
+ def _enable_cpe_for_dv2_reg_vit(model: DinoWrapper,
173
+ max_img_size: Union[int, Tuple[int, int]] = 1024,
174
+ num_cls_tokens: int = 1,
175
+ pos_dropout: float = 0.1,
176
+ register_multiple: int = Optional[None],
177
+ num_registers: int = Optional[None],
178
+ ):
179
+ patch_size = model.patch_size
180
+ embed_dim = model.embed_dim
181
+ input_dims = model.inner.patch_embed.patches_resolution
182
+ normalize_patches = not isinstance(model.inner.patch_embed.norm, nn.Identity)
183
+ cls_token = True
184
+
185
+ max_img_size = int(round(max_img_size / patch_size) * patch_size)
186
+
187
+ patch_generator = ViTPatchGenerator(
188
+ patch_size=patch_size,
189
+ embed_dim=embed_dim,
190
+ input_dims=input_dims,
191
+ normalize_patches=normalize_patches,
192
+ cls_token=cls_token,
193
+ max_input_dims=max_img_size,
194
+ pos_dropout=pos_dropout,
195
+ num_cls_tokens=num_cls_tokens,
196
+ register_multiple=register_multiple,
197
+ num_registers=num_registers,
198
+ patch_bias=True,
199
+ )
200
+
201
+ inner = model.inner
202
+ inner.patch_generator = patch_generator
203
+ inner.patch_embed = None
204
+ inner.cls_token = None
205
+ inner.pos_embed = None
206
+ inner.register_tokens = None
207
+ inner.patch_size = patch_size
208
+
209
+ model.forward_features = MethodType(_forward_cpe_dinov2, model)
210
+ model.forward_intermediates = MethodType(_forward_intermediates_cpe_dinov2, model)
211
+
212
+
213
+ def enable_cpe(model: nn.Module,
214
+ *args,
215
+ **kwargs,
216
+ ):
217
+ if isinstance(model, VisionTransformer):
218
+ _enable_cpe_for_timm_vit(model, *args, **kwargs)
219
+ elif isinstance(model, DinoWrapper):
220
+ _enable_cpe_for_dv2_reg_vit(model, *args, **kwargs)
221
+ elif isinstance(model, HybridModel):
222
+ _enable_cpe_for_timm_vit(model.vit, *args, **kwargs)
223
+ else:
224
+ raise ValueError(f'CPE not supported for this model type: {type(model)}')
tim/models/nvidia_radio/radio/enable_damp.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ from logging import getLogger
10
+ import math
11
+ import os
12
+ from typing import Dict, List, Optional, Union, Tuple
13
+ from types import MethodType
14
+
15
+ import torch
16
+ from torch import nn
17
+ from torch.nn import functional as F
18
+ from torch.nn.utils import parametrize
19
+
20
+
21
+ # For now, don't do anything
22
+ class DAMP(nn.Identity):
23
+ def __init__(self, std: float):
24
+ super().__init__()
25
+ self.std = std
26
+
27
+
28
+ def enable_damp(model: nn.Module, std: float):
29
+ if isinstance(model, (list, tuple)):
30
+ for m in model:
31
+ enable_damp(m, std)
32
+ return
33
+
34
+ for name, module in model.named_modules():
35
+ if isinstance(module, nn.Linear):
36
+ parametrize.register_parametrization(module, 'weight', DAMP(std))
37
+
38
+
39
+ def configure_damp_from_args(model: nn.Module, args):
40
+ damp = getattr(args, 'damp', None)
41
+ if damp:
42
+ enable_damp(model, damp)
tim/models/nvidia_radio/radio/enable_spectral_reparam.py ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ from logging import getLogger
10
+ import math
11
+ import os
12
+ from typing import Dict, List, Optional, Union, Tuple
13
+ from types import MethodType
14
+
15
+ import torch
16
+ from torch import nn
17
+ from torch.nn import functional as F
18
+ from torch.nn.utils import parametrize
19
+ from torch.nn.utils.parametrizations import _SpectralNorm
20
+
21
+ from timm.models.vision_transformer import Attention, Mlp
22
+
23
+ _EPS = 1e-5
24
+
25
+
26
+ class _SNReweight(_SpectralNorm):
27
+ def __init__(self, weight: torch.Tensor, *args, init_norm_to_current: bool = False, alpha: float = 0.05, version: int = 2, **kwargs):
28
+ super().__init__(weight, *args, **kwargs)
29
+
30
+ self.alpha = alpha
31
+ self.version = version
32
+ self.register_buffer('_sn_version', torch.tensor(version))
33
+
34
+ if init_norm_to_current:
35
+ # This will set the numerator to match the denominator, which should preserve the original values
36
+ init_scale = self._get_sigma(weight, n_power_iterations=20).item()
37
+ else:
38
+ init_scale = 1.0
39
+
40
+ if version == 1:
41
+ init_value = init_scale
42
+ elif version == 2:
43
+ t = init_scale - alpha
44
+ if t < _EPS:
45
+ getLogger("spectral_reparam").warn(f'The initialized spectral norm {init_scale} is too small to be represented. Setting to {_EPS} instead.')
46
+ t = _EPS
47
+
48
+ init_value = math.log(math.exp(t) - 1)
49
+ else:
50
+ raise ValueError(f'Unsupported version: {version}')
51
+
52
+ # Make 2D so that weight decay gets applied
53
+ self.scale = nn.Parameter(torch.tensor([[init_value]], dtype=torch.float32, device=weight.device))
54
+
55
+ # Re-implementing this because we need to make division by sigma safe
56
+ def _get_sigma(self, weight: torch.Tensor, n_power_iterations: int = None) -> torch.Tensor:
57
+ if not n_power_iterations:
58
+ n_power_iterations = self.n_power_iterations
59
+ if weight.ndim == 1:
60
+ # Faster and more exact path, no need to approximate anything
61
+ sigma = weight.norm()
62
+ else:
63
+ weight_mat = self._reshape_weight_to_matrix(weight)
64
+ if self.training:
65
+ self._power_method(weight_mat, n_power_iterations)
66
+ # See above on why we need to clone
67
+ u = self._u.clone(memory_format=torch.contiguous_format)
68
+ v = self._v.clone(memory_format=torch.contiguous_format)
69
+ # The proper way of computing this should be through F.bilinear, but
70
+ # it seems to have some efficiency issues:
71
+ # https://github.com/pytorch/pytorch/issues/58093
72
+ sigma = torch.dot(u, torch.mv(weight_mat, v))
73
+
74
+ return sigma + self.eps
75
+
76
+ def forward(self, weight: torch.Tensor, *args, **kwargs):
77
+ dtype = weight.dtype
78
+ sigma = self._get_sigma(weight, *args, **kwargs)
79
+
80
+ if self.version == 1:
81
+ scale = self.scale
82
+ elif self.version == 2:
83
+ scale = F.softplus(self.scale) + self.alpha
84
+ else:
85
+ raise ValueError(f'Unsupported version: {self.version}')
86
+
87
+ scale = scale.float() / sigma.float()
88
+
89
+ y = weight * scale
90
+
91
+ if dtype in (torch.float16, torch.bfloat16):
92
+ y = y.to(dtype)
93
+ return y
94
+
95
+ def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
96
+ version_key = f'{prefix}_sn_version'
97
+ if version_key not in state_dict:
98
+ self.version = 1
99
+ state_dict[version_key] = torch.tensor(1)
100
+ return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
101
+
102
+
103
+ class _ChunkedSNReweight(nn.Module):
104
+ def __init__(self, weight: torch.Tensor, num_chunks: int, *args, init_norm_to_current: bool = False, **kwargs):
105
+ super().__init__()
106
+
107
+ self.num_chunks = num_chunks
108
+ parts = weight.split(weight.shape[0] // num_chunks, dim=0)
109
+
110
+ self.parts = nn.ModuleList([
111
+ _SNReweight(p, *args, init_norm_to_current=init_norm_to_current, **kwargs)
112
+ for p in parts
113
+ ])
114
+
115
+ def forward(self, weight: torch.Tensor, *args, **kwargs):
116
+ parts = weight.split(weight.shape[0] // self.num_chunks, dim=0)
117
+
118
+ parts = [
119
+ fn(p)
120
+ for fn, p in zip(self.parts, parts)
121
+ ]
122
+
123
+ return torch.cat(parts, dim=0)
124
+
125
+
126
+ class _AttnSNReweight(_ChunkedSNReweight):
127
+ def __init__(self, weight: torch.Tensor, *args, init_norm_to_current: bool = False, renorm_values: bool = False, **kwargs):
128
+ super().__init__(weight, 3, *args, init_norm_to_current=init_norm_to_current, **kwargs)
129
+
130
+ if not renorm_values:
131
+ self.parts[2] = nn.Identity()
132
+
133
+
134
+ def enable_spectral_reparam(model: Union[nn.Module, List[nn.Module]],
135
+ n_power_iterations: int = 1,
136
+ eps: float = 1e-6,
137
+ init_norm_to_current: bool = False,
138
+ renorm_values: bool = True,
139
+ renorm_mlp: bool = True,
140
+ state_dict_guidance: Optional[Dict[str, torch.Tensor]] = None):
141
+ if isinstance(model, (list, tuple)):
142
+ for i, sub in enumerate(model):
143
+ sub_sd = state_dict_guidance[i] if isinstance(state_dict_guidance, (list, tuple)) else state_dict_guidance
144
+ enable_spectral_reparam(sub, n_power_iterations=n_power_iterations, eps=eps,
145
+ init_norm_to_current=init_norm_to_current, renorm_values=renorm_values,
146
+ renorm_mlp=renorm_mlp, state_dict_guidance=sub_sd)
147
+ return
148
+
149
+ print('Enabling spectral reparametrization')
150
+ args = dict(n_power_iterations=n_power_iterations, dim=0, eps=eps, init_norm_to_current=init_norm_to_current)
151
+ visited_prefixes = set()
152
+
153
+ def is_guidance_parametrized(name: str):
154
+ if state_dict_guidance is None:
155
+ return True
156
+
157
+ p_name = f'{name}.parametrizations'
158
+ is_prm = any(k for k in state_dict_guidance if k.startswith(p_name) and k.endswith('_sn_version'))
159
+ return is_prm
160
+
161
+ def parametrize_linear(linear: nn.Linear):
162
+ parametrize.register_parametrization(
163
+ linear,
164
+ 'weight',
165
+ _SNReweight(linear.weight, **args)
166
+ )
167
+
168
+ for name, mod in model.named_modules():
169
+ pref = '.'.join(name.split('.')[:-1])
170
+ if pref in visited_prefixes:
171
+ continue
172
+
173
+ if isinstance(mod, Attention) or name.endswith('.attn'):
174
+ if is_guidance_parametrized(f'{name}.qkv'):
175
+ parametrize.register_parametrization(
176
+ mod.qkv,
177
+ 'weight',
178
+ _AttnSNReweight(mod.qkv.weight, renorm_values=renorm_values, **args),
179
+ )
180
+ if hasattr(mod, 'proj') and is_guidance_parametrized(f'{name}.proj'):
181
+ parametrize_linear(mod.proj)
182
+ visited_prefixes.add(name)
183
+ elif name.endswith('mlp') and renorm_mlp and hasattr(mod, 'w12'):
184
+ if is_guidance_parametrized(f'{name}.w12'):
185
+ parametrize.register_parametrization(
186
+ mod.w12,
187
+ 'weight',
188
+ _ChunkedSNReweight(mod.w12.weight, num_chunks=2, **args),
189
+ )
190
+ if is_guidance_parametrized(f'{name}.w3'):
191
+ parametrize_linear(mod.w3)
192
+ visited_prefixes.add(name)
193
+ elif isinstance(mod, nn.Linear) and 'patch_generator' not in name and is_guidance_parametrized(name):
194
+ parametrize_linear(mod)
195
+
196
+
197
+ def configure_spectral_reparam_from_args(model: nn.Module, args, state_dict_guidance: Optional[Dict[str, torch.Tensor]] = None):
198
+ spectral_reparam = getattr(args, 'spectral_reparam', False)
199
+ if isinstance(spectral_reparam, bool) and spectral_reparam:
200
+ enable_spectral_reparam(model, init_norm_to_current=True, state_dict_guidance=state_dict_guidance)
201
+ elif isinstance(spectral_reparam, dict):
202
+ enable_spectral_reparam(
203
+ model,
204
+ n_power_iterations=spectral_reparam.get('n_power_iterations', 1),
205
+ eps=spectral_reparam.get('eps', 1e-12),
206
+ init_norm_to_current=True,
207
+ state_dict_guidance=state_dict_guidance,
208
+ )
209
+
210
+
211
+ def disable_spectral_reparam(model: nn.Module):
212
+ print('Disabling spectral reparametrization')
213
+ for name, mod in model.named_modules():
214
+ if parametrize.is_parametrized(mod):
215
+ parametrize.remove_parametrizations(mod, 'weight')
216
+ pass
217
+
218
+
219
+
220
+ if __name__ == '__main__':
221
+ import argparse
222
+ from . import radio_model as create_model
223
+
224
+ parser = argparse.ArgumentParser(description='Remove parametrization from state dict')
225
+ parser.add_argument('--checkpoint', type=str, required=True, help='The checkpoint to load')
226
+ parser.add_argument('--output', type=str, default='', help='Where to store the checkpoint')
227
+ parser.add_argument('--release', default=False, action='store_true', help='Prune extraneous checkpoint fields')
228
+ parser.add_argument('--strict', default=False, action='store_true', help='Strictly load the state dict')
229
+
230
+ args = parser.parse_args()
231
+
232
+ if not args.output:
233
+ chk_dir, chk_name = os.path.split(args.checkpoint)
234
+ args.output = os.path.join(chk_dir, f'clean_{chk_name}')
235
+ print(f'Set output to "{args.output}"')
236
+
237
+ chk = torch.load(args.checkpoint, map_location='cpu', mmap=True)
238
+
239
+ model = create_model.create_model_from_args(chk['args'])
240
+
241
+ key = 'base_model.'
242
+ mod_state = dict()
243
+ extra_state = dict()
244
+ for k, v in chk['state_dict'].items():
245
+ if k.startswith(key):
246
+ mod_state[k[len(key):]] = v
247
+ else:
248
+ extra_state[k] = v
249
+
250
+ chk_load_info = model.load_state_dict(mod_state, strict=args.strict)
251
+ if chk_load_info.unexpected_keys or chk_load_info.missing_keys:
252
+ print(chk_load_info)
253
+
254
+ if chk['args'].spectral_reparam:
255
+ disable_spectral_reparam(model)
256
+
257
+ if hasattr(chk['args'], 'dtype'):
258
+ model.to(dtype=chk['args'].dtype)
259
+
260
+ mod_state = model.state_dict()
261
+ final_state = dict()
262
+ final_state.update({f'{key}{k}': v for k, v in mod_state.items()})
263
+ final_state.update(extra_state)
264
+
265
+ chk['state_dict'] = final_state
266
+ chk['args'].spectral_reparam = False
267
+
268
+ if args.release:
269
+ chk = {
270
+ 'arch': chk['arch'],
271
+ 'epoch': chk['epoch'],
272
+ 'state_dict': chk['state_dict'],
273
+ 'args': chk['args'],
274
+ }
275
+
276
+ torch.save(chk, args.output)
277
+ pass
tim/models/nvidia_radio/radio/eradio_model.py ADDED
@@ -0,0 +1,1392 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
6
+ # and proprietary rights in and to this software, related documentation
7
+ # and any modifications thereto. Any use, reproduction, disclosure or
8
+ # distribution of this software and related documentation without an express
9
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
10
+
11
+ # E-RADIO model from
12
+ # Mike Ranzinger, Greg Heinrich, Jan Kautz, and Pavlo Molchanov. "AM-RADIO: Agglomerative Model--Reduce All Domains Into One." arXiv preprint arXiv:2312.06709 (2023).
13
+
14
+ # based on FasterViT, Swin Transformer, YOLOv8
15
+
16
+ # FasterViT:
17
+ # Ali Hatamizadeh, Greg Heinrich, Hongxu Yin, Andrew Tao, Jose M. Alvarez, Jan Kautz, and Pavlo Molchanov. "FasterViT: Fast Vision Transformers with Hierarchical Attention." arXiv preprint arXiv:2306.06189 (2023).
18
+
19
+ import timm
20
+ import torch
21
+ import torch.nn as nn
22
+ from timm.models.registry import register_model
23
+
24
+ from timm.models.layers import trunc_normal_, DropPath, LayerNorm2d
25
+ import numpy as np
26
+ import torch.nn.functional as F
27
+ import math
28
+ import warnings
29
+
30
+ #######################
31
+ ## Codebase from YOLOv8
32
+ ## BEGINNING
33
+ #######################
34
+
35
+ class C2f(nn.Module):
36
+ """Faster Implementation of CSP Bottleneck with 2 convolutions."""
37
+ """From YOLOv8 codebase"""
38
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, drop_path=None): # ch_in, ch_out, number, shortcut, groups, expansion
39
+ super().__init__()
40
+ if drop_path is None:
41
+ drop_path = [0.0] * n
42
+
43
+ self.c = int(c2 * e) # hidden channels
44
+ self.cv1 = Conv(c1, 2 * self.c, 1, 1)
45
+ self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
46
+ self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0, drop_path=drop_path[i]) for i in range(n))
47
+
48
+ def forward(self, x):
49
+ """Forward pass through C2f layer."""
50
+ y = list(self.cv1(x).chunk(2, 1))
51
+ y.extend(m(y[-1]) for m in self.m)
52
+ return self.cv2(torch.cat(y, 1))
53
+
54
+ def forward_split(self, x):
55
+ """Forward pass using split() instead of chunk()."""
56
+ y = list(self.cv1(x).split((self.c, self.c), 1))
57
+ y.extend(m(y[-1]) for m in self.m)
58
+ return self.cv2(torch.cat(y, 1))
59
+
60
+ class Bottleneck(nn.Module):
61
+ """Standard bottleneck."""
62
+
63
+ def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5, drop_path=0.0): # ch_in, ch_out, shortcut, groups, kernels, expand
64
+ super().__init__()
65
+ c_ = int(c2 * e) # hidden channels
66
+ self.cv1 = Conv(c1, c_, k[0], 1)
67
+ self.cv2 = Conv(c_, c2, k[1], 1, g=g)
68
+ self.add = shortcut and c1 == c2
69
+ self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
70
+
71
+ def forward(self, x):
72
+ """'forward()' applies the YOLOv5 FPN to input data."""
73
+ return x + self.drop_path1(self.cv2(self.cv1(x))) if self.add else self.cv2(self.cv1(x))
74
+
75
+
76
+ class Conv(nn.Module):
77
+ """Modified to support layer fusion"""
78
+ default_act = nn.SiLU() # default activation
79
+
80
+ def __init__(self, a, b, kernel_size=1, stride=1, padding=None, g=1, dilation=1, bn_weight_init=1, bias=False, act=True):
81
+ super().__init__()
82
+
83
+ self.conv = torch.nn.Conv2d(a, b, kernel_size, stride, autopad(kernel_size, padding, dilation), dilation, g, bias=False)
84
+ if 1:
85
+ self.bn = torch.nn.BatchNorm2d(b)
86
+ torch.nn.init.constant_(self.bn.weight, bn_weight_init)
87
+ torch.nn.init.constant_(self.bn.bias, 0)
88
+ self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
89
+
90
+
91
+ def forward(self,x):
92
+ x = self.conv(x)
93
+ x = self.bn(x)
94
+ x = self.act(x)
95
+ return x
96
+
97
+ @torch.no_grad()
98
+ def switch_to_deploy(self):
99
+ # return 1
100
+ if not isinstance(self.bn, nn.Identity):
101
+ c, bn = self.conv, self.bn
102
+ w = bn.weight / (bn.running_var + bn.eps) ** 0.5
103
+ w = c.weight * w[:, None, None, None]
104
+ b = bn.bias - bn.running_mean * bn.weight / \
105
+ (bn.running_var + bn.eps)**0.5
106
+
107
+ self.conv.weight.data.copy_(w)
108
+ self.conv.bias = nn.Parameter(b)
109
+
110
+ self.bn = nn.Identity()
111
+
112
+ def autopad(k, p=None, d=1): # kernel, padding, dilation
113
+ """Pad to 'same' shape outputs."""
114
+ if d > 1:
115
+ k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
116
+ if p is None:
117
+ p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
118
+ return p
119
+
120
+
121
+ #######################
122
+ ## Codebase from YOLOv8
123
+ ## END
124
+ #######################
125
+
126
+ def pixel_unshuffle(data, factor=2):
127
+ # performs nn.PixelShuffle(factor) in reverse, torch has some bug for ONNX and TRT, so doing it manually
128
+ B, C, H, W = data.shape
129
+ return data.view(B, C, factor, H//factor, factor, W//factor).permute(0,1,2,4,3,5).reshape(B, -1, H//factor, W//factor)
130
+
131
+ class SwiGLU(nn.Module):
132
+ # should be more advanced, but doesnt improve results so far
133
+ def forward(self, x):
134
+ x, gate = x.chunk(2, dim=-1)
135
+ return F.silu(gate) * x
136
+
137
+
138
+ def window_partition(x, window_size):
139
+ """
140
+ Function for partitioning image into windows and later do windowed attention
141
+ Args:
142
+ x: (B, C, H, W)
143
+ window_size: window size
144
+ Returns:
145
+ windows - local window features (num_windows*B, window_size*window_size, C)
146
+ (Hp, Wp) - the size of the padded image
147
+ """
148
+ B, C, H, W = x.shape
149
+
150
+ if window_size == 0 or (window_size==H and window_size==W):
151
+ windows = x.flatten(2).transpose(1, 2)
152
+ Hp, Wp = H, W
153
+ else:
154
+ pad_h = (window_size - H % window_size) % window_size
155
+ pad_w = (window_size - W % window_size) % window_size
156
+ if pad_h > 0 or pad_w > 0:
157
+ x = F.pad(x, (0, pad_w, 0, pad_h), mode="reflect")
158
+ Hp, Wp = H + pad_h, W + pad_w
159
+
160
+ x = x.view(B, C, Hp // window_size, window_size, Wp // window_size, window_size)
161
+ windows = x.permute(0, 2, 4, 3, 5, 1).reshape(-1, window_size*window_size, C)
162
+
163
+ return windows, (Hp, Wp)
164
+
165
+ class Conv2d_BN(nn.Module):
166
+ '''
167
+ Conv2d + BN layer with folding capability to speed up inference
168
+ Can be merged with Conv() function with additional arguments
169
+ '''
170
+ def __init__(self, a, b, kernel_size=1, stride=1, padding=0, dilation=1, groups=1, bn_weight_init=1, bias=False):
171
+ super().__init__()
172
+ self.conv = torch.nn.Conv2d(a, b, kernel_size, stride, padding, dilation, groups, bias=False)
173
+ if 1:
174
+ self.bn = torch.nn.BatchNorm2d(b)
175
+ torch.nn.init.constant_(self.bn.weight, bn_weight_init)
176
+ torch.nn.init.constant_(self.bn.bias, 0)
177
+
178
+ def forward(self,x):
179
+ x = self.conv(x)
180
+ x = self.bn(x)
181
+ return x
182
+
183
+ @torch.no_grad()
184
+ def switch_to_deploy(self):
185
+ if not isinstance(self.bn, nn.Identity):
186
+ c, bn = self.conv, self.bn
187
+ w = bn.weight / (bn.running_var + bn.eps) ** 0.5
188
+ w = c.weight * w[:, None, None, None]
189
+ b = bn.bias - bn.running_mean * bn.weight / \
190
+ (bn.running_var + bn.eps)**0.5
191
+ self.conv.weight.data.copy_(w)
192
+ self.conv.bias = nn.Parameter(b)
193
+ self.bn = nn.Identity()
194
+
195
+
196
+
197
+ def window_reverse(windows, window_size, H, W, pad_hw):
198
+ """
199
+ Windows to the full feature map
200
+ Args:
201
+ windows: local window features (num_windows*B, window_size, window_size, C)
202
+ window_size: Window size
203
+ H: Height of image
204
+ W: Width of image
205
+ pad_w - a tuple of image passing used in windowing step
206
+ Returns:
207
+ x: (B, C, H, W)
208
+
209
+ """
210
+ # print(f"window_reverse, windows.shape {windows.shape}")
211
+ Hp, Wp = pad_hw
212
+ if window_size == 0 or (window_size==H and window_size==W):
213
+ B = int(windows.shape[0] / (Hp * Wp / window_size / window_size))
214
+ x = windows.transpose(1, 2).view(B, -1, H, W)
215
+ else:
216
+ B = int(windows.shape[0] / (Hp * Wp / window_size / window_size))
217
+ x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
218
+ x = x.permute(0, 5, 1, 3, 2, 4).reshape(B,windows.shape[2], Hp, Wp)
219
+
220
+ if Hp > H or Wp > W:
221
+ x = x[:, :, :H, :W, ].contiguous()
222
+
223
+ return x
224
+
225
+
226
+
227
+ class PosEmbMLPSwinv2D(nn.Module):
228
+ """
229
+ 2D positional embedding from Swin Transformer v2
230
+ Added functionality to store the positional embedding in the model and not recompute it every time
231
+ """
232
+ def __init__(
233
+ self, window_size, pretrained_window_size, num_heads, seq_length, no_log=False, cpb_mlp_hidden=512,
234
+ ):
235
+ super().__init__()
236
+ self.window_size = window_size
237
+ self.num_heads = num_heads
238
+ # mlp to generate continuous relative position bias
239
+ self.cpb_mlp = nn.Sequential(
240
+ nn.Linear(2, cpb_mlp_hidden, bias=True),
241
+ nn.ReLU(inplace=True),
242
+ nn.Linear(cpb_mlp_hidden, num_heads, bias=False),
243
+ )
244
+
245
+ self.grid_exists = False
246
+ self.seq_length = seq_length
247
+ self.deploy = False
248
+ self.num_heads = num_heads
249
+ self.no_log = no_log
250
+ self.pretrained_window_size = pretrained_window_size
251
+ self.relative_bias_window_size = window_size
252
+
253
+ relative_coords_table, relative_position_index, relative_bias = self.relative_bias_initialization(window_size, num_heads,
254
+ pretrained_window_size, seq_length,
255
+ no_log)
256
+
257
+ self.register_buffer("relative_coords_table", relative_coords_table)
258
+ self.register_buffer("relative_position_index", relative_position_index)
259
+ self.register_buffer("relative_bias", relative_bias) # for EMA
260
+
261
+ def relative_bias_initialization(self, window_size, num_heads, pretrained_window_size, seq_length, no_log):
262
+ # as in separate function to support window size chage after model weights loading
263
+ relative_coords_h = torch.arange(
264
+ -(window_size[0] - 1), window_size[0], dtype=torch.float32
265
+ )
266
+ relative_coords_w = torch.arange(
267
+ -(window_size[1] - 1), window_size[1], dtype=torch.float32
268
+ )
269
+ relative_coords_table = (
270
+ torch.stack(torch.meshgrid([relative_coords_h, relative_coords_w]))
271
+ .permute(1, 2, 0)
272
+ .contiguous()
273
+ .unsqueeze(0)
274
+ ) # 1, 2*Wh-1, 2*Ww-1, 2
275
+ if pretrained_window_size[0] > 0:
276
+ relative_coords_table[:, :, :, 0] /= pretrained_window_size[0] - 1
277
+ relative_coords_table[:, :, :, 1] /= pretrained_window_size[1] - 1
278
+ else:
279
+ relative_coords_table[:, :, :, 0] /= self.window_size[0] - 1
280
+ relative_coords_table[:, :, :, 1] /= self.window_size[1] - 1
281
+
282
+ if not no_log:
283
+ relative_coords_table *= 8 # normalize to -8, 8
284
+ relative_coords_table = (
285
+ torch.sign(relative_coords_table)
286
+ * torch.log2(torch.abs(relative_coords_table) + 1.0)
287
+ / np.log2(8)
288
+ )
289
+
290
+ # get pair-wise relative position index for each token inside the window
291
+ coords_h = torch.arange(self.window_size[0])
292
+ coords_w = torch.arange(self.window_size[1])
293
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
294
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
295
+ relative_coords = (
296
+ coords_flatten[:, :, None] - coords_flatten[:, None, :]
297
+ ) # 2, Wh*Ww, Wh*Ww
298
+ relative_coords = relative_coords.permute(
299
+ 1, 2, 0
300
+ ).contiguous() # Wh*Ww, Wh*Ww, 2
301
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
302
+ relative_coords[:, :, 1] += self.window_size[1] - 1
303
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
304
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
305
+
306
+ relative_bias = torch.zeros(1, num_heads, seq_length, seq_length)
307
+
308
+ self.relative_bias_window_size = window_size
309
+
310
+ return relative_coords_table, relative_position_index, relative_bias
311
+
312
+
313
+ def switch_to_deploy(self):
314
+ self.deploy = True
315
+ self.grid_exists = True
316
+
317
+ def forward(self, input_tensor):
318
+ # for efficiency, we want this forward to be folded into a single operation (sum)
319
+ # if resolution stays the same, then we dont need to recompute MLP layers
320
+
321
+ if not self.deploy or self.training:
322
+ self.grid_exists = False
323
+
324
+ #compare if all elements in self.window_size list match those in self.relative_bias_window_size
325
+ if not all([self.window_size[i] == self.relative_bias_window_size[i] for i in range(len(self.window_size))]):
326
+ relative_coords_table, relative_position_index, relative_bias = self.relative_bias_initialization(self.window_size, self.num_heads,
327
+ self.pretrained_window_size, self.seq_length,
328
+ self.no_log)
329
+
330
+ self.relative_coords_table = relative_coords_table.to(self.relative_coords_table.device)
331
+ self.relative_position_index = relative_position_index.to(self.relative_position_index.device)
332
+ self.relative_bias = relative_bias.to(self.relative_bias.device)
333
+
334
+ if self.deploy and self.grid_exists:
335
+ input_tensor = input_tensor + self.relative_bias
336
+ return input_tensor
337
+
338
+ if 1:
339
+ self.grid_exists = True
340
+
341
+ relative_position_bias_table = self.cpb_mlp(
342
+ self.relative_coords_table
343
+ ).view(-1, self.num_heads)
344
+ relative_position_bias = relative_position_bias_table[
345
+ self.relative_position_index.view(-1)
346
+ ].view(
347
+ self.window_size[0] * self.window_size[1],
348
+ self.window_size[0] * self.window_size[1],
349
+ -1,
350
+ ) # Wh*Ww,Wh*Ww,nH
351
+
352
+ relative_position_bias = relative_position_bias.permute(
353
+ 2, 0, 1
354
+ ).contiguous() # nH, Wh*Ww, Wh*Ww
355
+ relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
356
+
357
+ self.relative_bias = relative_position_bias.unsqueeze(0)
358
+
359
+ input_tensor = input_tensor + self.relative_bias
360
+ return input_tensor
361
+
362
+
363
+ class GRAAttentionBlock(nn.Module):
364
+ def __init__(self, window_size, dim_in, dim_out,
365
+ num_heads, drop_path=0., qk_scale=None, qkv_bias=False,
366
+ norm_layer=nn.LayerNorm, layer_scale=None,
367
+ use_swiglu=True,
368
+ subsample_ratio=1, dim_ratio=1, conv_base=False,
369
+ do_windowing=True, multi_query=False, use_shift=0,
370
+ cpb_mlp_hidden=512, conv_groups_ratio=0):
371
+ '''
372
+ Global Resolution Attention Block , see README for details
373
+ Attention with subsampling to get a bigger receptive field for attention
374
+ conv_base - use conv2d instead of avgpool2d for downsample / upsample
375
+
376
+
377
+ '''
378
+ super().__init__()
379
+
380
+ self.shift_size=window_size//2 if use_shift else 0
381
+
382
+ self.do_windowing = do_windowing
383
+ self.subsample_ratio = subsample_ratio
384
+
385
+
386
+
387
+ if do_windowing:
388
+ if conv_base:
389
+ self.downsample_op = nn.Conv2d(dim_in, dim_out, kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
390
+
391
+
392
+ self.downsample_mixer = nn.Identity()
393
+ self.upsample_mixer = nn.Identity()
394
+ self.upsample_op = nn.ConvTranspose2d(dim_in, dim_out, kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
395
+ else:
396
+ self.downsample_op = nn.AvgPool2d(kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
397
+ self.downsample_mixer = Conv2d_BN(dim_in, dim_out, kernel_size=1, stride=1) if subsample_ratio > 1 else nn.Identity()
398
+ self.upsample_mixer = nn.Upsample(scale_factor=subsample_ratio, mode='nearest') if subsample_ratio > 1 else nn.Identity()
399
+ self.upsample_op = Conv2d_BN(dim_in, dim_out, kernel_size=1, stride=1, padding=0, bias=False) if subsample_ratio > 1 else nn.Identity()
400
+
401
+
402
+ # in case there is no downsampling conv we want to have it separately
403
+ # will help with information propagation between windows
404
+ if subsample_ratio == 1:
405
+ # conv_groups_ratio=0
406
+ self.pre_conv = Conv2d_BN(dim_in, dim_in, kernel_size=3, stride=1, padding=1, groups=max(1,int(conv_groups_ratio*dim_in)), bias=False)
407
+ # self.pre_conv = nn.Conv2d(dim_in, dim_in, kernel_size=3, stride=1, padding=1, groups=max(1,int(conv_groups_ratio*dim_in)), bias=False)
408
+ # self.pre_conv_act = nn.ReLU6()
409
+ #for simplicity:
410
+ self.pre_conv_act = nn.Identity()
411
+ if conv_groups_ratio == -1:
412
+ self.pre_conv = nn.Identity()
413
+ self.pre_conv_act = nn.Identity()
414
+
415
+ self.window_size = window_size
416
+
417
+ self.norm1 = norm_layer(dim_in)
418
+
419
+ self.attn = WindowAttention(
420
+ dim_in,
421
+ num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
422
+ resolution=window_size,
423
+ seq_length=window_size**2, dim_out=dim_in, multi_query=multi_query,
424
+ shift_size=self.shift_size, cpb_mlp_hidden=cpb_mlp_hidden)
425
+
426
+ self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
427
+
428
+ use_layer_scale = layer_scale is not None and type(layer_scale) in [int, float]
429
+ self.gamma1 = nn.Parameter(layer_scale * torch.ones(dim_in)) if use_layer_scale else 1
430
+
431
+ ### mlp layer
432
+ mlp_ratio = 4
433
+ self.norm2 = norm_layer(dim_in)
434
+ mlp_hidden_dim = int(dim_in * mlp_ratio)
435
+
436
+ activation = nn.GELU if not use_swiglu else SwiGLU
437
+ mlp_hidden_dim = int((4 * dim_in * 1 / 2) / 64) * 64 if use_swiglu else mlp_hidden_dim
438
+
439
+ self.mlp = Mlp(in_features=dim_in, hidden_features=mlp_hidden_dim, act_layer=activation, use_swiglu=use_swiglu)
440
+
441
+ self.gamma2 = nn.Parameter(layer_scale * torch.ones(dim_in)) if layer_scale else 1
442
+ self.drop_path2=DropPath(drop_path) if drop_path > 0. else nn.Identity()
443
+
444
+
445
+ def forward(self, x):
446
+ skip_connection = x
447
+ attn_mask = None
448
+
449
+ # in case there is no downsampling conv we want to have it separately
450
+ # will help with information propagation
451
+ if self.subsample_ratio == 1:
452
+ x = self.pre_conv_act(self.pre_conv(x)) + skip_connection
453
+
454
+ if self.do_windowing:
455
+ # performing windowing if required
456
+ x = self.downsample_op(x)
457
+ x = self.downsample_mixer(x)
458
+
459
+ if self.window_size>0:
460
+ H, W = x.shape[2], x.shape[3]
461
+
462
+ if self.shift_size > 0 and H>self.window_size and W>self.window_size:
463
+ # @swin like cyclic shift, doesnt show better performance
464
+ x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(2, 3))
465
+
466
+ x, pad_hw = window_partition(x, self.window_size)
467
+
468
+ if self.shift_size > 0 and H>self.window_size and W>self.window_size:
469
+ # set atten matrix to have -100 and the top right square
470
+ # attn[:, :, :-self.shift_size, -self.shift_size:] = -100.0
471
+ # calculate attention mask for SW-MSA
472
+ # not used in final version, can be useful for some cases especially for high res
473
+ H, W = pad_hw
474
+ img_mask = torch.zeros((1, H, W, 1), device=x.device) # 1 H W 1
475
+ h_slices = (slice(0, -self.window_size),
476
+ slice(-self.window_size, -self.shift_size),
477
+ slice(-self.shift_size, None))
478
+ w_slices = (slice(0, -self.window_size),
479
+ slice(-self.window_size, -self.shift_size),
480
+ slice(-self.shift_size, None))
481
+ cnt = 0
482
+ for h in h_slices:
483
+ for w in w_slices:
484
+ img_mask[:, h, w, :] = cnt
485
+ cnt += 1
486
+ img_mask = img_mask.transpose(1,2).transpose(1,3)
487
+ mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
488
+
489
+ mask_windows = mask_windows[0].view(-1, self.window_size * self.window_size)
490
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
491
+ attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
492
+
493
+ # window attention
494
+ x = x + self.drop_path1(self.gamma1*self.attn(self.norm1(x), attn_mask=attn_mask)) # or pass H,W
495
+ # mlp layer
496
+ x = x + self.drop_path2(self.gamma2*self.mlp(self.norm2(x)))
497
+
498
+ if self.do_windowing:
499
+ if self.window_size > 0:
500
+ x = window_reverse(x, self.window_size, H, W, pad_hw)
501
+
502
+ # reverse cyclic shift
503
+ if self.shift_size > 0 and H>self.window_size and W>self.window_size:
504
+ # @swin like cyclic shift, not tested
505
+ x = torch.roll(x, shifts=(self.shift_size, self.shift_size), dims=(2, 3))
506
+
507
+ x = self.upsample_mixer(x)
508
+ x = self.upsample_op(x)
509
+
510
+
511
+ if x.shape[2] != skip_connection.shape[2] or x.shape[3] != skip_connection.shape[3]:
512
+ x = torch.nn.functional.pad(x, ( 0, -x.shape[3] + skip_connection.shape[3], 0, -x.shape[2] + skip_connection.shape[2]), mode="reflect")
513
+ # need to add skip connection because downsampling and upsampling will break residual connection
514
+ # 0.5 is needed to make sure that the skip connection is not too strong
515
+ # in case of no downsample / upsample we can show that 0.5 compensates for the residual connection
516
+ x = 0.5 * x + 0.5 * skip_connection
517
+ return x
518
+
519
+
520
+
521
+
522
+ class MultiResolutionAttention(nn.Module):
523
+ """
524
+ MultiResolutionAttention (MRA) module
525
+ The idea is to use multiple attention blocks with different resolution
526
+ Feature maps are downsampled / upsampled for each attention block on different blocks
527
+ Every attention block supports windowing
528
+ """
529
+
530
+ def __init__(self, window_size, sr_ratio,
531
+ dim, dim_ratio, num_heads,
532
+ do_windowing=True,
533
+ layer_scale=1e-5, norm_layer=nn.LayerNorm,
534
+ drop_path = 0, qkv_bias=False, qk_scale=1.0,
535
+ use_swiglu=True, multi_query=False, conv_base=False,
536
+ use_shift=0, cpb_mlp_hidden=512, conv_groups_ratio=0) -> None:
537
+ """
538
+ Args:
539
+ input_resolution: input image resolution
540
+ window_size: window size
541
+ compression_ratio: compression ratio
542
+ max_depth: maximum depth of the GRA module
543
+ use_shift: do window shifting
544
+ """
545
+ super().__init__()
546
+
547
+ depth = len(sr_ratio)
548
+
549
+ self.attention_blocks = nn.ModuleList()
550
+
551
+
552
+ for i in range(depth):
553
+ subsample_ratio = sr_ratio[i]
554
+ if len(window_size) > i:
555
+ window_size_local = window_size[i]
556
+ else:
557
+ window_size_local = window_size[0]
558
+
559
+ self.attention_blocks.append(GRAAttentionBlock(window_size=window_size_local,
560
+ dim_in=dim, dim_out=dim, num_heads=num_heads,
561
+ qkv_bias=qkv_bias, qk_scale=qk_scale, norm_layer=norm_layer,
562
+ layer_scale=layer_scale, drop_path=drop_path,
563
+ use_swiglu=use_swiglu, subsample_ratio=subsample_ratio, dim_ratio=dim_ratio,
564
+ do_windowing=do_windowing, multi_query=multi_query, conv_base=conv_base,
565
+ use_shift=use_shift, cpb_mlp_hidden=cpb_mlp_hidden, conv_groups_ratio=conv_groups_ratio),
566
+ )
567
+
568
+ def forward(self, x):
569
+
570
+ for attention_block in self.attention_blocks:
571
+ x = attention_block(x)
572
+
573
+ return x
574
+
575
+
576
+
577
+ class Mlp(nn.Module):
578
+ """
579
+ Multi-Layer Perceptron (MLP) block
580
+ """
581
+
582
+ def __init__(self,
583
+ in_features,
584
+ hidden_features=None,
585
+ out_features=None,
586
+ act_layer=nn.GELU,
587
+ use_swiglu=True,
588
+ drop=0.):
589
+ """
590
+ Args:
591
+ in_features: input features dimension.
592
+ hidden_features: hidden features dimension.
593
+ out_features: output features dimension.
594
+ act_layer: activation function.
595
+ drop: dropout rate.
596
+ """
597
+
598
+ super().__init__()
599
+ out_features = out_features or in_features
600
+ hidden_features = hidden_features or in_features
601
+ self.fc1 = nn.Linear(in_features, hidden_features * (2 if use_swiglu else 1), bias=False)
602
+ self.act = act_layer()
603
+ self.fc2 = nn.Linear(hidden_features, out_features, bias=False)
604
+
605
+ def forward(self, x):
606
+ x_size = x.size()
607
+ x = x.view(-1, x_size[-1])
608
+ x = self.fc1(x)
609
+ x = self.act(x)
610
+ x = self.fc2(x)
611
+ x = x.view(x_size)
612
+ return x
613
+
614
+ class Downsample(nn.Module):
615
+ """
616
+ Down-sampling block
617
+ Pixel Unshuffle is used for down-sampling, works great accuracy - wise but takes 10% more TRT time
618
+ """
619
+
620
+ def __init__(self,
621
+ dim,
622
+ shuffle = False,
623
+ ):
624
+ """
625
+ Args:
626
+ dim: feature size dimension.
627
+ shuffle: idea with
628
+ keep_dim: bool argument for maintaining the resolution.
629
+ """
630
+
631
+ super().__init__()
632
+ dim_out = 2 * dim
633
+
634
+ if shuffle:
635
+ self.norm = lambda x: pixel_unshuffle(x, factor=2)
636
+ self.reduction = Conv2d_BN(dim*4, dim_out, 1, 1, 0, bias=False)
637
+ # pixel unshuffleging works well but doesnt provide any speedup
638
+ else:
639
+ # removed layer norm for better, in this formulation we are getting 10% better speed
640
+ # LayerNorm for high resolution inputs will be a pain as it pools over the entire spatial dimension
641
+ # therefore we remove it compared to the original implementation in FasterViT
642
+ self.norm = nn.Identity()
643
+ self.reduction = Conv2d_BN(dim, dim_out, 3, 2, 1, bias=False)
644
+
645
+
646
+ def forward(self, x):
647
+ x = self.norm(x)
648
+ x = self.reduction(x)
649
+ return x
650
+
651
+
652
+ class PatchEmbed(nn.Module):
653
+ """
654
+ Patch embedding block
655
+ Used to convert image into an initial set of feature maps with lower resolution
656
+ """
657
+
658
+ def __init__(self, in_chans=3, in_dim=64, dim=96, shuffle_down=False):
659
+ """
660
+ Args:
661
+ in_chans: number of input channels.
662
+ in_dim: intermediate feature size dimension to speed up stem.
663
+ dim: final stem channel number
664
+ shuffle_down: use PixelUnshuffle for down-sampling, effectively increases the receptive field
665
+ """
666
+
667
+ super().__init__()
668
+ # shuffle_down = False
669
+ if not shuffle_down:
670
+ self.proj = nn.Identity()
671
+ self.conv_down = nn.Sequential(
672
+ Conv2d_BN(in_chans, in_dim, 3, 2, 1, bias=False),
673
+ nn.ReLU(),
674
+ Conv2d_BN(in_dim, dim, 3, 2, 1, bias=False),
675
+ nn.ReLU()
676
+ )
677
+ else:
678
+ self.proj = lambda x: pixel_unshuffle(x, factor=4)
679
+ self.conv_down = nn.Sequential(Conv2d_BN(in_chans*16, dim, 3, 1, 1),
680
+ nn.ReLU(),
681
+ )
682
+
683
+ def forward(self, x):
684
+ x = self.proj(x)
685
+ x = self.conv_down(x)
686
+ return x
687
+
688
+
689
+
690
+ class ConvBlock(nn.Module):
691
+ """
692
+ Convolutional block, used in first couple of stages
693
+ Experimented with plan resnet-18 like modules, they are the best in terms of throughput
694
+ Finally, YOLOv8 idea seem to work fine (resnet-18 like block with squeezed feature dimension, and feature concatendation at the end)
695
+ """
696
+ def __init__(self, dim,
697
+ drop_path=0.,
698
+ layer_scale=None,
699
+ kernel_size=3,
700
+ ):
701
+ super().__init__()
702
+
703
+ self.conv1 = Conv2d_BN(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
704
+ self.act1 = nn.GELU()
705
+
706
+ self.conv2 = Conv2d_BN(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
707
+
708
+ self.layer_scale = layer_scale
709
+ if layer_scale is not None and type(layer_scale) in [int, float]:
710
+ self.gamma = nn.Parameter(layer_scale * torch.ones(dim))
711
+ self.layer_scale = True
712
+ else:
713
+ self.layer_scale = False
714
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
715
+
716
+ def forward(self, x):
717
+ input = x
718
+
719
+ x = self.conv1(x)
720
+ x = self.act1(x)
721
+ x = self.conv2(x)
722
+
723
+ if self.layer_scale:
724
+ x = x * self.gamma.view(1, -1, 1, 1)
725
+ x = input + self.drop_path(x)
726
+ return x
727
+
728
+
729
+ class WindowAttention(nn.Module):
730
+ # Windowed Attention from SwinV2
731
+ # use a MLP trick to deal with various input image resolutions, then fold it to improve speed
732
+
733
+ def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, resolution=0,
734
+ seq_length=0, dim_out=None, multi_query=False, shift_size=0, cpb_mlp_hidden=512):
735
+ # taken from EdgeViT and tweaked with attention bias.
736
+ super().__init__()
737
+ if not dim_out: dim_out = dim
738
+ self.shift_size = shift_size
739
+ self.multi_query = multi_query
740
+ self.num_heads = num_heads
741
+ head_dim = dim // num_heads
742
+ self.head_dim = dim // num_heads
743
+
744
+ self.dim_internal = dim
745
+
746
+ self.scale = qk_scale or head_dim ** -0.5
747
+ if not multi_query:
748
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
749
+ else:
750
+ self.qkv = nn.Linear(dim, dim + 2*self.head_dim, bias=qkv_bias)
751
+
752
+ self.proj = nn.Linear(dim, dim_out, bias=False)
753
+ # attention positional bias
754
+ self.pos_emb_funct = PosEmbMLPSwinv2D(window_size=[resolution, resolution],
755
+ pretrained_window_size=[resolution, resolution],
756
+ num_heads=num_heads,
757
+ seq_length=seq_length,
758
+ cpb_mlp_hidden=cpb_mlp_hidden)
759
+
760
+ self.resolution = resolution
761
+
762
+ def forward(self, x, attn_mask = None):
763
+ B, N, C = x.shape
764
+
765
+ if not self.multi_query:
766
+ qkv = self.qkv(x).reshape(B, -1, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
767
+ q, k, v = qkv[0], qkv[1], qkv[2]
768
+ else:
769
+ qkv = self.qkv(x)
770
+ (q, k, v) = qkv.split([self.dim_internal, self.head_dim, self.head_dim], dim=2)
771
+
772
+ q = q.reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
773
+ k = k.reshape(B, -1, 1, C // self.num_heads).permute(0, 2, 1, 3)
774
+ v = v.reshape(B, -1, 1, C // self.num_heads).permute(0, 2, 1, 3)
775
+
776
+ attn = (q @ k.transpose(-2, -1)) * self.scale
777
+
778
+ attn = self.pos_emb_funct(attn)
779
+
780
+ #add window shift
781
+ if attn_mask is not None:
782
+ nW = attn_mask.shape[0]
783
+ attn = attn.view(B // nW, nW, self.num_heads, N, N) + attn_mask.unsqueeze(1).unsqueeze(0)
784
+ attn = attn.view(-1, self.num_heads, N, N)
785
+
786
+ attn = attn.softmax(dim=-1)
787
+ x = (attn @ v).transpose(1, 2).reshape(B, -1, C)
788
+ x = self.proj(x)
789
+ return x
790
+
791
+
792
+
793
+ class ERADIOLayer(nn.Module):
794
+ """
795
+ E-RADIO Layer
796
+ """
797
+
798
+ def __init__(self,
799
+ dim,
800
+ depth,
801
+ num_heads,
802
+ window_size,
803
+ conv=False,
804
+ downsample=True,
805
+ mlp_ratio=4.,
806
+ qkv_bias=False,
807
+ qk_scale=None,
808
+ norm_layer=nn.LayerNorm,
809
+ drop_path=0.,
810
+ layer_scale=None,
811
+ layer_scale_conv=None,
812
+ sr_dim_ratio=1,
813
+ sr_ratio=1,
814
+ multi_query=False,
815
+ use_swiglu=True,
816
+ yolo_arch=False,
817
+ downsample_shuffle=False,
818
+ conv_base=False,
819
+ use_shift=False,
820
+ cpb_mlp_hidden=512,
821
+ conv_groups_ratio=0,
822
+ verbose: bool = True,
823
+
824
+ ):
825
+ """
826
+ Args:
827
+ dim: feature size dimension.
828
+ depth: number of layers in each stage.
829
+ input_resolution: input image resolution.
830
+ window_size: window size in each stage.
831
+ downsample: bool argument for down-sampling.
832
+ mlp_ratio: MLP ratio.
833
+ num_heads: number of heads in each stage.
834
+ qkv_bias: bool argument for query, key, value learnable bias.
835
+ qk_scale: bool argument to scaling query, key.
836
+ drop: dropout rate.
837
+ attn_drop: attention dropout rate.
838
+ drop_path: drop path rate.
839
+ norm_layer: normalization layer.
840
+ layer_scale: layer scaling coefficient.
841
+ use_shift: SWIN like window shifting for half the window size for every alternating layer (considering multi-resolution)
842
+ conv_groups_ratio: group ratio for conv when no subsampling in multi-res attention
843
+ """
844
+
845
+ super().__init__()
846
+ self.conv = conv
847
+ self.yolo_arch=False
848
+ self.verbose = verbose
849
+ if conv:
850
+ if not yolo_arch:
851
+ self.blocks = nn.ModuleList([
852
+ ConvBlock(dim=dim,
853
+ drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
854
+ layer_scale=layer_scale_conv)
855
+ for i in range(depth)])
856
+ self.blocks = nn.Sequential(*self.blocks)
857
+ else:
858
+ self.blocks = C2f(dim,dim,n=depth,shortcut=True,e=0.5)
859
+ self.yolo_arch=True
860
+ else:
861
+ if not isinstance(window_size, list): window_size = [window_size]
862
+ self.window_size = window_size[0]
863
+ self.do_single_windowing = True
864
+ if not isinstance(sr_ratio, list): sr_ratio = [sr_ratio]
865
+ self.sr_ratio = sr_ratio
866
+ if any([sr!=1 for sr in sr_ratio]) or len(set(window_size))>1:
867
+ self.do_single_windowing = False
868
+ do_windowing = True
869
+ else:
870
+ self.do_single_windowing = True
871
+ do_windowing = False
872
+
873
+ #for v2_2
874
+ if conv_groups_ratio != -1:
875
+ self.do_single_windowing = False
876
+ do_windowing = True
877
+
878
+ self.blocks = nn.ModuleList()
879
+ for i in range(depth):
880
+ self.blocks.append(
881
+ MultiResolutionAttention(window_size=window_size,
882
+ sr_ratio=sr_ratio,
883
+ dim=dim,
884
+ dim_ratio = sr_dim_ratio,
885
+ num_heads=num_heads,
886
+ norm_layer=norm_layer,
887
+ drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
888
+ layer_scale=layer_scale,
889
+ qkv_bias=qkv_bias,
890
+ qk_scale=qk_scale,
891
+ use_swiglu=use_swiglu,
892
+ do_windowing=do_windowing,
893
+ multi_query=multi_query,
894
+ conv_base=conv_base,
895
+ cpb_mlp_hidden=cpb_mlp_hidden,
896
+ use_shift =0 if ((not use_shift) or ((i) % 2 == 0)) else True ,
897
+ conv_groups_ratio=conv_groups_ratio,
898
+ ))
899
+ self.blocks = nn.Sequential(*self.blocks)
900
+
901
+ self.transformer = not conv
902
+ self.downsample = None if not downsample else Downsample(dim=dim, shuffle=downsample_shuffle)
903
+
904
+
905
+ def forward(self, x):
906
+ B, C, H, W = x.shape
907
+
908
+ # do padding for transforemr
909
+ interpolate = True
910
+ if self.transformer and interpolate:
911
+ # Windowed Attention will split feature map into windows with the size of window_size x window_size
912
+ # if the resolution is not divisible by window_size, we need to interpolate the feature map
913
+ # can be done via padding, but doing so after training hurts the model performance.
914
+ # interpolation affects the performance as well, but not as much as padding
915
+ if isinstance(self.window_size, list) or isinstance(self.window_size, tuple):
916
+ current_max_window_size = max(self.window_size)
917
+ else:
918
+ current_max_window_size = self.window_size
919
+
920
+ max_window_size = max([res_upsample*current_max_window_size for res_upsample in self.sr_ratio])
921
+ if H % max_window_size != 0 or W % max_window_size != 0:
922
+ new_h = int(np.ceil(H/max_window_size)*max_window_size)
923
+ new_w = int(np.ceil(W/max_window_size)*max_window_size)
924
+ x = F.interpolate(x, size=(new_h, new_w), mode='nearest')
925
+ if self.verbose:
926
+ warnings.warn(f"Choosen window size is not optimal for given resolution. Interpolation of features maps will be done and it can affect the performance. Max window size is {max_window_size}, feature map size is {H}x{W}, interpolated feature map size is {new_h}x{new_w}.")
927
+
928
+
929
+ if self.transformer and self.do_single_windowing:
930
+ H, W = x.shape[2], x.shape[3]
931
+ x, pad_hw = window_partition(x, self.window_size)
932
+
933
+ #run main blocks
934
+ x = self.blocks(x)
935
+
936
+ if self.transformer and self.do_single_windowing:
937
+ x = window_reverse(x, self.window_size, H, W, pad_hw)
938
+
939
+ if self.transformer and interpolate:
940
+ #lets keep original resolution, might be not ideal, but for the upsampling tower we need to keep the expected resolution.
941
+ x = F.interpolate(x, size=(H, W), mode='nearest')
942
+
943
+ if self.downsample is None:
944
+ return x, x
945
+
946
+ return self.downsample(x), x # changing to output pre downsampled features
947
+
948
+
949
+ class InterpolateLayer(nn.Module):
950
+ def __init__(self, size=None, scale_factor=None, mode='nearest'):
951
+ super(InterpolateLayer, self).__init__()
952
+ self.size = size
953
+ self.scale_factor = scale_factor
954
+ self.mode = mode
955
+
956
+ def forward(self, x):
957
+ return F.interpolate(x, size=self.size, scale_factor=self.scale_factor, mode=self.mode)
958
+
959
+
960
+ class HiResNeck(nn.Module):
961
+ """
962
+ The block is used to output dense features from all stages
963
+ Otherwise, by default, only the last stage features are returned with E-RADIO
964
+ """
965
+ def __init__(self, dim, depths, neck_start_stage, full_features_head_dim, downsample_enabled):
966
+
967
+ '''
968
+ Hi Resolution neck to support output of high res features that are useful for dense tasks.
969
+ depths - total number of layers in the base model
970
+ neck_start_stage - when to start the neck, 0 - start from the first stage, 1 - start from the second stage etc.
971
+ earlier layers result in higher resolution features at the cost of compute
972
+ full_features_head_dim - number of channels in the dense features head
973
+ '''
974
+ super().__init__()
975
+ # create feature projection layers for segmentation output
976
+ self.neck_features_proj = nn.ModuleList()
977
+ self.neck_start_stage = neck_start_stage
978
+ upsample_ratio = 1
979
+ for i in range(len(depths)):
980
+ level_n_features_output = int(dim * 2 ** i)
981
+
982
+ if self.neck_start_stage > i: continue
983
+
984
+ if (upsample_ratio > 1) or full_features_head_dim!=level_n_features_output:
985
+ feature_projection = nn.Sequential()
986
+ if False:
987
+ feature_projection.add_module("norm",nn.BatchNorm2d(level_n_features_output)) #fast, but worse
988
+ feature_projection.add_module("dconv", nn.ConvTranspose2d(level_n_features_output,
989
+ full_features_head_dim, kernel_size=upsample_ratio, stride=upsample_ratio))
990
+ else:
991
+ # B, in_channels, H, W -> B, in_channels, H*upsample_ratio, W*upsample_ratio
992
+ # print("upsample ratio", upsample_ratio, level_n_features_output, level_n_features_output)
993
+ feature_projection.add_module("upsample", InterpolateLayer(scale_factor=upsample_ratio, mode='nearest'))
994
+ feature_projection.add_module("conv1", nn.Conv2d(level_n_features_output, level_n_features_output, kernel_size=3, stride=1, padding=1, groups=level_n_features_output))
995
+ feature_projection.add_module("norm",nn.BatchNorm2d(level_n_features_output))
996
+ # B, in_channels, H*upsample_ratio, W*upsample_ratio -> B, full_features_head_dim, H*upsample_ratio, W*upsample_ratio
997
+ feature_projection.add_module("conv2", nn.Conv2d(level_n_features_output, full_features_head_dim, kernel_size=1, stride=1, padding=0))
998
+ else:
999
+ feature_projection = nn.Sequential()
1000
+
1001
+ self.neck_features_proj.append(feature_projection)
1002
+
1003
+ if i>0 and downsample_enabled[i]:
1004
+ upsample_ratio *= 2
1005
+
1006
+ def forward(self, x, il_level=-1, full_features=None):
1007
+ if self.neck_start_stage > il_level:
1008
+ return full_features
1009
+
1010
+ if full_features is None:
1011
+ full_features = self.neck_features_proj[il_level - self.neck_start_stage](x)
1012
+ else:
1013
+ #upsample torch tensor x to match full_features size, and add to full_features
1014
+ feature_projection = self.neck_features_proj[il_level - self.neck_start_stage](x)
1015
+ if feature_projection.shape[2] != full_features.shape[2] or feature_projection.shape[3] != full_features.shape[3]:
1016
+ feature_projection = torch.nn.functional.pad(feature_projection, ( 0, -feature_projection.shape[3] + full_features.shape[3], 0, -feature_projection.shape[2] + full_features.shape[2]))
1017
+ full_features = full_features + feature_projection
1018
+ return full_features
1019
+
1020
+ class ERADIO(nn.Module):
1021
+ """
1022
+ Efficient RADIO
1023
+ """
1024
+
1025
+ def __init__(self,
1026
+ dim,
1027
+ in_dim,
1028
+ depths,
1029
+ window_size,
1030
+ mlp_ratio,
1031
+ num_heads,
1032
+ drop_path_rate=0.2,
1033
+ in_chans=3,
1034
+ num_classes=1000,
1035
+ qkv_bias=False,
1036
+ qk_scale=None,
1037
+ layer_scale=None,
1038
+ layer_scale_conv=None,
1039
+ layer_norm_last=False,
1040
+ sr_ratio = [1, 1, 1, 1],
1041
+ max_depth = -1,
1042
+ conv_base=False,
1043
+ use_swiglu=False,
1044
+ multi_query=False,
1045
+ norm_layer=nn.LayerNorm,
1046
+ drop_uniform=False,
1047
+ yolo_arch=False,
1048
+ shuffle_down=False,
1049
+ downsample_shuffle=False,
1050
+ return_full_features=False,
1051
+ full_features_head_dim=128,
1052
+ neck_start_stage=1,
1053
+ use_neck=False,
1054
+ use_shift=False,
1055
+ cpb_mlp_hidden=512,
1056
+ conv_groups_ratio=0,
1057
+ verbose: bool = False,
1058
+ **kwargs):
1059
+ """
1060
+ Args:
1061
+ dim: feature size dimension.
1062
+ depths: number of layers in each stage.
1063
+ window_size: window size in each stage.
1064
+ mlp_ratio: MLP ratio.
1065
+ num_heads: number of heads in each stage.
1066
+ drop_path_rate: drop path rate.
1067
+ in_chans: number of input channels.
1068
+ num_classes: number of classes.
1069
+ qkv_bias: bool argument for query, key, value learnable bias.
1070
+ qk_scale: bool argument to scaling query, key.
1071
+ drop_rate: dropout rate.
1072
+ attn_drop_rate: attention dropout rate.
1073
+ norm_layer: normalization layer.
1074
+ layer_scale: layer scaling coefficient.
1075
+ return_full_features: output dense features as well as logits
1076
+ full_features_head_dim: number of channels in the dense features head
1077
+ neck_start_stage: a stage id to start full feature neck. Model has 4 stages, indix starts with 0
1078
+ for 224 resolution, the output of the stage before downsample:
1079
+ stage 0: 56x56, stage 1: 28x28, stage 2: 14x14, stage 3: 7x7
1080
+ use_neck: even for summarization embedding use neck
1081
+ use_shift: SWIN like window shifting but without masking attention
1082
+ conv_groups_ratio: will be used for conv blocks where there is no multires attention,
1083
+ if 0 then normal conv,
1084
+ if 1 then channels are independent,
1085
+ if -1 then no conv at all
1086
+
1087
+ """
1088
+ super().__init__()
1089
+
1090
+ num_features = int(dim * 2 ** (len(depths) - 1))
1091
+ self.num_classes = num_classes
1092
+ self.patch_embed = PatchEmbed(in_chans=in_chans, in_dim=in_dim, dim=dim, shuffle_down=shuffle_down)
1093
+ # set return_full_features true if we want to return full features from all stages
1094
+ self.return_full_features = return_full_features
1095
+ self.use_neck = use_neck
1096
+
1097
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
1098
+ if drop_uniform:
1099
+ dpr = [drop_path_rate for x in range(sum(depths))]
1100
+
1101
+ if not isinstance(max_depth, list): max_depth = [max_depth] * len(depths)
1102
+
1103
+ self.levels = nn.ModuleList()
1104
+ for i in range(len(depths)):
1105
+ conv = True if (i == 0 or i == 1) else False
1106
+
1107
+ level = ERADIOLayer(dim=int(dim * 2 ** i),
1108
+ depth=depths[i],
1109
+ num_heads=num_heads[i],
1110
+ window_size=window_size[i],
1111
+ mlp_ratio=mlp_ratio,
1112
+ qkv_bias=qkv_bias,
1113
+ qk_scale=qk_scale,
1114
+ conv=conv,
1115
+ drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])],
1116
+ downsample=(i < len(depths) - 1),
1117
+ layer_scale=layer_scale,
1118
+ layer_scale_conv=layer_scale_conv,
1119
+ sr_ratio=sr_ratio[i],
1120
+ use_swiglu=use_swiglu,
1121
+ multi_query=multi_query,
1122
+ norm_layer=norm_layer,
1123
+ yolo_arch=yolo_arch,
1124
+ downsample_shuffle=downsample_shuffle,
1125
+ conv_base=conv_base,
1126
+ cpb_mlp_hidden=cpb_mlp_hidden,
1127
+ use_shift=use_shift,
1128
+ conv_groups_ratio=conv_groups_ratio,
1129
+ verbose=verbose)
1130
+
1131
+ self.levels.append(level)
1132
+
1133
+ if self.return_full_features or self.use_neck:
1134
+ #num_heads
1135
+ downsample_enabled = [self.levels[i-1].downsample is not None for i in range(len(self.levels))]
1136
+ self.high_res_neck = HiResNeck(dim, depths, neck_start_stage, full_features_head_dim, downsample_enabled)
1137
+
1138
+ self.switched_to_deploy = False
1139
+
1140
+ self.norm = LayerNorm2d(num_features) if layer_norm_last else nn.BatchNorm2d(num_features)
1141
+ self.avgpool = nn.AdaptiveAvgPool2d(1)
1142
+ self.head = nn.Linear(num_features, num_classes) if num_classes > 0 else nn.Identity()
1143
+ self.apply(self._init_weights)
1144
+
1145
+ def _init_weights(self, m):
1146
+ if isinstance(m, nn.Linear):
1147
+ trunc_normal_(m.weight, std=.02)
1148
+ if isinstance(m, nn.Linear) and m.bias is not None:
1149
+ nn.init.constant_(m.bias, 0)
1150
+ elif isinstance(m, nn.LayerNorm):
1151
+ nn.init.constant_(m.bias, 0)
1152
+ nn.init.constant_(m.weight, 1.0)
1153
+ elif isinstance(m, LayerNorm2d):
1154
+ nn.init.constant_(m.bias, 0)
1155
+ nn.init.constant_(m.weight, 1.0)
1156
+ elif isinstance(m, nn.BatchNorm2d):
1157
+ nn.init.ones_(m.weight)
1158
+ nn.init.zeros_(m.bias)
1159
+
1160
+ @torch.jit.ignore
1161
+ def no_weight_decay_keywords(self):
1162
+ return {'rpb'}
1163
+
1164
+ def forward_features(self, x):
1165
+ _, _, H, W = x.shape
1166
+ if H % 32 != 0 or W % 32 != 0:
1167
+ raise ValueError(f"E-RADIO requires input dimensions to be divisible by 32 but got H x W: {H} x {W}")
1168
+ x = self.patch_embed(x)
1169
+ full_features = None
1170
+ for il, level in enumerate(self.levels):
1171
+ x, pre_downsample_x = level(x)
1172
+
1173
+ if self.return_full_features or self.use_neck:
1174
+ full_features = self.high_res_neck(pre_downsample_x, il, full_features)
1175
+
1176
+ # x = self.norm(full_features if (self.return_full_features or self.use_neck) else x)
1177
+ x = self.norm(x) # new version for
1178
+
1179
+ if not self.return_full_features:
1180
+ return x, None
1181
+
1182
+ return x, full_features
1183
+
1184
+ def forward(self, x):
1185
+ x, full_features = self.forward_features(x)
1186
+
1187
+ x = self.avgpool(x)
1188
+ x = torch.flatten(x, 1)
1189
+
1190
+ x = self.head(x)
1191
+ if full_features is not None:
1192
+ return x, full_features
1193
+ return x
1194
+
1195
+ def switch_to_deploy(self):
1196
+ '''
1197
+ A method to perform model self-compression
1198
+ merges BN into conv layers
1199
+ converts MLP relative positional bias into precomputed buffers
1200
+ '''
1201
+ if not self.switched_to_deploy:
1202
+ for level in [self.patch_embed, self.levels, self.head]:
1203
+ for module in level.modules():
1204
+ if hasattr(module, 'switch_to_deploy'):
1205
+ module.switch_to_deploy()
1206
+ self.switched_to_deploy = True
1207
+
1208
+
1209
+ def change_window_size(self, new_window_size):
1210
+ """
1211
+ E-RADIO employs windowed attention, which may be sensitive to the choice of this parameter,
1212
+ especially in cases of uneven partitioning of the feature maps.
1213
+ E-RADIO allows for the adjustment of the window size after training,
1214
+ making it adaptable to different input image resolutions.
1215
+ The recommended values for window size based on input resolution are as follows:
1216
+
1217
+ Input Resolution | Window Size
1218
+ 224 | 7
1219
+ 256 | 8
1220
+ 386 | 12
1221
+ 512 | 16
1222
+ Ideally, the window size should be a factor of the input resolution. In the third stage, we divide the resolution by 16, so the window size should be
1223
+ img_res/16/2
1224
+ for the third stage and img_res/32 for the last stage. While this can be applied in a brute-force manner, a better way is to do model.change_window_size.
1225
+ Manual way to change resolution -> model.change_window_size(resolution)
1226
+ """
1227
+ window_size = new_window_size
1228
+ print(f"Setting window size to {window_size}")
1229
+ for module in self.modules():
1230
+ if hasattr(module, "window_size"):
1231
+ # check if tuple or a number
1232
+ if isinstance(module.window_size, tuple):
1233
+ if module.window_size[0] != window_size:
1234
+ module.window_size = (window_size, window_size)
1235
+ elif isinstance(module.window_size, list):
1236
+ if module.window_size[0] != window_size:
1237
+ module.window_size = [window_size, window_size]
1238
+ else:
1239
+ module.window_size = window_size
1240
+
1241
+
1242
+ def set_optimal_window_size(self, image_dim, max_window_size = 16):
1243
+ """
1244
+ Using hand picked window size for various resolutions.
1245
+
1246
+ E-RADIO employs windowed attention, which may be sensitive to the choice of this parameter,
1247
+ especially in cases of uneven partitioning of the feature maps.
1248
+ E-RADIO allows for the adjustment of the window size after training,
1249
+ making it adaptable to different input image resolutions.
1250
+ The recommended values for window size based on input resolution are as follows:
1251
+
1252
+ Input Resolution | Window Size
1253
+ 224 | 7
1254
+ 256 | 8
1255
+ 386 | 12
1256
+ 512 | 16
1257
+ Ideally, the window size should be a factor of the input resolution. In the third stage, we divide the resolution by 16, so the window size should be
1258
+ img_res/16/2
1259
+ for the third stage and img_res/32 for the last stage. While this can be applied in a brute-force manner, a better way is to do model.change_window_size.
1260
+ Manual way to change resolution -> model.change_window_size(resolution)
1261
+
1262
+ """
1263
+ # import math
1264
+
1265
+ def divisorGenerator(n):
1266
+ large_divisors = []
1267
+ for i in range(1, int(math.sqrt(n) + 1)):
1268
+ if n % i == 0:
1269
+ yield i
1270
+ if i*i != n:
1271
+ large_divisors.append(n / i)
1272
+ for divisor in reversed(large_divisors):
1273
+ yield divisor
1274
+
1275
+ if isinstance(image_dim, list) or isinstance(image_dim, tuple):
1276
+ image_dim = min(image_dim)
1277
+
1278
+ # we do windowed attention in the 3rd stage for the first time, therefore //16,
1279
+ # we do subsampled attention with downsample by 2 so need to get //32 actually
1280
+ # ideally we should rewrite this to be dependent on the structure of the model like what if subsampled is removed etc
1281
+ all_divisors = np.array(list(divisorGenerator(image_dim//32)))
1282
+ new_window_size = int(min(all_divisors[all_divisors <= max_window_size][-1], max_window_size))
1283
+
1284
+ # for image_dim in [128, 224, 256, 384, 512, 768, 1024]:
1285
+ # all_divisors = np.array(list(divisorGenerator(image_dim//32)))
1286
+ # new_window_size = int(min(all_divisors[all_divisors <= max_window_size][-1], max_window_size))
1287
+ # print(f"Setting window size to {new_window_size} for image resolution {image_dim}")
1288
+
1289
+ self.change_window_size(new_window_size = new_window_size)
1290
+
1291
+
1292
+ @register_model
1293
+ def eradio_large_fullres_ws16(pretrained=False, **kwargs):
1294
+ model = ERADIO(
1295
+ depths=[3, 3, 5, 5],
1296
+ num_heads=[2, 4, 8, 16],
1297
+ window_size=[None, None, [16, 16], 16],
1298
+ dim=192,
1299
+ in_dim=64,
1300
+ mlp_ratio=4,
1301
+ drop_path_rate=0.0,
1302
+ sr_ratio=[1, 1, [2, 1], 1],
1303
+ use_swiglu=False,
1304
+ yolo_arch=True,
1305
+ shuffle_down=False,
1306
+ conv_base=True,
1307
+ use_neck=True,
1308
+ full_features_head_dim=1536,
1309
+ neck_start_stage=2,
1310
+ **kwargs,
1311
+ )
1312
+ if pretrained:
1313
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1314
+ return model
1315
+
1316
+
1317
+ @register_model
1318
+ def eradio_xxxtiny(pretrained=False, **kwargs): # ,
1319
+ model = ERADIO(
1320
+ depths=[1, 3, 4, 5],
1321
+ num_heads=[2, 4, 8, 16],
1322
+ window_size=[None, None, [16, 16], 16],
1323
+ dim=32,
1324
+ in_dim=32,
1325
+ mlp_ratio=4,
1326
+ drop_path_rate=0.0,
1327
+ sr_ratio=[1, 1, [2, 1], 1],
1328
+ use_swiglu=False,
1329
+ yolo_arch=True,
1330
+ shuffle_down=False,
1331
+ conv_base=True,
1332
+ use_neck=True,
1333
+ full_features_head_dim=256,
1334
+ neck_start_stage=2,
1335
+ **kwargs,
1336
+ )
1337
+ if pretrained:
1338
+ model.load_state_dict(torch.load(pretrained))
1339
+ return model
1340
+
1341
+ @register_model
1342
+ def eradio_xxxtiny_8x_ws12(pretrained=False, **kwargs):
1343
+ model = ERADIO(depths=[1, 3, 4, 5],
1344
+ num_heads=[2, 4, 8, 16],
1345
+ window_size=[None, None, [12, 12], 12],
1346
+ dim=32,
1347
+ in_dim=32,
1348
+ mlp_ratio=4,
1349
+ drop_path_rate=0.0,
1350
+ sr_ratio=[1, 1, [2, 1], 1],
1351
+ use_swiglu=False,
1352
+ downsample_shuffle=False,
1353
+ yolo_arch=True,
1354
+ shuffle_down=False,
1355
+ cpb_mlp_hidden=64,
1356
+ use_neck=True,
1357
+ full_features_head_dim=256,
1358
+ neck_start_stage=2,
1359
+ conv_groups_ratio = 1,
1360
+ **kwargs)
1361
+ if pretrained:
1362
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1363
+ return model
1364
+
1365
+
1366
+ @register_model
1367
+ def eradio_xxxtiny_8x_ws16(pretrained=False, **kwargs):
1368
+ model = ERADIO(depths=[1, 3, 4, 5],
1369
+ num_heads=[2, 4, 8, 16],
1370
+ window_size=[None, None, [16, 16], 16],
1371
+ dim=32,
1372
+ in_dim=32,
1373
+ mlp_ratio=4,
1374
+ drop_path_rate=0.0,
1375
+ sr_ratio=[1, 1, [2, 1], 1],
1376
+ use_swiglu=False,
1377
+ downsample_shuffle=False,
1378
+ yolo_arch=True,
1379
+ shuffle_down=False,
1380
+ cpb_mlp_hidden=64,
1381
+ use_neck=True,
1382
+ full_features_head_dim=256,
1383
+ neck_start_stage=1,
1384
+ conv_groups_ratio = 1,
1385
+ **kwargs)
1386
+ if pretrained:
1387
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1388
+ return model
1389
+
1390
+ @register_model
1391
+ def eradio(pretrained=False, **kwargs):
1392
+ return eradio_large_fullres_ws16(pretrained=pretrained, **kwargs)
tim/models/nvidia_radio/radio/extra_models.py ADDED
@@ -0,0 +1,228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from distutils.version import LooseVersion
2
+ from types import MethodType
3
+ from typing import List, Optional, Tuple, Union
4
+ import warnings
5
+
6
+ import torch
7
+ from torch import nn
8
+ import torch.nn.functional as F
9
+
10
+ from timm.models.registry import register_model
11
+ from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
12
+
13
+ from .forward_intermediates import forward_intermediates
14
+ from .input_conditioner import InputConditioner
15
+
16
+ _has_torch_sdpa = hasattr(F, "scaled_dot_product_attention")
17
+
18
+
19
+ class PaliGemmaWrapper(nn.Module):
20
+ def __init__(self, vis_model: nn.Module, embed_dim: int):
21
+ super().__init__()
22
+
23
+ self.vis_model = vis_model
24
+ self.embed_dim = embed_dim
25
+
26
+ @property
27
+ def patch_size(self):
28
+ return self.vis_model.embeddings.patch_size
29
+
30
+ @property
31
+ def blocks(self):
32
+ return self.vis_model.encoder.layers
33
+
34
+ @property
35
+ def embed_dim(self):
36
+ return self.vis_model.embeddings.embed_dim
37
+
38
+ def forward(self, x: torch.Tensor):
39
+ outputs = self.vis_model(
40
+ x,
41
+ return_dict=False,
42
+ interpolate_pos_encoding=True,
43
+ )
44
+
45
+ features = outputs[0].to(torch.float32)
46
+
47
+ summary = features.mean(dim=1)
48
+
49
+ return summary, features
50
+
51
+ def forward_features(self, x: torch.Tensor):
52
+ return self(x)
53
+
54
+
55
+ def _get_paligemma_model(
56
+ repo: str, embed_dim: int = None, dtype: torch.dtype = torch.bfloat16
57
+ ):
58
+ from transformers import (
59
+ PaliGemmaForConditionalGeneration,
60
+ __version__ as tx_version,
61
+ )
62
+
63
+ if LooseVersion(tx_version) > LooseVersion("4.44.2"):
64
+ warnings.warn(
65
+ f'Your transformers version "{tx_version}" is higher than 4.44.2, and for whatever reason, PaliGemma might be broken.'
66
+ )
67
+
68
+ extra_args = dict()
69
+
70
+ if dtype is not None:
71
+ extra_args["dtype"] = dtype
72
+ rev = str(dtype).split(".")[-1]
73
+ extra_args["revision"] = rev
74
+
75
+ model = PaliGemmaForConditionalGeneration.from_pretrained(repo, **extra_args)
76
+
77
+ vis_model = model.vision_tower.vision_model
78
+
79
+ vis_model = PaliGemmaWrapper(vis_model, embed_dim)
80
+
81
+ return vis_model
82
+
83
+
84
+ @register_model
85
+ def paligemma_896_student(**kwargs):
86
+ model = _get_paligemma_model(
87
+ "google/paligemma-3b-pt-896", embed_dim=1152, dtype=None
88
+ )
89
+
90
+ return model
91
+
92
+
93
+ def dv2_sdpa(self, x: torch.Tensor) -> torch.Tensor:
94
+ B, N, C = x.shape
95
+ qkv = (
96
+ self.qkv(x)
97
+ .reshape(B, N, 3, self.num_heads, C // self.num_heads)
98
+ .permute(2, 0, 3, 1, 4)
99
+ )
100
+
101
+ q, k, v = qkv[0], qkv[1], qkv[2]
102
+ x = F.scaled_dot_product_attention(
103
+ q,
104
+ k,
105
+ v,
106
+ is_causal=False,
107
+ dropout_p=self.attn_drop.p if self.training else 0.0,
108
+ scale=self.scale,
109
+ )
110
+ x = x.transpose(1, 2).reshape(B, N, C)
111
+ x = self.proj(x)
112
+ x = self.proj_drop(x)
113
+ return x
114
+
115
+
116
+ def _load_dino_v2(
117
+ dino_v2_model, cache_dir: Optional[str] = None, pretrained=True, **kwargs
118
+ ):
119
+ if cache_dir:
120
+ torch.hub.set_dir(cache_dir)
121
+ model: nn.Module = torch.hub.load(
122
+ "facebookresearch/dinov2",
123
+ dino_v2_model,
124
+ pretrained=pretrained,
125
+ # **kwargs,
126
+ )
127
+
128
+ if _has_torch_sdpa:
129
+ for n, m in model.named_modules():
130
+ if n.endswith(".attn"):
131
+ m.forward = MethodType(dv2_sdpa, m)
132
+
133
+ return model
134
+
135
+
136
+ class DinoWrapper(nn.Module):
137
+ def __init__(self, dino_model: nn.Module):
138
+ super().__init__()
139
+
140
+ self.inner = dino_model
141
+ dino_model.blocks = nn.Sequential(*dino_model.blocks)
142
+
143
+ @property
144
+ def embed_dim(self):
145
+ return self.inner.embed_dim
146
+
147
+ @property
148
+ def patch_size(self):
149
+ return self.inner.patch_size
150
+
151
+ @property
152
+ def num_cls_tokens(self):
153
+ return getattr(self.inner, "num_tokens", 1)
154
+
155
+ @property
156
+ def num_registers(self):
157
+ return getattr(self.inner, "num_register_tokens", 0)
158
+
159
+ @property
160
+ def num_summary_tokens(self):
161
+ return self.num_cls_tokens + self.num_registers
162
+
163
+ @property
164
+ def blocks(self):
165
+ return self.inner.blocks
166
+
167
+ def forward(self, *args, **kwargs) -> Tuple[torch.Tensor, torch.Tensor]:
168
+ parts = self.inner.forward_features(*args, **kwargs)
169
+
170
+ cls_token = parts["x_norm_clstoken"]
171
+ features = parts["x_norm_patchtokens"]
172
+
173
+ return cls_token, features
174
+
175
+ def forward_features(self, x: torch.Tensor):
176
+ x = self.inner.prepare_tokens_with_masks(x)
177
+ x = self.inner.blocks(x)
178
+ x_norm = self.inner.norm(x)
179
+
180
+ return x_norm[:, 0], x_norm[:, self.num_summary_tokens :]
181
+
182
+ def patchify(self, x: torch.Tensor) -> torch.Tensor:
183
+ return self.inner.prepare_tokens_with_masks(x)
184
+
185
+ def forward_intermediates(
186
+ self,
187
+ x: torch.Tensor,
188
+ norm: bool = False,
189
+ **kwargs,
190
+ ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
191
+ return forward_intermediates(
192
+ self,
193
+ patch_extractor=self.inner.prepare_tokens_with_masks,
194
+ num_summary_tokens=self.num_summary_tokens,
195
+ num_cls_tokens=self.num_cls_tokens,
196
+ norm=self.inner.norm if norm else lambda y: y,
197
+ x=x,
198
+ **kwargs,
199
+ )
200
+
201
+
202
+ def _dino_student(arch: str, **kwargs):
203
+ from . import dinov2_arch
204
+
205
+ factory = getattr(dinov2_arch, arch)
206
+ model = factory()
207
+
208
+ model = DinoWrapper(model)
209
+
210
+ conditioner = InputConditioner(
211
+ input_scale=1.0,
212
+ norm_mean=IMAGENET_DEFAULT_MEAN,
213
+ norm_std=IMAGENET_DEFAULT_STD,
214
+ )
215
+
216
+ model.input_conditioner = conditioner
217
+
218
+ return model
219
+
220
+
221
+ @register_model
222
+ def dino_v2_l_student(**kwargs):
223
+ return _dino_student("dinov2_vitl14_reg", **kwargs)
224
+
225
+
226
+ @register_model
227
+ def dino_v2_g_student(**kwargs):
228
+ return _dino_student("dinov2_vitg14_reg", **kwargs)
tim/models/nvidia_radio/radio/extra_timm_models.py ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ import math
10
+ import warnings
11
+
12
+ import torch
13
+ from torch import nn
14
+ from torch.nn import functional as F
15
+
16
+ from timm.models import register_model
17
+ from timm.models.vision_transformer import (
18
+ VisionTransformer,
19
+ _create_vision_transformer as _timm_create_vision_transformer,
20
+ Mlp,
21
+ Block,
22
+ LayerScale as TIMMLayerScale,
23
+ )
24
+
25
+ # Import these to also register them
26
+ from . import dinov2_arch
27
+
28
+
29
+ @register_model
30
+ def vit_tiny_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
31
+ """ ViT-Tiny (Vit-Ti/16)
32
+ """
33
+ model_args = dict(patch_size=14, embed_dim=192, depth=12, num_heads=3)
34
+ model = _create_vision_transformer('vit_tiny_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs))
35
+ return model
36
+
37
+
38
+ @register_model
39
+ def vit_small_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
40
+ """ ViT-Small (ViT-S/16)
41
+ """
42
+ model_args = dict(patch_size=14, embed_dim=384, depth=12, num_heads=6)
43
+ model = _create_vision_transformer('vit_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
44
+ return model
45
+
46
+
47
+ @register_model
48
+ def vit_base_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
49
+ """ ViT-Base (ViT-B/14) from original paper (https://arxiv.org/abs/2010.11929).
50
+ ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
51
+ """
52
+ model_args = dict(patch_size=14, embed_dim=768, depth=12, num_heads=12)
53
+ model = _create_vision_transformer('vit_base_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs))
54
+ return model
55
+
56
+
57
+ @register_model
58
+ def vit_base_patch16_v2_224(pretrained=False, **kwargs) -> VisionTransformer:
59
+ """ ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
60
+ ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
61
+ """
62
+ model_args = dict(
63
+ patch_size=16, embed_dim=768, depth=12, num_heads=12, init_values=1e-5,
64
+ reg_tokens=4, no_embed_class=True, img_size=518 * 16 // 14
65
+ )
66
+ model = _create_vision_transformer(
67
+ 'vit_base_patch14_reg4_dinov2', pretrained=pretrained, **dict(model_args, **kwargs))
68
+ return model
69
+
70
+
71
+ @register_model
72
+ def vit_large_patch16_v2_224(pretrained: bool = False, **kwargs) -> VisionTransformer:
73
+ """ ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
74
+ ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
75
+ """
76
+ name = 'vit_large_patch14_reg4_dinov2'
77
+ model_args = dict(
78
+ patch_size=16, embed_dim=1024, depth=24, num_heads=16, init_values=1e-5,
79
+ reg_tokens=4, no_embed_class=True, img_size=518 * 16 // 14
80
+ )
81
+ model = _create_vision_transformer(name, pretrained=pretrained, **dict(model_args, **kwargs))
82
+
83
+ return model
84
+
85
+ @register_model
86
+ def vit_huge_patch16_224(pretrained=False, **kwargs) -> VisionTransformer:
87
+ """ ViT-Huge model (ViT-H/16) from original paper (https://arxiv.org/abs/2010.11929).
88
+ """
89
+ model_args = dict(patch_size=16, embed_dim=1280, depth=32, num_heads=16)
90
+ if pretrained:
91
+ # There is no pretrained version of ViT-H/16, but we can adapt a ViT-H/14 for this purpose
92
+ model = _create_vision_transformer('vit_huge_patch14_224', pretrained=True, **dict(model_args, **kwargs))
93
+ else:
94
+ model = _create_vision_transformer('vit_huge_patch16_224', pretrained=False, **dict(model_args, **kwargs))
95
+ return model
96
+
97
+
98
+ @register_model
99
+ def vit_huge_patch16_224_mlpnorm(pretrained=False, **kwargs) -> VisionTransformer:
100
+ """ ViT-Huge model (ViT-H/16) from original paper (https://arxiv.org/abs/2010.11929).
101
+ """
102
+ model = vit_huge_patch16_224(pretrained=pretrained, **kwargs)
103
+
104
+ for m in model.modules():
105
+ if isinstance(m, Mlp) and not isinstance(m.norm, nn.LayerNorm):
106
+ m.norm = nn.LayerNorm(m.fc1.out_features)
107
+
108
+ return model
109
+
110
+
111
+ @register_model
112
+ def vit_giant_patch16_224(pretrained=False, scaled_ln: bool = False, **kwargs) -> VisionTransformer:
113
+ """ ViT-giant model (ViT-g/16) from original paper (https://arxiv.org/abs/2010.11929).
114
+ """
115
+ model_args = dict(patch_size=16, embed_dim=1536, depth=40, num_heads=24)
116
+ model = _create_vision_transformer('vit_giant_patch16_224', pretrained=False, **dict(model_args, **kwargs))
117
+ if scaled_ln:
118
+ _apply_scaled_ln(model)
119
+ return model
120
+
121
+
122
+ @register_model
123
+ def vit_bigG_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
124
+ model_args = dict(patch_size=14, embed_dim=1664, depth=48, num_heads=16, init_values=1e-6)
125
+ model = _create_vision_transformer('vit_bigG_patch14', pretrained=False, **dict(model_args, **kwargs))
126
+ return model
127
+
128
+
129
+ def _create_vision_transformer(*args, **kwargs):
130
+ model = _timm_create_vision_transformer(*args, **kwargs)
131
+ _patch_layer_scale(model)
132
+ return model
133
+
134
+
135
+ def _patch_layer_scale(model: VisionTransformer):
136
+ def replace_ls(old_ls: TIMMLayerScale):
137
+ new_ls = dinov2_arch.LayerScale(old_ls.gamma.shape[0], inplace=old_ls.inplace)
138
+ new_ls.load_state_dict(old_ls.state_dict())
139
+ return new_ls
140
+
141
+ # Monkey patch: Replace TIMM's LayerScale with our modified DINOv2 one, that uses a param name
142
+ # other than gamma, so that HFHub doesn't mess with it!
143
+ for mod in model.modules():
144
+ if isinstance(mod, Block):
145
+ if isinstance(mod.ls1, TIMMLayerScale):
146
+ mod.ls1 = replace_ls(mod.ls1)
147
+ if isinstance(mod.ls2, TIMMLayerScale):
148
+ mod.ls2 = replace_ls(mod.ls2)
149
+ pass
150
+
151
+
152
+ class ScaledLayerNorm(nn.LayerNorm):
153
+ '''
154
+ https://arxiv.org/pdf/2502.05795v1
155
+ '''
156
+ def __init__(self, ln_base: nn.LayerNorm, depth: int = 0):
157
+ super().__init__(ln_base.normalized_shape, eps=ln_base.eps, elementwise_affine=ln_base.elementwise_affine)
158
+ self.load_state_dict(ln_base.state_dict())
159
+ self.register_buffer('ln_scale', torch.tensor(1.0 / math.sqrt(depth)), persistent=False)
160
+
161
+ def forward(self, x):
162
+ y = super().forward(x)
163
+ y = y * self.ln_scale
164
+ return y
165
+
166
+
167
+ class DyT(nn.Module):
168
+ def __init__(self, C: int, init_alpha: float):
169
+ super().__init__()
170
+ self.alpha = nn.Parameter(torch.full((1,), init_alpha))
171
+ self.gamma = nn.Parameter(torch.ones(C))
172
+ self.beta = nn.Parameter(torch.zeros(C))
173
+
174
+ def forward(self, x: torch.Tensor):
175
+ x = F.tanh(self.alpha * x)
176
+ return self.gamma * x + self.beta
177
+
178
+ @register_model
179
+ def vit_large_dyt_patch16_224(pretrained: bool = False, **kwargs) -> VisionTransformer:
180
+ """ ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
181
+ ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
182
+ """
183
+ model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16)
184
+ model = _create_vision_transformer('vit_large_dyt_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
185
+
186
+ def _replace_ln_with_dyt(ln: nn.LayerNorm, depth: int):
187
+ return DyT(ln.normalized_shape[0], init_alpha=0.9)
188
+ _replace_ln(model, _replace_ln_with_dyt)
189
+
190
+ return model
191
+
192
+
193
+ def _apply_scaled_ln(model: VisionTransformer):
194
+ warnings.warn('Post-LayerNorm scaling activated!')
195
+
196
+ _replace_ln(model, lambda ln, depth: ScaledLayerNorm(ln, depth=depth))
197
+
198
+ def _replace_ln(model: VisionTransformer, fn):
199
+ def _inner_replace_ln(block: Block, depth: int, key: str):
200
+ prev = getattr(block, key)
201
+ if isinstance(prev, nn.LayerNorm):
202
+ setattr(block, key, fn(prev, depth=depth))
203
+
204
+ for i, block in enumerate(model.blocks):
205
+ _inner_replace_ln(block, i + 1, 'norm1')
206
+ _inner_replace_ln(block, i + 1, 'norm2')
tim/models/nvidia_radio/radio/feature_normalizer.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+ from collections import namedtuple
9
+ from typing import NamedTuple, Optional, Tuple
10
+ import torch
11
+ from torch import nn
12
+
13
+
14
+ def _run_kernel(x: torch.Tensor, mean: torch.Tensor, tx: torch.Tensor):
15
+ if x.ndim <= 3:
16
+ x = x - mean
17
+ x = x @ tx.T
18
+ elif x.ndim == 4:
19
+ x = x - mean.reshape(1, -1, 1, 1)
20
+ kernel = tx.reshape(*tx.shape, 1, 1)
21
+ x = torch.nn.functional.conv2d(x, weight=kernel, bias=None, stride=1, padding=0)
22
+ else:
23
+ raise ValueError(f'Unsupported input dimension: {x.ndim}, shape: {x.shape}')
24
+ return x
25
+
26
+
27
+ class FeatureNormalizer(nn.Module):
28
+ def __init__(self, embed_dim: int, dtype: torch.dtype = torch.float32):
29
+ super().__init__()
30
+
31
+ self.register_buffer('mean', torch.zeros(embed_dim, dtype=dtype))
32
+ self.register_buffer('tx', torch.eye(embed_dim, dtype=dtype))
33
+
34
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
35
+ x = _run_kernel(x, self.mean, self.tx)
36
+ return x
37
+
38
+
39
+ class InterFeatState(NamedTuple):
40
+ y: torch.Tensor
41
+ alpha: torch.Tensor
42
+
43
+
44
+ class IntermediateFeatureNormalizerBase(nn.Module):
45
+ def forward(self, x: torch.Tensor, index: int, rot_index: int = None, skip: Optional[int] = None) -> InterFeatState:
46
+ raise NotImplementedError()
47
+
48
+
49
+ class IntermediateFeatureNormalizer(IntermediateFeatureNormalizerBase):
50
+ def __init__(self, num_intermediates: int, embed_dim: int, rot_per_layer: bool = False, dtype: torch.dtype = torch.float32):
51
+ super().__init__()
52
+ self.register_buffer('alphas', torch.ones(num_intermediates, dtype=dtype))
53
+
54
+ rot = torch.eye(embed_dim, dtype=dtype)
55
+ if rot_per_layer:
56
+ rot = rot.unsqueeze(0).repeat(num_intermediates, 1, 1)
57
+
58
+ self.register_buffer('rotation', rot.contiguous())
59
+ self.register_buffer('means', torch.zeros(num_intermediates, embed_dim, dtype=dtype))
60
+
61
+ def forward(self, x: torch.Tensor, index: int, rot_index: int = None, skip: Optional[int] = None) -> InterFeatState:
62
+ if rot_index is None:
63
+ rot_index = index
64
+
65
+ if skip:
66
+ assert x.ndim == 3, f'Cannot use the `skip` parameter when the `x` tensor isn\'t 3-dimensional.'
67
+ prefix, x = x[:, :skip], x[:, skip:]
68
+
69
+ rotation = self._get_rotation(rot_index)
70
+ y = _run_kernel(x, self.means[index], rotation)
71
+
72
+ alpha = self.alphas[index]
73
+ if skip:
74
+ alpha = torch.cat([
75
+ torch.ones(skip, dtype=alpha.dtype, device=alpha.device),
76
+ alpha[None].expand(y.shape[1]),
77
+ ]).reshape(1, -1, 1)
78
+ y = torch.cat([prefix, y], dim=1)
79
+ else:
80
+ if x.ndim == 3:
81
+ alpha = alpha.reshape(1, 1, 1).expand(1, y.shape[1], 1)
82
+ elif x.ndim == 4:
83
+ alpha = alpha.reshape(1, 1, 1, 1).expand(1, 1, *y.shape[2:])
84
+ else:
85
+ raise ValueError(f'Unsupported input dimension: {x.ndim}')
86
+
87
+ return InterFeatState(y, alpha)
88
+
89
+ def _get_rotation(self, rot_index: int) -> torch.Tensor:
90
+ if self.rotation.ndim == 2:
91
+ return self.rotation
92
+ return self.rotation[rot_index]
93
+
94
+
95
+ class NullIntermediateFeatureNormalizer(IntermediateFeatureNormalizerBase):
96
+ instances = dict()
97
+
98
+ def __init__(self, dtype: torch.dtype, device: torch.device):
99
+ super().__init__()
100
+ self.register_buffer('alpha', torch.tensor(1, dtype=dtype, device=device))
101
+
102
+ @staticmethod
103
+ def get_instance(dtype: torch.dtype, device: torch.device):
104
+ instance = NullIntermediateFeatureNormalizer.instances.get((dtype, device), None)
105
+ if instance is None:
106
+ instance = NullIntermediateFeatureNormalizer(dtype, device)
107
+ NullIntermediateFeatureNormalizer.instances[(dtype, device)] = instance
108
+ return instance
109
+
110
+ def forward(self, x: torch.Tensor, index: int, rot_index: int = None, skip: Optional[int] = None) -> InterFeatState:
111
+ return InterFeatState(x, self.alpha)
tim/models/nvidia_radio/radio/forward_intermediates.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ from typing import Callable, Dict, List, Optional, Set, Tuple, Union, Any, Iterable
10
+ from types import MethodType
11
+
12
+ import torch
13
+ from torch import nn
14
+
15
+ from .feature_normalizer import IntermediateFeatureNormalizerBase, NullIntermediateFeatureNormalizer
16
+
17
+
18
+ def _take_indices(
19
+ num_blocks: int,
20
+ n: Optional[Union[int, List[int], Tuple[int]]],
21
+ ) -> Tuple[Set[int], int]:
22
+ if isinstance(n, int):
23
+ assert n >= 0
24
+ take_indices = {x for x in range(num_blocks - n, num_blocks)}
25
+ else:
26
+ take_indices = {num_blocks + idx if idx < 0 else idx for idx in n}
27
+ return take_indices, max(take_indices)
28
+
29
+
30
+ def forward_intermediates(
31
+ model: nn.Module,
32
+ patch_extractor: Callable[[torch.Tensor], torch.Tensor],
33
+ norm: nn.Module,
34
+ num_summary_tokens: int,
35
+ num_cls_tokens: int,
36
+ x: torch.Tensor,
37
+ indices: Optional[Union[int, List[int], Tuple[int]]] = None,
38
+ return_prefix_tokens: bool = False,
39
+ stop_early: bool = False,
40
+ output_fmt: str = 'NCHW',
41
+ intermediates_only: bool = False,
42
+ aggregation: Optional[str] = "sparse",
43
+ inter_feature_normalizer: Optional[IntermediateFeatureNormalizerBase] = None,
44
+ norm_alpha_scheme = "post-alpha",
45
+ block_kwargs: Dict = None,
46
+ ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
47
+ """ Forward features that returns intermediates.
48
+
49
+ The Dense layer aggregation method is inspired from the paper: "Dense Connector for MLLMs"
50
+ by Yao, Huanjin et al. (2024). arXiv preprint arXiv:2405.13800}
51
+
52
+ Args:
53
+ x: Input image tensor
54
+ indices: Take last n blocks if int, select matching indices if sequence
55
+ return_prefix_tokens: Return both prefix and spatial intermediate tokens
56
+ norm: Apply norm layer to all intermediates
57
+ stop_early: Stop iterating over blocks when last desired intermediate hit
58
+ output_fmt: Shape of intermediate feature outputs
59
+ intermediates_only: Only return intermediate features
60
+ aggregation: intermediate layer aggregation method (sparse or dense)
61
+ norm_alpha_scheme: apply alpha before ("pre-alpha") or after accumulation ("post-alpha")
62
+ Returns:
63
+ """
64
+ assert output_fmt in ('NCHW', 'NLC'), 'Output format must be one of NCHW or NLC.'
65
+ assert aggregation in ('sparse', 'dense'), 'Aggregation must be one of sparse or dense.'
66
+ reshape = output_fmt == 'NCHW'
67
+ intermediates = []
68
+
69
+ block_kwargs = block_kwargs or dict()
70
+
71
+ blocks = model.blocks
72
+
73
+ take_indices, max_index = _take_indices(len(blocks), indices)
74
+ take_indices = sorted(take_indices)
75
+ # forward pass
76
+ B, _, height, width = x.shape
77
+
78
+ x = patch_extractor(x)
79
+
80
+ if stop_early:
81
+ blocks = blocks[:max_index + 1]
82
+
83
+ if inter_feature_normalizer is None or norm_alpha_scheme == 'none':
84
+ inter_feature_normalizer = NullIntermediateFeatureNormalizer.get_instance(x.dtype, x.device)
85
+
86
+ assert norm_alpha_scheme in ('none', 'pre-alpha', 'post-alpha'), f'Unsupported alpha scheme: {norm_alpha_scheme}'
87
+ post_alpha_scheme = norm_alpha_scheme == 'post-alpha'
88
+
89
+ accumulator = 0
90
+ alpha_sum = 0
91
+ num_accumulated = 0
92
+
93
+ take_off = 0
94
+
95
+ for i, blk in enumerate(blocks):
96
+ x = blk(x, **block_kwargs)
97
+ if aggregation == "dense":
98
+ # Arbitrarily use the rotation matrix from the final layer in the dense group
99
+ y, alpha = inter_feature_normalizer(x, i, rot_index=take_indices[take_off], skip=num_summary_tokens)
100
+ if post_alpha_scheme:
101
+ accumulator = accumulator + y
102
+ alpha_sum = alpha_sum + alpha
103
+ else:
104
+ accumulator = accumulator + (alpha * y)
105
+ alpha_sum += 1
106
+ num_accumulated += 1
107
+ if i == take_indices[take_off]:
108
+ if aggregation == "dense":
109
+ alpha = alpha_sum / num_accumulated
110
+ x_ = alpha * accumulator / num_accumulated
111
+ num_accumulated = 0
112
+ accumulator = 0
113
+ alpha_sum = 0
114
+ else:
115
+ y, alpha = inter_feature_normalizer(x, i, skip=num_summary_tokens)
116
+ x_ = alpha * y
117
+ # normalize intermediates with final norm layer if enabled
118
+ intermediates.append(norm(x_))
119
+ take_off = min(take_off + 1, len(take_indices) - 1)
120
+
121
+ # process intermediates
122
+
123
+ # split prefix (e.g. class, distill) and spatial feature tokens
124
+ prefix_tokens = [y[:, :num_cls_tokens] for y in intermediates]
125
+ intermediates = [y[:, num_summary_tokens:] for y in intermediates]
126
+
127
+ if reshape:
128
+ # reshape to BCHW output format
129
+ H = height // model.patch_size
130
+ W = width // model.patch_size
131
+ intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates]
132
+ if not torch.jit.is_scripting() and return_prefix_tokens:
133
+ # return_prefix not support in torchscript due to poor type handling
134
+ intermediates = list(zip(prefix_tokens, intermediates))
135
+ if intermediates_only:
136
+ return intermediates
137
+ x = norm(x)
138
+ return x, intermediates
tim/models/nvidia_radio/radio/hf_model.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from collections import namedtuple
15
+ from typing import Callable, Dict, Optional, List, Union
16
+
17
+ from timm.models import VisionTransformer
18
+ import torch
19
+ from torch import nn
20
+ from transformers import PretrainedConfig, PreTrainedModel
21
+
22
+
23
+ from .common import RESOURCE_MAP, DEFAULT_VERSION
24
+
25
+ # Import all required modules.
26
+ from .adaptor_base import AdaptorBase, RadioOutput, AdaptorInput
27
+ from .adaptor_generic import GenericAdaptor, AdaptorBase
28
+ from .adaptor_mlp import create_mlp_from_config
29
+ from .adaptor_registry import adaptor_registry
30
+ from .cls_token import ClsToken
31
+ from .dinov2_arch import dinov2_vitg14_reg
32
+ from .enable_cpe_support import enable_cpe
33
+ from .enable_spectral_reparam import configure_spectral_reparam_from_args
34
+ from .eradio_model import eradio
35
+ from .feature_normalizer import FeatureNormalizer, IntermediateFeatureNormalizer
36
+ from .forward_intermediates import forward_intermediates
37
+ from .radio_model import create_model_from_args
38
+ from .radio_model import RADIOModel as RADIOModelBase, Resolution
39
+ from .input_conditioner import get_default_conditioner, InputConditioner
40
+ from .open_clip_adaptor import OpenCLIP_RADIO
41
+ from .vit_patch_generator import ViTPatchGenerator
42
+ from .vitdet import apply_vitdet_arch, VitDetArgs
43
+
44
+ # Register extra models
45
+ from .extra_timm_models import *
46
+ from .extra_models import *
47
+
48
+
49
+ class RADIOConfig(PretrainedConfig):
50
+ """Pretrained Hugging Face configuration for RADIO models."""
51
+
52
+ def __init__(
53
+ self,
54
+ args: Optional[dict] = None,
55
+ version: Optional[str] = DEFAULT_VERSION,
56
+ patch_size: Optional[int] = None,
57
+ max_resolution: Optional[int] = None,
58
+ preferred_resolution: Optional[Resolution] = None,
59
+ adaptor_names: Union[str, List[str]] = None,
60
+ adaptor_configs: Dict[str, Dict[str, int]] = None,
61
+ vitdet_window_size: Optional[int] = None,
62
+ feature_normalizer_config: Optional[dict] = None,
63
+ inter_feature_normalizer_config: Optional[dict] = None,
64
+ **kwargs,
65
+ ):
66
+ self.args = args
67
+ for field in ["dtype", "amp_dtype"]:
68
+ if self.args is not None and field in self.args:
69
+ # Convert to a string in order to make it serializable.
70
+ # For example for torch.float32 we will store "float32",
71
+ # for "bfloat16" we will store "bfloat16".
72
+ self.args[field] = str(args[field]).split(".")[-1]
73
+ self.version = version
74
+ resource = RESOURCE_MAP[version]
75
+ self.patch_size = patch_size or resource.patch_size
76
+ self.max_resolution = max_resolution or resource.max_resolution
77
+ self.preferred_resolution = (
78
+ preferred_resolution or resource.preferred_resolution
79
+ )
80
+ self.adaptor_names = adaptor_names
81
+ self.adaptor_configs = adaptor_configs
82
+ self.vitdet_window_size = vitdet_window_size
83
+ self.feature_normalizer_config = feature_normalizer_config
84
+ self.inter_feature_normalizer_config = inter_feature_normalizer_config
85
+ super().__init__(**kwargs)
86
+
87
+
88
+
89
+ class RADIOModel(PreTrainedModel):
90
+ """Pretrained Hugging Face model for RADIO.
91
+
92
+ This class inherits from PreTrainedModel, which provides
93
+ HuggingFace's functionality for loading and saving models.
94
+ """
95
+
96
+ config_class = RADIOConfig
97
+
98
+ def __init__(self, config: RADIOConfig):
99
+ super().__init__(config)
100
+
101
+ RADIOArgs = namedtuple("RADIOArgs", config.args.keys())
102
+ args = RADIOArgs(**config.args)
103
+ self.config = config
104
+
105
+ model = create_model_from_args(args)
106
+ input_conditioner: InputConditioner = get_default_conditioner()
107
+
108
+ dtype = getattr(args, "dtype", torch.float32)
109
+ if isinstance(dtype, str):
110
+ # Convert the dtype's string representation back to a dtype.
111
+ dtype = getattr(torch, dtype)
112
+ model.to(dtype=dtype)
113
+ input_conditioner.dtype = dtype
114
+
115
+ summary_idxs = torch.tensor(
116
+ [i for i, t in enumerate(args.teachers) if t.get("use_summary", True)],
117
+ dtype=torch.int64,
118
+ )
119
+
120
+ adaptor_configs = config.adaptor_configs
121
+ adaptor_names = config.adaptor_names or []
122
+
123
+ adaptors = dict()
124
+ for adaptor_name in adaptor_names:
125
+ mlp_config = adaptor_configs[adaptor_name]
126
+ adaptor = GenericAdaptor(args, None, None, mlp_config)
127
+ adaptor.head_idx = mlp_config["head_idx"]
128
+ adaptors[adaptor_name] = adaptor
129
+
130
+ feature_normalizer = None
131
+ if config.feature_normalizer_config is not None:
132
+ # Actual normalization values will be restored when loading checkpoint weights.
133
+ feature_normalizer = FeatureNormalizer(config.feature_normalizer_config["embed_dim"])
134
+
135
+ inter_feature_normalizer = None
136
+ if config.inter_feature_normalizer_config is not None:
137
+ inter_feature_normalizer = IntermediateFeatureNormalizer(
138
+ config.inter_feature_normalizer_config["num_intermediates"],
139
+ config.inter_feature_normalizer_config["embed_dim"],
140
+ rot_per_layer=config.inter_feature_normalizer_config["rot_per_layer"],
141
+ dtype=dtype)
142
+
143
+ self.radio_model = RADIOModelBase(
144
+ model,
145
+ input_conditioner,
146
+ summary_idxs=summary_idxs,
147
+ patch_size=config.patch_size,
148
+ max_resolution=config.max_resolution,
149
+ window_size=config.vitdet_window_size,
150
+ preferred_resolution=config.preferred_resolution,
151
+ adaptors=adaptors,
152
+ feature_normalizer=feature_normalizer,
153
+ inter_feature_normalizer=inter_feature_normalizer,
154
+ )
155
+
156
+ @property
157
+ def adaptors(self) -> nn.ModuleDict:
158
+ return self.radio_model.adaptors
159
+
160
+ @property
161
+ def model(self) -> VisionTransformer:
162
+ return self.radio_model.model
163
+
164
+ @property
165
+ def input_conditioner(self) -> InputConditioner:
166
+ return self.radio_model.input_conditioner
167
+
168
+ @property
169
+ def num_summary_tokens(self) -> int:
170
+ return self.radio_model.num_summary_tokens
171
+
172
+ @property
173
+ def patch_size(self) -> int:
174
+ return self.radio_model.patch_size
175
+
176
+ @property
177
+ def max_resolution(self) -> int:
178
+ return self.radio_model.max_resolution
179
+
180
+ @property
181
+ def preferred_resolution(self) -> Resolution:
182
+ return self.radio_model.preferred_resolution
183
+
184
+ @property
185
+ def window_size(self) -> int:
186
+ return self.radio_model.window_size
187
+
188
+ @property
189
+ def min_resolution_step(self) -> int:
190
+ return self.radio_model.min_resolution_step
191
+
192
+ def make_preprocessor_external(self) -> Callable[[torch.Tensor], torch.Tensor]:
193
+ return self.radio_model.make_preprocessor_external()
194
+
195
+ def get_nearest_supported_resolution(self, height: int, width: int) -> Resolution:
196
+ return self.radio_model.get_nearest_supported_resolution(height, width)
197
+
198
+ def switch_to_deploy(self):
199
+ return self.radio_model.switch_to_deploy()
200
+
201
+ def forward(self, x: torch.Tensor):
202
+ return self.radio_model.forward(x)
tim/models/nvidia_radio/radio/input_conditioner.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ from typing import Union, Tuple
10
+
11
+ import torch
12
+ from torch import nn
13
+
14
+
15
+ norm_t = Union[Tuple[float, float, float], torch.Tensor]
16
+
17
+ class InputConditioner(nn.Module):
18
+ def __init__(self,
19
+ input_scale: float,
20
+ norm_mean: norm_t,
21
+ norm_std: norm_t,
22
+ dtype: torch.dtype = None,
23
+ ):
24
+ super().__init__()
25
+
26
+ self.dtype = dtype
27
+
28
+ self.register_buffer("norm_mean", _to_tensor(norm_mean) / input_scale)
29
+ self.register_buffer("norm_std", _to_tensor(norm_std) / input_scale)
30
+
31
+ def forward(self, x: torch.Tensor):
32
+ y = (x - self.norm_mean) / self.norm_std
33
+ if self.dtype is not None:
34
+ y = y.to(self.dtype)
35
+ return y
36
+
37
+
38
+ def get_default_conditioner():
39
+ from timm.data.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
40
+
41
+ return InputConditioner(
42
+ input_scale=1.0,
43
+ norm_mean=OPENAI_CLIP_MEAN,
44
+ norm_std=OPENAI_CLIP_STD,
45
+ )
46
+
47
+
48
+ def _to_tensor(v: norm_t):
49
+ return torch.as_tensor(v, dtype=torch.float32).view(-1, 1, 1)
tim/models/nvidia_radio/radio/open_clip_adaptor.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+ from argparse import Namespace
9
+
10
+ import torch
11
+ from torch import nn
12
+ import torch.nn.functional as F
13
+
14
+ from .adaptor_registry import adaptor_registry, dict_t, state_t
15
+
16
+ from .adaptor_generic import GenericAdaptor
17
+
18
+
19
+ class OpenCLIP_RADIO(GenericAdaptor):
20
+ def __init__(self, main_config: Namespace, adaptor_config: dict_t, state: state_t):
21
+ super().__init__(main_config, adaptor_config, state)
22
+
23
+ import open_clip
24
+
25
+ self.oc_model = open_clip.create_model_from_pretrained(
26
+ model_name=adaptor_config['model'],
27
+ pretrained=adaptor_config['pretrained'],
28
+ return_transform=False,
29
+ )
30
+ # Unload these parameters
31
+ self.oc_model.visual = None
32
+
33
+ self.tokenizer = open_clip.get_tokenizer(model_name=adaptor_config['model'])
34
+
35
+ def encode_text(self, text, normalize: bool = False):
36
+ return self.oc_model.encode_text(text, normalize=normalize)
37
+
38
+
39
+ @adaptor_registry.register_adaptor("open_clip")
40
+ def create_open_clip_adaptor(main_config: Namespace, adaptor_config: dict_t, state: state_t):
41
+ return OpenCLIP_RADIO(main_config, adaptor_config, state)
tim/models/nvidia_radio/radio/radio_model.py ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+ from typing import Callable, Dict, Iterable, List, NamedTuple, Optional, Tuple, Union
9
+
10
+ import torch
11
+ from torch import nn
12
+
13
+ from timm.models import create_model, VisionTransformer
14
+ from types import MethodType
15
+
16
+ from .enable_cpe_support import enable_cpe
17
+ from .input_conditioner import InputConditioner
18
+ from .adaptor_base import AdaptorBase, RadioOutput, AdaptorInput
19
+ from . import eradio_model
20
+ from .enable_spectral_reparam import configure_spectral_reparam_from_args
21
+ from .feature_normalizer import FeatureNormalizer, IntermediateFeatureNormalizer
22
+ from . import dual_hybrid_vit
23
+
24
+
25
+ class Resolution(NamedTuple):
26
+ height: int
27
+ width: int
28
+
29
+
30
+ class RADIOModel(nn.Module):
31
+ def __init__(
32
+ self,
33
+ model: nn.Module,
34
+ input_conditioner: InputConditioner,
35
+ patch_size: int,
36
+ max_resolution: int,
37
+ preferred_resolution: Resolution,
38
+ summary_idxs: Optional[torch.Tensor] = None,
39
+ window_size: int = None,
40
+ adaptors: Dict[str, AdaptorBase] = None,
41
+ feature_normalizer: Optional[FeatureNormalizer] = None,
42
+ inter_feature_normalizer: Optional[IntermediateFeatureNormalizer] = None,
43
+ ):
44
+ super().__init__()
45
+
46
+ self.model = model
47
+ self.input_conditioner = input_conditioner
48
+ if summary_idxs is not None:
49
+ self.register_buffer('summary_idxs', summary_idxs)
50
+ else:
51
+ self.summary_idxs = None
52
+
53
+ self._preferred_resolution = preferred_resolution
54
+ self._patch_size = patch_size
55
+ self._max_resolution = max_resolution
56
+ self._window_size = window_size
57
+
58
+ adaptors = adaptors or dict()
59
+ self.adaptors = nn.ModuleDict(adaptors)
60
+
61
+ if feature_normalizer is None:
62
+ feature_normalizer = nn.Identity()
63
+ self.feature_normalizer = feature_normalizer
64
+ self.inter_feature_normalizer = inter_feature_normalizer
65
+
66
+ @property
67
+ def num_summary_tokens(self) -> int:
68
+ if hasattr(self.model, 'num_summary_tokens'):
69
+ return self.model.num_summary_tokens
70
+
71
+ patch_gen = getattr(self.model, "patch_generator", None)
72
+ if patch_gen is not None:
73
+ return patch_gen.num_skip
74
+ elif getattr(self.model, 'global_pool', None) == 'avg':
75
+ return 0
76
+ return 1
77
+
78
+ @property
79
+ def num_cls_tokens(self) -> int:
80
+ if hasattr(self.model, 'num_cls_tokens'):
81
+ return self.model.num_cls_tokens
82
+
83
+ patch_gen = getattr(self.model, 'patch_generator', None)
84
+ if patch_gen is not None:
85
+ return patch_gen.num_cls_tokens
86
+ elif getattr(self.model, 'global_pool', None) == 'avg':
87
+ return 0
88
+ return 1
89
+
90
+ @property
91
+ def patch_size(self) -> int:
92
+ if self._patch_size is not None:
93
+ return self._patch_size
94
+ if hasattr(self.model, "patch_size"):
95
+ return self.model.patch_size
96
+ patch_gen = getattr(self.model, "patch_generator", None)
97
+ if patch_gen is not None:
98
+ return patch_gen.patch_size
99
+ return None
100
+
101
+ @property
102
+ def max_resolution(self) -> int:
103
+ return self._max_resolution
104
+
105
+ @property
106
+ def preferred_resolution(self) -> Resolution:
107
+ return self._preferred_resolution
108
+
109
+ @property
110
+ def window_size(self) -> int:
111
+ return self._window_size
112
+
113
+ @property
114
+ def min_resolution_step(self) -> int:
115
+ res = self.patch_size
116
+ if self.window_size is not None:
117
+ res *= self.window_size
118
+ return res
119
+
120
+ @property
121
+ def blocks(self) -> Iterable[nn.Module]:
122
+ blocks = getattr(self.model, 'blocks', None)
123
+ if blocks is not None:
124
+ return blocks
125
+ return None
126
+
127
+ @property
128
+ def embed_dim(self) -> int:
129
+ return self.model.embed_dim
130
+
131
+ def make_preprocessor_external(self) -> Callable[[torch.Tensor], torch.Tensor]:
132
+ ret = self.input_conditioner
133
+ self.input_conditioner = nn.Identity()
134
+ return ret
135
+
136
+ def get_nearest_supported_resolution(self, height: int, width: int) -> Resolution:
137
+ height = int(round(height / self.min_resolution_step) * self.min_resolution_step)
138
+ width = int(round(width / self.min_resolution_step) * self.min_resolution_step)
139
+
140
+ height = max(height, self.min_resolution_step)
141
+ width = max(width, self.min_resolution_step)
142
+
143
+ return Resolution(height=height, width=width)
144
+
145
+ def switch_to_deploy(self):
146
+ fn = getattr(self.model, 'switch_to_deploy', None)
147
+ if fn is not None:
148
+ fn()
149
+
150
+ def forward(self, x: torch.Tensor, feature_fmt: str = 'NLC') -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
151
+ '''
152
+ Forward process for model.
153
+ Args:
154
+ x: Input tensor. Unless `make_preprocessor_external` has been called, then the dynamic range of `x` is expected to be `[0, 1]`,
155
+ otherwise `x` is expected to be mean centered with unit standard deviation.
156
+ feature_format: ['NLC', 'NCHW'] - The output format for the features.
157
+ '''
158
+ res_step = self.min_resolution_step
159
+ if res_step is not None and (x.shape[-2] % res_step != 0 or x.shape[-1] % res_step != 0):
160
+ raise ValueError('The input resolution must be a multiple of `self.min_resolution_step`. '
161
+ '`self.get_nearest_supported_resolution(<height>, <width>) is provided as a convenience API. '
162
+ f'Input: {x.shape[-2:]}, Nearest: {self.get_nearest_supported_resolution(*x.shape[-2:])}')
163
+
164
+ x = self.input_conditioner(x)
165
+ y = self.model.forward_features(x)
166
+ ret = self._extract_final(x, y, feature_fmt=feature_fmt)
167
+ return ret
168
+
169
+ def forward_pack(self, x: List[torch.Tensor], feature_fmt: str = 'NLC') -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
170
+ '''
171
+ Forward process for model.
172
+ Args:
173
+ x: Input tensor. Unless `make_preprocessor_external` has been called, then the dynamic range of `x` is expected to be `[0, 1]`,
174
+ otherwise `x` is expected to be mean centered with unit standard deviation.
175
+ feature_format: ['NLC', 'NCHW'] - The output format for the features.
176
+ '''
177
+ res_step = self.min_resolution_step
178
+ for _x in x:
179
+ if res_step is not None and (_x.shape[-2] % res_step != 0 or _x.shape[-1] % res_step != 0):
180
+ raise ValueError('The input resolution must be a multiple of `self.min_resolution_step`. '
181
+ '`self.get_nearest_supported_resolution(<height>, <width>) is provided as a convenience API. '
182
+ f'Input: {_x.shape[-2:]}, Nearest: {self.get_nearest_supported_resolution(*_x.shape[-2:])}')
183
+
184
+ x = [self.input_conditioner(_x) for _x in x]
185
+ y, cu_seqlens = self.model.forward_features(x)
186
+ all_summary, spatial_features = [], []
187
+ num_cls_tokens = self.model.patch_generator.num_cls_tokens
188
+ num_skip = self.model.patch_generator.num_skip
189
+ for i in range(len(cu_seqlens)-1):
190
+ summary = y[cu_seqlens[i]: cu_seqlens[i+1]][: num_cls_tokens]
191
+ all_feat = y[cu_seqlens[i]: cu_seqlens[i+1]][num_skip :]
192
+ all_summary.append(summary)
193
+ spatial_features.append(all_feat)
194
+ all_summary = torch.cat(all_summary)
195
+ spatial_features = torch.cat(spatial_features)
196
+ return all_summary, spatial_features
197
+
198
+ def _extract_final(self, x: torch.Tensor, y: torch.Tensor, feature_fmt: str = 'NLC'):
199
+ if isinstance(self.model, VisionTransformer):
200
+ patch_gen = getattr(self.model, "patch_generator", None)
201
+ if patch_gen is not None:
202
+ all_summary = y[:, : patch_gen.num_cls_tokens]
203
+ if self.summary_idxs is not None:
204
+ bb_summary = all_summary[:, self.summary_idxs]
205
+ else:
206
+ bb_summary = all_summary
207
+ all_feat = y[:, patch_gen.num_skip :]
208
+ elif self.model.global_pool == "avg":
209
+ all_summary = y[:, self.model.num_prefix_tokens :].mean(dim=1)
210
+ bb_summary = all_summary
211
+ all_feat = y
212
+ else:
213
+ all_summary = y[:, 0]
214
+ bb_summary = all_summary
215
+ all_feat = y[:, 1:]
216
+ elif isinstance(self.model, eradio_model.ERADIO):
217
+ _, f = y
218
+ all_feat = f.flatten(2).transpose(1, 2)
219
+ all_summary = all_feat.mean(dim=1)
220
+ bb_summary = all_summary
221
+ elif isinstance(y, (list, tuple)):
222
+ all_summary, all_feat = y
223
+ bb_summary = all_summary
224
+ else:
225
+ all_summary = y[:, :self.num_cls_tokens]
226
+ if self.summary_idxs is not None and all_summary.shape[1] > 1:
227
+ if all_summary.shape[1] == 1:
228
+ # Create dummy duplicates
229
+ all_summary = all_summary.expand(-1, 128, -1)
230
+ bb_summary = all_summary[:, self.summary_idxs]
231
+ else:
232
+ bb_summary = all_summary
233
+ all_feat = y[:, self.num_summary_tokens:]
234
+
235
+ all_feat = self.feature_normalizer(all_feat)
236
+
237
+ if feature_fmt == 'NCHW':
238
+ fmt_feat = (all_feat.reshape(all_feat.shape[0], x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size, all_feat.shape[2])
239
+ .permute(0, 3, 1, 2)
240
+ )
241
+ elif feature_fmt == 'NLC':
242
+ fmt_feat = all_feat
243
+ else:
244
+ raise ValueError(f'Unsupported feature_fmt: {feature_fmt}. Must be one of ["NLC", "NCHW"]')
245
+
246
+ ret = RadioOutput(bb_summary.flatten(1), fmt_feat)
247
+
248
+ if self.adaptors:
249
+ ret = dict(backbone=ret)
250
+ for name, adaptor in self.adaptors.items():
251
+ if all_summary.ndim == 3:
252
+ if all_summary.shape[1] == 1:
253
+ summary = all_summary[:, 0]
254
+ else:
255
+ summary = all_summary[:, adaptor.head_idx]
256
+ else:
257
+ summary = all_summary
258
+ ada_input = AdaptorInput(images=x, summary=summary.float(), features=all_feat, feature_fmt=feature_fmt, patch_size=self.patch_size)
259
+ v = adaptor(ada_input).to(torch.float32)
260
+ ret[name] = v
261
+
262
+ return ret
263
+
264
+ def forward_intermediates(
265
+ self,
266
+ x: torch.Tensor,
267
+ indices: Optional[Union[int, List[int], Tuple[int]]] = None,
268
+ return_prefix_tokens: bool = False,
269
+ norm: bool = False,
270
+ stop_early: bool = False,
271
+ output_fmt: str = 'NCHW',
272
+ intermediates_only: bool = False,
273
+ aggregation: Optional[str] = "sparse",
274
+ norm_alpha_scheme: Optional[str] = "post-alpha",
275
+ ) -> List[RadioOutput]:
276
+ """ Forward features that returns intermediates.
277
+ Args:
278
+ x: Input image tensor
279
+ indices: Take last n blocks if int, select matching indices if sequence
280
+ return_prefix_tokens: Return both prefix and spatial intermediate tokens
281
+ norm: Apply norm layer to all intermediates
282
+ stop_early: Stop iterating over blocks when last desired intermediate hit
283
+ output_fmt: Shape of intermediate feature outputs. Options: NCHW, NLC
284
+ intermediates_only: Only return intermediate features
285
+ aggregation: intermediate layer aggregation method (sparse or dense).
286
+ Dense accumulation is done by averaging the features in each group.
287
+ norm_alpha_scheme: apply alpha before ("pre-alpha") or after accumulation ("post-alpha"), or don't normalize ("none")
288
+ Only affects dense aggregation
289
+ Returns:
290
+ List of RadioOutput objects.
291
+ """
292
+ x = self.input_conditioner(x)
293
+ intermediates = self.model.forward_intermediates(
294
+ x,
295
+ indices=indices,
296
+ return_prefix_tokens=return_prefix_tokens,
297
+ norm=norm,
298
+ stop_early=stop_early,
299
+ output_fmt=output_fmt,
300
+ intermediates_only=intermediates_only,
301
+ aggregation=aggregation,
302
+ inter_feature_normalizer=self.inter_feature_normalizer,
303
+ norm_alpha_scheme=norm_alpha_scheme,
304
+ )
305
+
306
+ if not intermediates_only:
307
+ final, intermediates = intermediates
308
+
309
+ def prepare_summary(summ: Optional[torch.Tensor]):
310
+ if summ is None:
311
+ return summ
312
+ if self.summary_idxs is not None and summ.shape[1] > 1:
313
+ summ = summ[:, self.summary_idxs]
314
+ return summ.flatten(1)
315
+
316
+ if return_prefix_tokens:
317
+ radio_outputs = [
318
+ RadioOutput(prepare_summary(summary), features)
319
+ for summary, features in intermediates
320
+ ]
321
+ else:
322
+ radio_outputs = intermediates
323
+
324
+ if intermediates_only:
325
+ return radio_outputs
326
+ else:
327
+ final = self._extract_final(x, final, feature_fmt=output_fmt)
328
+ return final, radio_outputs
329
+
330
+
331
+
332
+ def create_model_from_args(args) -> nn.Module:
333
+ in_chans = 3
334
+ if args.in_chans is not None:
335
+ in_chans = args.in_chans
336
+ elif args.input_size is not None:
337
+ in_chans = args.input_size[0]
338
+
339
+ # Skip weight initialization unless it's explicitly requested.
340
+ weight_init = args.model_kwargs.pop("weight_init", "skip")
341
+
342
+ model = create_model(
343
+ args.model,
344
+ pretrained=args.pretrained,
345
+ in_chans=in_chans,
346
+ num_classes=args.num_classes,
347
+ drop_rate=args.drop,
348
+ drop_path_rate=args.drop_path,
349
+ drop_block_rate=args.drop_block,
350
+ global_pool=args.gp,
351
+ bn_momentum=args.bn_momentum,
352
+ bn_eps=args.bn_eps,
353
+ scriptable=args.torchscript,
354
+ checkpoint_path=args.initial_checkpoint,
355
+ weight_init=weight_init,
356
+ **args.model_kwargs,
357
+ )
358
+
359
+ if hasattr(model, 'norm') and not getattr(args, 'model_norm', False):
360
+ model.norm = nn.Identity()
361
+
362
+ model.head = nn.Identity()
363
+
364
+ if args.cpe_max_size is not None:
365
+ uq_teachers = set(t['name'] for t in args.teachers)
366
+ enable_cpe(
367
+ model,
368
+ args.cpe_max_size,
369
+ num_cls_tokens=len(uq_teachers) if args.cls_token_per_teacher else 1,
370
+ register_multiple=getattr(args, 'register_multiple', None),
371
+ num_registers=getattr(args, 'cpe_num_registers', None),
372
+ support_packing=args.support_packing,
373
+ )
374
+
375
+ return model
tim/models/nvidia_radio/radio/vision_transformer_xpos.py ADDED
@@ -0,0 +1,357 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import Final, List, Optional, Tuple, Union
3
+
4
+
5
+ from einops import rearrange
6
+ from timm.models import register_model
7
+ import torch
8
+ from torch import Type, nn
9
+ from torch.nn import functional as F
10
+ from torch.nn.init import xavier_normal_, xavier_uniform_, zeros_
11
+
12
+ from .forward_intermediates import forward_intermediates
13
+
14
+
15
+ def _get_init_scale(num_encoder_layers: int, num_decoder_layers: int, is_encoder: bool):
16
+ if num_encoder_layers > 0 and num_decoder_layers == 0:
17
+ return math.sqrt(math.log(2 * num_encoder_layers))
18
+ if num_decoder_layers > 0 and num_encoder_layers == 0:
19
+ return math.sqrt(math.log(2 * num_decoder_layers))
20
+ if is_encoder:
21
+ # Both encoders and decoders
22
+ return math.sqrt(
23
+ 0.33 * math.log(3 * num_decoder_layers) * math.log(2 * num_encoder_layers)
24
+ )
25
+
26
+ return math.sqrt(math.log(3 * num_decoder_layers))
27
+
28
+
29
+ # [1,2] [1,1,2,2]
30
+ # [3,4] -> [3,3,4,4]
31
+ # [5,6] [5,5,6,6]
32
+ def duplicate_interleave(m):
33
+ return m.view(-1, 1).repeat(1, 2).view(m.shape[0], -1)
34
+
35
+ # 0,1,2,3,4,5,6,7 -> -1,0,-3,2,-5,4,-7,6
36
+ def rotate_every_two(x):
37
+ x1 = x[:, :, ::2]
38
+ x2 = x[:, :, 1::2]
39
+ x = torch.stack((-x2, x1), dim=-1)
40
+ return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')\
41
+
42
+
43
+ class XPosEmbedding2D(torch.nn.Module):
44
+ """Implementation of xPos based on RotaryEmbedding from GPT-NeoX.
45
+ This implementation is designed to operate on queries and keys that are compatible with
46
+ [batch_size, n_heads_per_partition, seq_len, head_dim] (e.g. MinGPTAttention format).
47
+ """
48
+
49
+ def __init__(
50
+ self,
51
+ head_dim: int,
52
+ base=50000,
53
+ scale_base=512
54
+ ):
55
+ super().__init__()
56
+ half_dim = head_dim // 2
57
+ self.half_dim = half_dim
58
+ inv_freq = 1.0 / (base ** (torch.arange(0, half_dim, 2).float() / half_dim))
59
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
60
+ self.head_dim = head_dim
61
+ self.token_shape_cached = None
62
+ self.batch_size_cached = None
63
+ self.cos_cached: torch.Tensor | None = None
64
+ self.sin_cached: torch.Tensor | None = None
65
+ self.scale_cached: torch.Tensor | None = None
66
+ self.scale_base = scale_base
67
+ self.register_buffer("scale",
68
+ (torch.arange(0, half_dim, 2) + 0.4 * half_dim) / (1.4 * half_dim))
69
+
70
+ def cos_sin(
71
+ self,
72
+ token_shape: Tuple[int, int],
73
+ device="cuda",
74
+ dtype=torch.bfloat16,
75
+ ) -> torch.Tensor:
76
+ if token_shape != self.token_shape_cached:
77
+ self.token_shape_cached = token_shape
78
+ y = torch.arange(token_shape[0], device=device, dtype=self.inv_freq.dtype)
79
+ x = torch.arange(token_shape[1], device=device, dtype=self.inv_freq.dtype)
80
+ x, y = torch.meshgrid(x, y, indexing='xy')
81
+
82
+ y_freqs = torch.einsum("i,j->ij", y.flatten(), self.inv_freq)
83
+ x_freqs = torch.einsum("i,j->ij", x.flatten(), self.inv_freq)
84
+
85
+ y_scales = self.scale ** y.flatten().div(self.scale_base)[:, None]
86
+ x_scales = self.scale ** x.flatten().div(self.scale_base)[:, None]
87
+
88
+ freqs = torch.cat([y_freqs, x_freqs], dim=-1)
89
+ emb = torch.repeat_interleave(freqs, repeats=2, dim=-1)
90
+
91
+ scales = torch.cat([y_scales, x_scales], dim=-1)
92
+ scales = torch.repeat_interleave(scales, repeats=2, dim=-1)
93
+
94
+ if dtype in [torch.float16, torch.bfloat16]:
95
+ emb = emb.float()
96
+
97
+ self.cos_cached = emb.cos()[None, :, :]
98
+ self.sin_cached = emb.sin()[None, :, :]
99
+ self.scale_cached = scales[None, :, :]
100
+
101
+ self.cos_cached = self.cos_cached.type(dtype)
102
+ self.sin_cached = self.sin_cached.type(dtype)
103
+ self.scale_cached = self.scale_cached.type(dtype)
104
+
105
+ return self.cos_cached, self.sin_cached, self.scale_cached
106
+
107
+ def forward(self, q: torch.Tensor, k: torch.Tensor, token_shape: Tuple[int, int]):
108
+ batch, seq_len, head_dim = q.shape
109
+ cos, sin, scale = self.cos_sin(token_shape, q.device, q.dtype)
110
+ # scale = self.scale**torch.arange(seq_len).to(self.scale).div(self.scale_base)[:, None]
111
+ # scale = torch.repeat_interleave(scale, 2, dim=-1).to(q.device)
112
+ # scale = torch.cat([scale, scale], dim=-1)
113
+ # scale = 1
114
+ return (
115
+ (q * cos * scale) + (rotate_every_two(q) * sin * scale),
116
+ (k * cos * (1 / scale)) + (rotate_every_two(k) * sin * (1 / scale)),
117
+ )
118
+
119
+
120
+ class MagnetoAttention(nn.Module):
121
+ def __init__(self, d_model: int, n_head: int, pos_emb: XPosEmbedding2D):
122
+ super().__init__()
123
+ self.num_heads = n_head
124
+ self.head_dim = d_model // n_head
125
+ self.scale = self.head_dim ** -0.5
126
+
127
+ self.qkv = nn.Linear(d_model, d_model * 3, bias=False)
128
+ self.proj = nn.Linear(d_model, d_model)
129
+ self.pos_emb = pos_emb
130
+
131
+ self.norm0 = nn.LayerNorm(d_model)
132
+ self.norm1 = nn.LayerNorm(d_model)
133
+
134
+ def forward(self, x: torch.Tensor, num_prefix_tokens: int, patch_shape: Tuple[int, int]) -> torch.Tensor:
135
+ B, N, C = x.shape
136
+ x = self.norm0(x)
137
+
138
+ qkv = self.qkv(x).reshape(B, N, 3, C).permute(2, 0, 1, 3)
139
+ q, k, v = qkv.unbind(0)
140
+
141
+ q_pref = q[:, :num_prefix_tokens]
142
+ q_patch = q[:, num_prefix_tokens:]
143
+
144
+ k_pref = k[:, :num_prefix_tokens]
145
+ k_patch = k[:, num_prefix_tokens:]
146
+
147
+ q_patch, k_patch = self.pos_emb(q_patch, k_patch, patch_shape)
148
+
149
+ q = torch.cat([q_pref, q_patch], dim=1)
150
+ k = torch.cat([k_pref, k_patch], dim=1)
151
+
152
+ def head_reshape(t: torch.Tensor):
153
+ return t.reshape(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
154
+
155
+ q = head_reshape(q)
156
+ k = head_reshape(k)
157
+ v = head_reshape(v)
158
+
159
+ x = F.scaled_dot_product_attention(q, k, v)
160
+ x = x.transpose(1, 2).reshape(B, N, C)
161
+ x = self.norm1(x)
162
+ x = self.proj(x)
163
+ return x
164
+
165
+ def _reset_parameters(self):
166
+ xavier_uniform_(self.qkv.weight)
167
+ if self.qkv.bias is not None:
168
+ zeros_(self.qkv.bias)
169
+ xavier_normal_(self.proj.weight)
170
+ zeros_(self.proj.bias)
171
+
172
+
173
+ class MagnetoTransformerEncoderLayer(nn.Module):
174
+ def __init__(self, d_model: int, nhead: int, pos_emb: XPosEmbedding2D,
175
+ num_encoder_layers: int, num_decoder_layers: int = 0,
176
+ dim_mhsa: int = 0,
177
+ dim_feedforward: int = 2048,
178
+ layer_norm_eps: float = 1e-5,
179
+ batch_first: bool = True):
180
+ super().__init__()
181
+
182
+ if dim_mhsa == 0:
183
+ dim_mhsa = d_model
184
+
185
+ self._num_encoder_layers = num_encoder_layers
186
+ self._num_decoder_layers = num_decoder_layers
187
+
188
+ self.attn = MagnetoAttention(d_model, nhead, pos_emb)
189
+
190
+ self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps)
191
+ self.linear2 = nn.Linear(d_model, dim_feedforward)
192
+ self.norm3 = nn.LayerNorm(dim_feedforward, eps=layer_norm_eps)
193
+ self.linear3 = nn.Linear(dim_feedforward, d_model)
194
+
195
+ def initialize(self):
196
+ gamma = _get_init_scale(self._num_encoder_layers, self._num_decoder_layers, is_encoder=True)
197
+
198
+ # Magneto Initialization
199
+ for mod in self.children():
200
+ if isinstance(mod, nn.Linear):
201
+ xavier_normal_(mod.weight.data, gamma)
202
+ elif isinstance(mod, MagnetoAttention):
203
+ mod._reset_parameters()
204
+
205
+ def forward(self, x: torch.Tensor, num_prefix_tokens: int, patch_shape: Tuple[int, int]) -> torch.Tensor:
206
+ x = x + self._sa_block(x, num_prefix_tokens, patch_shape)
207
+ x = x + self._ff_block(x)
208
+ return x
209
+
210
+ def _sa_block(self, x: torch.Tensor, num_prefix_tokens: int, patch_shape: Tuple[int, int]) -> torch.Tensor:
211
+ x = self.attn(x, num_prefix_tokens, patch_shape)
212
+ return x
213
+
214
+ def _ff_block(self, x: torch.Tensor) -> torch.Tensor:
215
+ x = self.norm2(x)
216
+ x = self.linear2(x)
217
+ x = F.gelu(x)
218
+ x = self.norm3(x)
219
+ x = self.linear3(x)
220
+ return x
221
+
222
+
223
+ class VisionTransformer(nn.Module):
224
+ """ Vision Transformer
225
+
226
+ A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
227
+ - https://arxiv.org/abs/2010.11929
228
+ """
229
+ dynamic_img_size: Final[bool]
230
+
231
+ def __init__(
232
+ self,
233
+ patch_size: Union[int, Tuple[int, int]] = 16,
234
+ in_chans: int = 3,
235
+ embed_dim: int = 768,
236
+ depth: int = 12,
237
+ num_heads: int = 12,
238
+ mlp_ratio: float = 4.,
239
+ num_cls_tokens: int = 1,
240
+ num_reg_tokens: int = 0,
241
+ ) -> None:
242
+ """
243
+ Args:
244
+ patch_size: Patch size.
245
+ in_chans: Number of image input channels.
246
+ embed_dim: Transformer embedding dimension.
247
+ depth: Depth of transformer.
248
+ num_heads: Number of attention heads.
249
+ mlp_ratio: Ratio of mlp hidden dim to embedding dim.
250
+ num_cls_tokens: Number of cls tokens
251
+ num_reg_tokens: Number of register tokens.
252
+ block_fn: Transformer block layer.
253
+ """
254
+ super().__init__()
255
+
256
+ self.patch_size = patch_size
257
+ self.embed_dim = embed_dim
258
+ self.num_cls_tokens = num_cls_tokens
259
+ self.num_reg_tokens = num_reg_tokens
260
+
261
+ self.patch_embed = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
262
+
263
+ self.prefix_buffer = nn.Parameter(torch.randn(1, self.num_prefix_tokens, embed_dim) * .02)
264
+
265
+ pos_emb = XPosEmbedding2D(embed_dim)
266
+
267
+ self.blocks = nn.ModuleList([
268
+ MagnetoTransformerEncoderLayer(
269
+ d_model=embed_dim,
270
+ nhead=num_heads,
271
+ num_encoder_layers=depth,
272
+ num_decoder_layers=0,
273
+ dim_feedforward=int(embed_dim * mlp_ratio),
274
+ pos_emb=pos_emb,
275
+ )
276
+ for _ in range(depth)
277
+ ])
278
+
279
+ for block in self.blocks:
280
+ block.initialize()
281
+
282
+ @property
283
+ def num_prefix_tokens(self):
284
+ return self.num_cls_tokens + self.num_reg_tokens
285
+
286
+ @property
287
+ def num_summary_tokens(self):
288
+ return self.num_prefix_tokens
289
+
290
+ def forward_features(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
291
+ x, patch_shape = self._patchify(x)
292
+
293
+ for block in self.blocks:
294
+ x = block(x, self.num_prefix_tokens, patch_shape)
295
+
296
+ summary = x[:, :self.num_cls_tokens]
297
+ features = x[:, self.num_prefix_tokens:]
298
+
299
+ return summary, features
300
+
301
+ def forward_intermediates(self, x: torch.Tensor, norm: bool = False, **kwargs):
302
+ patch_shape = tuple(d // self.patch_size for d in x.shape[-2:])
303
+
304
+ def patch_extractor(x: torch.Tensor):
305
+ x, _ = self._patchify(x)
306
+ return x
307
+
308
+ return forward_intermediates(
309
+ self,
310
+ patch_extractor=patch_extractor,
311
+ num_summary_tokens=self.num_prefix_tokens,
312
+ num_cls_tokens=self.num_cls_tokens,
313
+ norm=lambda y: y,
314
+ x=x,
315
+ block_kwargs=dict(num_prefix_tokens=self.num_prefix_tokens, patch_shape=patch_shape),
316
+ **kwargs,
317
+ )
318
+
319
+ def _patchify(self, x: torch.Tensor):
320
+ x = self.patch_embed(x)
321
+ patch_shape = x.shape[-2:]
322
+ x = rearrange(x, 'b c h w -> b (h w) c')
323
+
324
+ prefix = self.prefix_buffer.expand(x.shape[0], -1, -1)
325
+
326
+ x = torch.cat([prefix, x], dim=1)
327
+ return x, patch_shape
328
+
329
+
330
+ @register_model
331
+ def vit_base_patch16_xpos(num_cls_tokens: int = 1, num_reg_tokens: int = 0, **kwargs) -> VisionTransformer:
332
+ return VisionTransformer(patch_size=16, embed_dim=768, depth=12, num_heads=12,
333
+ num_cls_tokens=num_cls_tokens, num_reg_tokens=num_reg_tokens)
334
+
335
+
336
+ @register_model
337
+ def vit_large_patch16_xpos(num_cls_tokens: int = 1, num_reg_tokens: int = 0, **kwargs) -> VisionTransformer:
338
+ return VisionTransformer(patch_size=16, embed_dim=1024, depth=24, num_heads=16,
339
+ num_cls_tokens=num_cls_tokens, num_reg_tokens=num_reg_tokens)
340
+
341
+
342
+ @register_model
343
+ def vit_huge_patch16_xpos(num_cls_tokens: int = 1, num_reg_tokens: int = 0, **kwargs) -> VisionTransformer:
344
+ return VisionTransformer(patch_size=16, embed_dim=1280, depth=32, num_heads=16,
345
+ num_cls_tokens=num_cls_tokens, num_reg_tokens=num_reg_tokens)
346
+
347
+
348
+ @register_model
349
+ def vit_giant_patch16_xpos(num_cls_tokens: int = 1, num_reg_tokens: int = 0, **kwargs) -> VisionTransformer:
350
+ return VisionTransformer(patch_size=16, embed_dim=1408, depth=40, num_heads=16,
351
+ num_cls_tokens=num_cls_tokens, num_reg_tokens=num_reg_tokens)
352
+
353
+
354
+ @register_model
355
+ def vit_bigG_patch16_xpos(num_cls_tokens: int = 1, num_reg_tokens: int = 0, **kwargs) -> VisionTransformer:
356
+ return VisionTransformer(patch_size=16, embed_dim=1664, depth=48, num_heads=16,
357
+ num_cls_tokens=num_cls_tokens, num_reg_tokens=num_reg_tokens)
tim/models/nvidia_radio/radio/vit_patch_generator.py ADDED
@@ -0,0 +1,287 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ import math
10
+ from typing import Union, Tuple, Optional
11
+
12
+ import torch
13
+ import torch.nn.functional as F
14
+ from torch import nn
15
+ from einops import rearrange
16
+
17
+ from .cls_token import ClsToken
18
+
19
+ input_dim_t = Union[int, Tuple[int, int]]
20
+
21
+ try:
22
+ # raise ImportError()
23
+ from indirect_grid_sample import indirect_grid_sample
24
+ except ImportError:
25
+ indirect_grid_sample = None
26
+
27
+ class ViTPatchGenerator(nn.Module):
28
+ def __init__(self,
29
+ patch_size: int,
30
+ embed_dim: int,
31
+ input_dims: input_dim_t,
32
+ abs_pos: bool = True,
33
+ normalize_patches: bool = False,
34
+ cls_token: bool = False,
35
+ max_input_dims: Optional[input_dim_t] = None,
36
+ pos_dropout: float = 0.0,
37
+ return_pos_enc: bool = False,
38
+ num_cls_tokens: int = 1,
39
+ register_multiple: Optional[int] = None,
40
+ num_registers: Optional[int] = None,
41
+ patch_bias: bool = False,
42
+ device=None, dtype=None,
43
+ ):
44
+ super().__init__()
45
+
46
+ if isinstance(input_dims, int):
47
+ input_dims = (input_dims, input_dims)
48
+
49
+ if max_input_dims is None:
50
+ max_input_dims = input_dims
51
+ if isinstance(max_input_dims, int):
52
+ max_input_dims = (max_input_dims, max_input_dims)
53
+
54
+ max_input_dims = tuple(
55
+ int(math.ceil(d / patch_size) * patch_size)
56
+ for d in max_input_dims
57
+ )
58
+
59
+ self.cpe_mode = max_input_dims != input_dims
60
+ self.pos_dropout = pos_dropout
61
+ self.return_pos_enc = return_pos_enc
62
+
63
+ factory = dict(device=device, dtype=dtype)
64
+
65
+ self.patch_size = patch_size
66
+ self.abs_pos = abs_pos
67
+ self.embed_dim = embed_dim
68
+
69
+ self.num_rows = max_input_dims[0] // patch_size
70
+ self.num_cols = max_input_dims[1] // patch_size
71
+ self.input_dims = tuple(d // patch_size for d in input_dims)
72
+ self.num_patches = self.num_rows * self.num_cols
73
+ self.max_input_dims = max_input_dims
74
+
75
+ self.im_to_patches = Im2Patches(patch_size)
76
+ self.embedder = ViTPatchLinear(patch_size, embed_dim, bias=patch_bias, **factory)
77
+
78
+ if abs_pos:
79
+ scale = embed_dim ** -0.5
80
+ self.pos_embed = nn.Parameter(torch.randn(1, self.num_patches, embed_dim, **factory) * scale)
81
+
82
+ self.cls_token = ClsToken(
83
+ embed_dim,
84
+ num_tokens=num_cls_tokens,
85
+ enabled=cls_token,
86
+ register_multiple=register_multiple,
87
+ num_registers=num_registers,
88
+ )
89
+
90
+ self.patch_normalizer = nn.LayerNorm(embed_dim) if normalize_patches else nn.Identity()
91
+
92
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
93
+ patches = self.embed_patches(x)
94
+ patches, pos_enc = self.apply_pos_enc(patches, input_size=x.shape[2:])
95
+ patches = self.cls_token(patches)
96
+ patches = self.patch_normalizer(patches)
97
+ if self.return_pos_enc:
98
+ return patches, pos_enc
99
+ return patches
100
+
101
+ @property
102
+ def apply_cls_token(self):
103
+ return self.cls_token.enabled
104
+
105
+ @property
106
+ def num_cls_tokens(self):
107
+ return self.cls_token.num_tokens
108
+
109
+ @property
110
+ def num_cls_patches(self):
111
+ return self.cls_token.num_patches
112
+
113
+ @property
114
+ def num_registers(self):
115
+ return self.cls_token.num_registers
116
+
117
+ @property
118
+ def num_skip(self):
119
+ return self.num_cls_tokens + self.num_registers
120
+
121
+ def no_weight_decay(self):
122
+ return [
123
+ 'pos_embed',
124
+ ]
125
+
126
+ def _load_embed(self, src_embed: torch.Tensor, targ_embed: nn.Parameter):
127
+ if src_embed.shape != targ_embed.shape:
128
+ src_size = int(math.sqrt(src_embed.shape[1]))
129
+
130
+ assert src_size ** 2 == src_embed.shape[1], 'Unable to interpolate non-square embedding'
131
+
132
+ src_embed = rearrange(src_embed, 'b (h w) c -> b c h w', h=src_size, w=src_size)
133
+ src_embed = F.interpolate(src_embed, size=(self.num_rows, self.num_cols), mode='bicubic', align_corners=True, antialias=False)
134
+ src_embed = rearrange(src_embed, 'b c h w -> b (h w) c')
135
+ targ_embed.data.copy_(src_embed)
136
+
137
+ def _load_projection(self, src_proj_weight: torch.Tensor, targ_proj_weight: torch.Tensor):
138
+ if src_proj_weight.shape != targ_proj_weight.shape:
139
+ src_patch_size = int(math.sqrt(src_proj_weight.shape[1] // 3))
140
+
141
+ assert (src_patch_size ** 2) * 3 == src_proj_weight.shape[1], 'Unable to interpolate non-square patch size'
142
+
143
+ src_proj_weight = rearrange(src_proj_weight, 'b (c h w) -> b c h w', c=3, h=src_patch_size, w=src_patch_size)
144
+ src_proj_weight = F.interpolate(src_proj_weight, size=(self.patch_size, self.patch_size), mode='bicubic', align_corners=True, antialias=False)
145
+ src_proj_weight = rearrange(src_proj_weight, 'b c h w -> b (c h w)')
146
+ targ_proj_weight.data.copy_(src_proj_weight)
147
+
148
+ def embed_patches(self, x: torch.Tensor) -> torch.Tensor:
149
+ patches = self.im_to_patches(x)
150
+ patches = self.embedder(patches)
151
+ return patches
152
+
153
+ def apply_pos_enc(self,
154
+ patches: torch.Tensor,
155
+ patch_idxs: Optional[torch.Tensor] = None,
156
+ input_size: Optional[Tuple[int, int]] = None,
157
+ ) -> torch.Tensor:
158
+ if not self.abs_pos:
159
+ return patches
160
+
161
+ pos_enc = self.get_pos_enc(patches.shape[0], patch_idxs, input_size)
162
+
163
+ if self.training and self.pos_dropout > 0:
164
+ keeps = torch.rand(patches.shape[0], 1, 1, dtype=pos_enc.dtype, device=pos_enc.device) > self.pos_dropout
165
+ pos_enc_drop = torch.where(keeps, pos_enc, 0)
166
+ else:
167
+ pos_enc_drop = pos_enc
168
+
169
+ return patches + pos_enc_drop, pos_enc
170
+
171
+ def get_pos_enc(self,
172
+ batch_size: int,
173
+ patch_idxs: Optional[torch.Tensor] = None,
174
+ input_size: Optional[Tuple[int, int]] = None,
175
+ ) -> torch.Tensor:
176
+ if input_size is None:
177
+ input_dims = self.input_dims
178
+ else:
179
+ input_dims = tuple(d // self.patch_size for d in input_size)
180
+
181
+ pos_embed = self._get_pos_embeddings(batch_size, input_dims)
182
+
183
+ if patch_idxs is None:
184
+ return pos_embed
185
+
186
+ exp_patch_idxs = patch_idxs.unsqueeze(-1).expand(-1, -1, pos_embed.shape[-1])
187
+
188
+ pos_embed = torch.gather(pos_embed.expand(patch_idxs.shape[0], -1, -1), dim=1, index=exp_patch_idxs)
189
+ return pos_embed
190
+
191
+
192
+ def _get_pos_embeddings(self, batch_size: int, input_dims: Tuple[int, int]):
193
+ if (self.num_rows, self.num_cols) == input_dims:
194
+ return self.pos_embed
195
+
196
+ pos_embed = self.pos_embed.reshape(1, self.num_rows, self.num_cols, -1).permute(0, 3, 1, 2)
197
+
198
+ def window_select(pos_embed):
199
+ if input_dims[0] < pos_embed.shape[-2]:
200
+ pos_embed = pos_embed[..., :input_dims[0], :]
201
+ if input_dims[1] < pos_embed.shape[-1]:
202
+ pos_embed = pos_embed[..., :, :input_dims[1]]
203
+ return pos_embed
204
+
205
+ if self.cpe_mode:
206
+ if self.training:
207
+ min_scale = math.sqrt(0.1)
208
+ scale = torch.rand(batch_size, 1, 1, device=pos_embed.device) * (1 - min_scale) + min_scale
209
+ aspect_min = math.log(3 / 4)
210
+ aspect_max = -aspect_min
211
+ aspect = torch.exp(torch.rand(batch_size, 1, 1, device=pos_embed.device) * (aspect_max - aspect_min) + aspect_min)
212
+
213
+ scale_x = scale * aspect
214
+ scale_y = scale * (1 / aspect)
215
+ scale_xy = torch.stack([scale_x, scale_y], dim=-1).clamp_(0, 1)
216
+
217
+ pos_xy = torch.rand(batch_size, 1, 1, 2, device=pos_embed.device) * (1 - scale_xy)
218
+
219
+ lin_x = torch.linspace(0, 1, steps=input_dims[1], device=pos_embed.device)[None, None].expand(batch_size, input_dims[0], -1)
220
+ lin_y = torch.linspace(0, 1, steps=input_dims[0], device=pos_embed.device)[None, :, None].expand(batch_size, -1, input_dims[1])
221
+
222
+ lin_xy = torch.stack([lin_x, lin_y], dim=-1)
223
+
224
+ grid_xy = lin_xy * scale_xy + pos_xy
225
+
226
+ # Convert to [-1, 1] range
227
+ grid_xy.mul_(2).sub_(1)
228
+
229
+ pos_embed = F.grid_sample(
230
+ pos_embed.float().expand(batch_size, -1, -1, -1),
231
+ grid=grid_xy,
232
+ mode='bilinear',
233
+ padding_mode='zeros',
234
+ align_corners=True,
235
+ ).to(pos_embed.dtype)
236
+ else:
237
+ # i_rows, i_cols = input_dims
238
+ # p_rows, p_cols = pos_embed.shape[2:]
239
+ # if i_rows <= p_rows and i_cols <= p_cols:
240
+ # left = (p_cols - i_cols) // 2
241
+ # top = (p_rows - i_rows) // 2
242
+ # pos_embed = pos_embed[..., top:top+i_rows, left:left+i_cols]
243
+ # else:
244
+ max_dim = max(input_dims)
245
+ pos_embed = F.interpolate(pos_embed.float(), size=(max_dim, max_dim), align_corners=True, mode='bilinear').to(pos_embed.dtype)
246
+
247
+ pos_embed = window_select(pos_embed)
248
+ else:
249
+ pos_embed = window_select(pos_embed)
250
+
251
+ if pos_embed.shape[-2:] != input_dims:
252
+ pos_embed = F.interpolate(pos_embed.float(), size=input_dims, align_corners=True, mode='bilinear').to(pos_embed.dtype)
253
+
254
+ pos_embed = pos_embed.flatten(2).permute(0, 2, 1)
255
+
256
+ return pos_embed
257
+
258
+
259
+ class Im2Patches(nn.Module):
260
+ def __init__(self, patch_size: int):
261
+ super().__init__()
262
+ self.patch_size = patch_size
263
+
264
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
265
+ if self.patch_size == 1:
266
+ patches = x.flatten(2)
267
+ patches = patches.permute(0, 2, 1)
268
+ return patches
269
+
270
+ py = x.shape[-2] // self.patch_size
271
+ px = x.shape[-1] // self.patch_size
272
+ patches = rearrange(x, 'b c (py yy) (px xx) -> b (py px) (c yy xx)',
273
+ py=py, yy=self.patch_size,
274
+ px=px, xx=self.patch_size,
275
+ )
276
+ return patches
277
+
278
+
279
+ class ViTPatchLinear(nn.Linear):
280
+ def __init__(self, patch_size: int, embed_dim: int, bias: bool = False, **factory):
281
+ super().__init__(
282
+ 3 * (patch_size ** 2),
283
+ embed_dim,
284
+ bias=bias,
285
+ **factory
286
+ )
287
+ self.patch_size = patch_size
tim/models/nvidia_radio/radio/vitdet.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import defaultdict
2
+ from contextlib import contextmanager
3
+ from logging import getLogger
4
+ import math
5
+ import sys
6
+ from typing import List, Union, Iterable
7
+
8
+ import numpy as np
9
+ import torch
10
+ from torch import nn
11
+
12
+ from timm.models import VisionTransformer
13
+ from einops import rearrange
14
+
15
+ from .extra_models import DinoWrapper
16
+
17
+ DEFAULT_NUM_WINDOWED = 5
18
+ DEFAULT_NUM_GLOBAL = 4
19
+
20
+
21
+ class VitDetArgs:
22
+ def __init__(self,
23
+ window_size: int,
24
+ num_summary_tokens: int,
25
+ num_windowed: int = None,
26
+ num_global: int = None,
27
+ ):
28
+ self.window_size = window_size
29
+ self.num_summary_tokens = num_summary_tokens
30
+ self.num_windowed = num_windowed
31
+ self.num_global = num_global
32
+
33
+
34
+ def apply_vitdet_arch(model: Union[VisionTransformer, DinoWrapper], args: VitDetArgs):
35
+ if isinstance(model, VisionTransformer):
36
+ patch_embed = getattr(model, 'patch_generator', model.patch_embed)
37
+
38
+ return ViTDetHook(patch_embed, model.blocks, args)
39
+ elif isinstance(model, DinoWrapper):
40
+ inner = model.inner
41
+
42
+ patch_embed = getattr(inner, 'patch_generator', inner.patch_embed)
43
+ return ViTDetHook(patch_embed, inner.blocks, args)
44
+ else:
45
+ print(f'Warning: Unable to apply VitDet aug!', file=sys.stderr)
46
+
47
+
48
+ class ViTDetHook:
49
+ def __init__(self,
50
+ embedder: nn.Module,
51
+ blocks: nn.Sequential,
52
+ args: VitDetArgs,
53
+ ):
54
+ self.blocks = blocks
55
+ self.num_summary_tokens = args.num_summary_tokens
56
+ self.window_size = args.window_size
57
+
58
+ self._input_resolution = None
59
+ self._num_windows = None
60
+ self._cls_patch = None
61
+ self._order_cache = dict()
62
+
63
+ embedder.register_forward_pre_hook(self._enter_model)
64
+
65
+ # This will decide if we window-fy the patches
66
+ # and enable vit-det for this iteration, and if so,
67
+ # rearrange the patches for efficient mode switching
68
+ blocks.register_forward_pre_hook(self._enter_blocks)
69
+
70
+ is_global = True
71
+ if args.num_windowed is not None:
72
+ period = args.num_windowed + 1
73
+ else:
74
+ num_global = args.num_global or DEFAULT_NUM_GLOBAL
75
+ period = max(len(blocks) // num_global, 1)
76
+
77
+ for i, layer in enumerate(blocks[:-1]):
78
+ ctr = i % period
79
+ if ctr == 0:
80
+ layer.register_forward_pre_hook(self._to_windows)
81
+ is_global = False
82
+ elif ctr == period - 1:
83
+ layer.register_forward_pre_hook(self._to_global)
84
+ is_global = True
85
+
86
+ # Always ensure the final layer is a global layer
87
+ if not is_global:
88
+ blocks[-1].register_forward_pre_hook(self._to_global)
89
+
90
+ blocks.register_forward_hook(self._exit_model)
91
+
92
+ def _enter_model(self, _, input: List[torch.Tensor]):
93
+ self._input_resolution = input[0].shape[-2:]
94
+
95
+ def _enter_blocks(self, _, input: List[torch.Tensor]):
96
+ # print(f'{get_rank()} - ViTDet Window Size: {self._window_size}', file=sys.stderr)
97
+
98
+ patches = input[0]
99
+ patches = self._rearrange_patches(patches)
100
+
101
+ return (patches,) + input[1:]
102
+
103
+ def _to_windows(self, _, input: List[torch.Tensor]):
104
+ patches = input[0]
105
+
106
+ if self.num_summary_tokens:
107
+ self._cls_patch = patches[:, :self.num_summary_tokens]
108
+ patches = patches[:, self.num_summary_tokens:]
109
+
110
+ patches = rearrange(
111
+ patches, 'b (p t) c -> (b p) t c',
112
+ p=self._num_windows, t=self.window_size ** 2,
113
+ )
114
+
115
+ return (patches,) + input[1:]
116
+
117
+ def _to_global(self, _, input: List[torch.Tensor]):
118
+ patches = input[0]
119
+
120
+ patches = rearrange(
121
+ patches, '(b p) t c -> b (p t) c',
122
+ p=self._num_windows, t=self.window_size ** 2,
123
+ b=patches.shape[0] // self._num_windows,
124
+ )
125
+
126
+ if self.num_summary_tokens:
127
+ patches = torch.cat([
128
+ self._cls_patch,
129
+ patches,
130
+ ], dim=1)
131
+
132
+ return (patches,) + input[1:]
133
+
134
+ def _exit_model(self, _, inputs: List[torch.Tensor], patches: torch.Tensor):
135
+ # Return patches to their original order
136
+ patch_order = self._order_cache[self._input_resolution][0]
137
+ patch_order = patch_order.reshape(1, -1, 1).expand_as(patches)
138
+
139
+ ret_patches = torch.empty_like(patches)
140
+ ret_patches = torch.scatter(
141
+ ret_patches,
142
+ dim=1,
143
+ index=patch_order,
144
+ src=patches,
145
+ )
146
+
147
+ return ret_patches
148
+
149
+ def _rearrange_patches(self, patches: torch.Tensor):
150
+ # We rearrange the patches so that we can efficiently
151
+ # switch between windowed and global mode by just
152
+ # reshaping the tensor
153
+
154
+ patch_order, self._num_windows = self._order_cache.get(self._input_resolution, (None, None))
155
+ if patch_order is None:
156
+ num_feat_patches = patches.shape[1] - self.num_summary_tokens
157
+ num_pixels = self._input_resolution[0] * self._input_resolution[1]
158
+
159
+ patch_size = int(round(math.sqrt(num_pixels / num_feat_patches)))
160
+ rows = self._input_resolution[-2] // patch_size
161
+ cols = self._input_resolution[-1] // patch_size
162
+
163
+ w_rows = rows // self.window_size
164
+ w_cols = cols // self.window_size
165
+
166
+ patch_order = torch.arange(0, num_feat_patches, device=patches.device)
167
+
168
+ patch_order = rearrange(
169
+ patch_order, '(wy py wx px) -> (wy wx py px)',
170
+ wy=w_rows, wx=w_cols,
171
+ py=self.window_size, px=self.window_size,
172
+ )
173
+
174
+ if self.num_summary_tokens:
175
+ patch_order = torch.cat([
176
+ torch.arange(self.num_summary_tokens, dtype=patch_order.dtype, device=patch_order.device),
177
+ patch_order + self.num_summary_tokens,
178
+ ])
179
+
180
+ self._num_windows = w_rows * w_cols
181
+ self._order_cache[self._input_resolution] = (
182
+ patch_order,
183
+ self._num_windows,
184
+ )
185
+
186
+ patch_order = patch_order.reshape(1, -1, 1).expand_as(patches)
187
+ patches = torch.gather(patches, dim=1, index=patch_order)
188
+ return patches
tim/models/t2i/tim_model.py ADDED
@@ -0,0 +1,584 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This source code is licensed under the license found in the
2
+ # LICENSE file in the root directory of this source tree.
3
+ # --------------------------------------------------------
4
+ # References:
5
+ # GLIDE: https://github.com/openai/glide-text2im
6
+ # MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
7
+ # --------------------------------------------------------
8
+
9
+ import torch
10
+ import torch.nn as nn
11
+ import torch.nn.functional as F
12
+ import math
13
+ from timm.layers.mlp import SwiGLU
14
+ from timm.models.vision_transformer import PatchEmbed, Attention
15
+ from tim.models.utils.funcs import build_mlp, modulate, get_parameter_dtype
16
+ from tim.models.utils.rope import VisionRotaryEmbedding, rotate_half
17
+
18
+
19
+ #################################################################################
20
+ # Embedding Layers for Timesteps and Class Labels #
21
+ #################################################################################
22
+ class TimestepEmbedder(nn.Module):
23
+ """
24
+ Embeds scalar timesteps into vector representations.
25
+ """
26
+
27
+ def __init__(self, hidden_size, frequency_embedding_size=256):
28
+ super().__init__()
29
+ self.mlp = nn.Sequential(
30
+ nn.Linear(frequency_embedding_size, hidden_size, bias=True),
31
+ nn.SiLU(),
32
+ nn.Linear(hidden_size, hidden_size, bias=True),
33
+ )
34
+ self.frequency_embedding_size = frequency_embedding_size
35
+
36
+ @staticmethod
37
+ def positional_embedding(t, dim, max_period=10000):
38
+ """
39
+ Create sinusoidal timestep embeddings.
40
+ :param t: a 1-D Tensor of N indices, one per batch element.
41
+ These may be fractional.
42
+ :param dim: the dimension of the output.
43
+ :param max_period: controls the minimum frequency of the embeddings.
44
+ :return: an (N, D) Tensor of positional embeddings.
45
+ """
46
+ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
47
+ half = dim // 2
48
+ freqs = torch.exp(
49
+ -math.log(max_period)
50
+ * torch.arange(start=0, end=half, dtype=torch.float32)
51
+ / half
52
+ ).to(device=t.device)
53
+ args = t[:, None].float() * freqs[None]
54
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
55
+ if dim % 2:
56
+ embedding = torch.cat(
57
+ [embedding, torch.zeros_like(embedding[:, :1])], dim=-1
58
+ )
59
+ return embedding
60
+
61
+ def forward(self, t):
62
+ self.timestep_embedding = self.positional_embedding
63
+ t_freq = self.timestep_embedding(t, dim=self.frequency_embedding_size).to(
64
+ t.dtype
65
+ )
66
+ t_emb = self.mlp(t_freq)
67
+ return t_emb
68
+
69
+
70
+ class CaptionEmbedder(nn.Module):
71
+ """
72
+ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
73
+ """
74
+
75
+ def __init__(self, cap_feat_dim, hidden_size):
76
+ super().__init__()
77
+ self.norm = nn.LayerNorm(cap_feat_dim)
78
+ self.mlp = SwiGLU(
79
+ in_features=cap_feat_dim,
80
+ hidden_features=hidden_size * 4,
81
+ out_features=hidden_size,
82
+ )
83
+
84
+ def forward(self, cap_feats):
85
+ """
86
+ cfg is also essential in text-to-image generation
87
+ """
88
+ cap_feats = self.mlp(self.norm(cap_feats))
89
+ return cap_feats
90
+
91
+
92
+ #################################################################################
93
+ # Attention Block #
94
+ #################################################################################
95
+
96
+
97
+ class Attention(nn.Module):
98
+ def __init__(
99
+ self,
100
+ dim: int,
101
+ num_heads: int = 8,
102
+ qkv_bias: bool = False,
103
+ qk_norm: bool = False,
104
+ attn_drop: float = 0.0,
105
+ proj_drop: float = 0.0,
106
+ norm_layer: nn.Module = nn.LayerNorm,
107
+ distance_aware: bool = False,
108
+ ) -> None:
109
+ super().__init__()
110
+ assert dim % num_heads == 0, "dim should be divisible by num_heads"
111
+ self.num_heads = num_heads
112
+ self.head_dim = dim // num_heads
113
+ self.scale = self.head_dim**-0.5
114
+
115
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
116
+ self.distance_aware = distance_aware
117
+ if distance_aware:
118
+ self.qkv_d = nn.Linear(dim, dim * 3, bias=False)
119
+ self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
120
+ self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
121
+ self.attn_drop = nn.Dropout(attn_drop)
122
+ self.proj = nn.Linear(dim, dim)
123
+ self.proj_drop = nn.Dropout(proj_drop)
124
+
125
+ def forward(
126
+ self,
127
+ x: torch.Tensor,
128
+ freqs_cos,
129
+ freqs_sin,
130
+ attn_type="fused_attn",
131
+ delta_t=None,
132
+ ) -> torch.Tensor:
133
+ B, N, C = x.shape
134
+ if self.distance_aware:
135
+ qkv = self.qkv(x) + self.qkv_d(delta_t)
136
+ else:
137
+ qkv = self.qkv(x)
138
+ if attn_type == "flash_attn": # q, k, v: (B, N, n_head, d_head)
139
+ qkv = qkv.reshape(B, N, 3, self.num_heads, self.head_dim).permute(
140
+ 2, 0, 1, 3, 4
141
+ )
142
+ else: # q, k, v: (B, n_head, N, d_head)
143
+ qkv = qkv.reshape(B, N, 3, self.num_heads, self.head_dim).permute(
144
+ 2, 0, 3, 1, 4
145
+ )
146
+ ori_dtype = qkv.dtype
147
+ q, k, v = qkv.unbind(0)
148
+ q, k = self.q_norm(q), self.k_norm(k)
149
+
150
+ q = q * freqs_cos + rotate_half(q) * freqs_sin
151
+ k = k * freqs_cos + rotate_half(k) * freqs_sin
152
+ q, k = q.to(ori_dtype), k.to(ori_dtype)
153
+
154
+ if attn_type == "flash_attn":
155
+ from flash_attn import flash_attn_func
156
+
157
+ x = flash_attn_func(
158
+ q,
159
+ k,
160
+ v,
161
+ dropout_p=self.attn_drop.p if self.training else 0.0,
162
+ )
163
+ x = x.reshape(B, N, C)
164
+ elif attn_type == "fused_attn":
165
+ x = F.scaled_dot_product_attention(
166
+ q,
167
+ k,
168
+ v,
169
+ dropout_p=self.attn_drop.p if self.training else 0.0,
170
+ )
171
+ x = x.transpose(1, 2).reshape(B, N, C)
172
+ else:
173
+ q = q * self.scale
174
+ attn = q @ k.transpose(-2, -1)
175
+ attn = attn.softmax(dim=-1)
176
+ attn = self.attn_drop(attn)
177
+ x = attn @ v
178
+ x = x.transpose(1, 2).reshape(B, N, C)
179
+
180
+ x = self.proj(x)
181
+ x = self.proj_drop(x)
182
+ return x
183
+
184
+
185
+ #################################################################################
186
+ # Cross Attention Block #
187
+ #################################################################################
188
+
189
+
190
+ class CrossAttention(nn.Module):
191
+ def __init__(
192
+ self,
193
+ dim: int,
194
+ num_heads: int = 8,
195
+ qkv_bias: bool = False,
196
+ qk_norm: bool = False,
197
+ attn_drop: float = 0.0,
198
+ proj_drop: float = 0.0,
199
+ norm_layer: nn.Module = nn.LayerNorm,
200
+ ) -> None:
201
+ super().__init__()
202
+ assert dim % num_heads == 0, "dim should be divisible by num_heads"
203
+ self.num_heads = num_heads
204
+ self.head_dim = dim // num_heads
205
+ self.scale = self.head_dim**-0.5
206
+
207
+ self.q = nn.Linear(dim, dim, bias=qkv_bias)
208
+ self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
209
+ self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
210
+ self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
211
+ self.attn_drop = nn.Dropout(attn_drop)
212
+ self.proj = nn.Linear(dim, dim)
213
+ self.proj_drop = nn.Dropout(proj_drop)
214
+
215
+ def forward(
216
+ self,
217
+ x: torch.Tensor,
218
+ y: torch.Tensor,
219
+ freqs_cos,
220
+ freqs_sin,
221
+ attn_type="fused_attn",
222
+ ) -> torch.Tensor:
223
+ B, N, C = x.shape
224
+ _, M, _ = y.shape
225
+ if attn_type == "flash_attn": # q, k, v: (B, N, n_head, d_head)
226
+ q = self.q(x).reshape(B, N, self.num_heads, self.head_dim)
227
+ kv = (
228
+ self.kv(y)
229
+ .reshape(B, M, 2, self.num_heads, self.head_dim)
230
+ .permute(2, 0, 1, 3, 4)
231
+ )
232
+ else: # q, k, v: (B, n_head, N, d_head)
233
+ q = (
234
+ self.q(x)
235
+ .reshape(B, N, self.num_heads, self.head_dim)
236
+ .permute(0, 2, 1, 3)
237
+ )
238
+ kv = (
239
+ self.kv(y)
240
+ .reshape(B, M, 2, self.num_heads, self.head_dim)
241
+ .permute(2, 0, 3, 1, 4)
242
+ )
243
+ ori_dtype = q.dtype
244
+ k, v = kv.unbind(0)
245
+ q, k = self.q_norm(q), self.k_norm(k)
246
+ q = q * freqs_cos + rotate_half(q) * freqs_sin
247
+ q, k = q.to(ori_dtype), k.to(ori_dtype)
248
+
249
+ if attn_type == "flash_attn":
250
+ from flash_attn import flash_attn_func
251
+
252
+ x = flash_attn_func(
253
+ q,
254
+ k,
255
+ v,
256
+ dropout_p=self.attn_drop.p if self.training else 0.0,
257
+ )
258
+ x = x.reshape(B, N, C)
259
+ elif attn_type == "fused_attn":
260
+ x = F.scaled_dot_product_attention(
261
+ q,
262
+ k,
263
+ v,
264
+ dropout_p=self.attn_drop.p if self.training else 0.0,
265
+ )
266
+ x = x.transpose(1, 2).reshape(B, N, C)
267
+ else:
268
+ q = q * self.scale
269
+ attn = q @ k.transpose(-2, -1)
270
+ attn = attn.softmax(dim=-1)
271
+ attn = self.attn_drop(attn)
272
+ x = attn @ v
273
+ x = x.transpose(1, 2).reshape(B, N, C)
274
+
275
+ x = self.proj(x)
276
+ x = self.proj_drop(x)
277
+ return x
278
+
279
+
280
+ #################################################################################
281
+ # Core TiM Model #
282
+ #################################################################################
283
+
284
+
285
+ class TiMBlock(nn.Module):
286
+ """
287
+ A TiM block with adaptive layer norm zero (adaLN-Zero) conditioning.
288
+ """
289
+
290
+ def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs):
291
+ super().__init__()
292
+ self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
293
+ distance_aware = block_kwargs.get("distance_aware", False)
294
+ self.attn = Attention(
295
+ hidden_size,
296
+ num_heads=num_heads,
297
+ qkv_bias=True,
298
+ qk_norm=block_kwargs["qk_norm"],
299
+ distance_aware=distance_aware,
300
+ )
301
+ self.norm2_i = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
302
+ self.norm2_t = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
303
+ self.cross_attn = CrossAttention(
304
+ hidden_size,
305
+ num_heads=num_heads,
306
+ qkv_bias=True,
307
+ qk_norm=block_kwargs["qk_norm"],
308
+ )
309
+ self.norm3 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
310
+ mlp_hidden_dim = int(hidden_size * mlp_ratio)
311
+ self.mlp = SwiGLU(
312
+ in_features=hidden_size,
313
+ hidden_features=(mlp_hidden_dim * 2) // 3,
314
+ bias=True,
315
+ )
316
+ if block_kwargs.get("lora_hidden_size", None) != None:
317
+ lora_hidden_size = block_kwargs["lora_hidden_size"]
318
+ else:
319
+ lora_hidden_size = (hidden_size // 4) * 3
320
+ self.adaLN_modulation = SwiGLU(
321
+ in_features=hidden_size,
322
+ hidden_features=lora_hidden_size,
323
+ out_features=9 * hidden_size,
324
+ bias=True,
325
+ )
326
+
327
+ def forward(self, x, y, c, freqs_cos, freqs_sin, attn_type, delta_t=None):
328
+ (
329
+ shift_msa,
330
+ scale_msa,
331
+ gate_msa,
332
+ shift_msc,
333
+ scale_msc,
334
+ gate_msc,
335
+ shift_mlp,
336
+ scale_mlp,
337
+ gate_mlp,
338
+ ) = self.adaLN_modulation(c).chunk(9, dim=-1)
339
+ x = x + gate_msa * self.attn(
340
+ modulate(self.norm1(x), shift_msa, scale_msa),
341
+ freqs_cos,
342
+ freqs_sin,
343
+ attn_type,
344
+ delta_t,
345
+ )
346
+ x = x + gate_msc * self.cross_attn(
347
+ modulate(self.norm2_i(x), shift_msc, scale_msc),
348
+ self.norm2_t(y),
349
+ freqs_cos,
350
+ freqs_sin,
351
+ attn_type,
352
+ )
353
+ x = x + gate_mlp * self.mlp(modulate(self.norm3(x), shift_mlp, scale_mlp))
354
+
355
+ return x
356
+
357
+
358
+ class FinalLayer(nn.Module):
359
+ """
360
+ The final layer of TiM.
361
+ """
362
+
363
+ def __init__(self, hidden_size, patch_size, out_channels):
364
+ super().__init__()
365
+ self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
366
+ self.linear = nn.Linear(
367
+ hidden_size, patch_size * patch_size * out_channels, bias=True
368
+ )
369
+ self.adaLN_modulation = SwiGLU(
370
+ in_features=hidden_size,
371
+ hidden_features=hidden_size // 2,
372
+ out_features=2 * hidden_size,
373
+ bias=True,
374
+ )
375
+
376
+ def forward(self, x, c):
377
+ shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1)
378
+ x = modulate(self.norm_final(x), shift, scale)
379
+ x = self.linear(x)
380
+
381
+ return x
382
+
383
+
384
+ class TiM(nn.Module):
385
+ """
386
+ Diffusion model with a Transformer backbone.
387
+ """
388
+
389
+ def __init__(
390
+ self,
391
+ input_size=32,
392
+ patch_size=2,
393
+ in_channels=4,
394
+ hidden_size=1152,
395
+ encoder_depth=8,
396
+ depth=28,
397
+ num_heads=16,
398
+ mlp_ratio=4.0,
399
+ cap_feat_dim=2048,
400
+ z_dim=768,
401
+ projector_dim=2048,
402
+ use_checkpoint: bool = False,
403
+ new_condition: str = "t-r",
404
+ use_new_embed: bool = False,
405
+ **block_kwargs, # qk_norm
406
+ ):
407
+ super().__init__()
408
+ self.in_channels = in_channels
409
+ self.out_channels = in_channels
410
+ self.patch_size = patch_size
411
+ self.num_heads = num_heads
412
+ self.cap_feat_dim = cap_feat_dim
413
+ self.encoder_depth = encoder_depth
414
+ self.use_checkpoint = use_checkpoint
415
+ self.new_condition = new_condition
416
+ self.use_new_embed = use_new_embed
417
+
418
+ self.x_embedder = PatchEmbed(
419
+ input_size,
420
+ patch_size,
421
+ in_channels,
422
+ hidden_size,
423
+ bias=True,
424
+ strict_img_size=False,
425
+ )
426
+ self.t_embedder = TimestepEmbedder(hidden_size) # timestep embedding type
427
+ if use_new_embed:
428
+ self.delta_embedder = TimestepEmbedder(hidden_size)
429
+ self.y_embedder = CaptionEmbedder(cap_feat_dim, hidden_size)
430
+ # Will use fixed sin-cos embedding:
431
+ self.rope = VisionRotaryEmbedding(head_dim=hidden_size // num_heads)
432
+
433
+ self.blocks = nn.ModuleList(
434
+ [
435
+ TiMBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, **block_kwargs)
436
+ for _ in range(depth)
437
+ ]
438
+ )
439
+ self.projector = build_mlp(hidden_size, projector_dim, z_dim)
440
+ self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels)
441
+ self.initialize_weights()
442
+
443
+ def initialize_weights(self):
444
+ # Initialize transformer layers:
445
+ def _basic_init(module):
446
+ if isinstance(module, nn.Linear):
447
+ torch.nn.init.xavier_uniform_(module.weight)
448
+ if module.bias is not None:
449
+ nn.init.constant_(module.bias, 0)
450
+
451
+ self.apply(_basic_init)
452
+
453
+ # Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
454
+ w = self.x_embedder.proj.weight.data
455
+ nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
456
+ nn.init.constant_(self.x_embedder.proj.bias, 0)
457
+
458
+ # Initialize label embedding table:
459
+ nn.init.normal_(self.y_embedder.mlp.fc1_g.weight, std=0.02)
460
+ nn.init.normal_(self.y_embedder.mlp.fc1_x.weight, std=0.02)
461
+ nn.init.normal_(self.y_embedder.mlp.fc2.weight, std=0.02)
462
+
463
+ # Initialize timestep embedding MLP:
464
+ nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
465
+ nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
466
+
467
+ # Zero-out adaLN modulation layers in TiM blocks:
468
+ for block in self.blocks:
469
+ nn.init.constant_(block.adaLN_modulation.fc2.weight, 0)
470
+ nn.init.constant_(block.adaLN_modulation.fc2.bias, 0)
471
+
472
+ # Zero-out output layers:
473
+ nn.init.constant_(self.final_layer.adaLN_modulation.fc2.weight, 0)
474
+ nn.init.constant_(self.final_layer.adaLN_modulation.fc2.bias, 0)
475
+ nn.init.constant_(self.final_layer.linear.weight, 0)
476
+ nn.init.constant_(self.final_layer.linear.bias, 0)
477
+
478
+ def unpatchify(self, x, H, W):
479
+ """
480
+ x: (N, T, patch_size**2 * C)
481
+ imgs: (N, H, W, C)
482
+ """
483
+ c = self.out_channels
484
+ p = self.patch_size
485
+ h, w = int(H / p), int(W / p)
486
+
487
+ x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
488
+ x = torch.einsum("nhwpqc->nchpwq", x)
489
+ imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
490
+ return imgs
491
+
492
+ def get_rope(self, h, w, attn_type):
493
+ grid_h = torch.arange(h)
494
+ grid_w = torch.arange(w)
495
+ grid = torch.meshgrid(grid_h, grid_w, indexing="xy")
496
+ grid = torch.stack(grid, dim=0).reshape(2, -1).unsqueeze(0)
497
+ freqs_cos, freqs_sin = self.rope.get_cached_2d_rope_from_grid(grid)
498
+ if attn_type == "flash_attn": # (1, N, 1, d_head)
499
+ return freqs_cos.unsqueeze(2), freqs_sin.unsqueeze(2)
500
+ else: # (1, 1, N, d_head)
501
+ return freqs_cos.unsqueeze(1), freqs_sin.unsqueeze(1)
502
+
503
+ def forward(self, x, t, r, y, attn_type="fused_attn", return_zs=False, jvp=False):
504
+ """
505
+ Forward pass of TiM.
506
+ x: (B, C, H, W) tensor of spatial inputs (images or latent representations of images)
507
+ t: (B,) tensor of diffusion timesteps
508
+ y: (B,) tensor of class labels
509
+ """
510
+ B, C, H, W = x.shape
511
+ x = self.x_embedder(x) # (N, N, D), where T = H * W / patch_size ** 2
512
+
513
+ # timestep and class embedding
514
+ t_embed = self.t_embedder(t).unsqueeze(1) # (B, 1, D)
515
+ delta_embed = self.get_delta_embed(t, r).unsqueeze(1) # (B, 1, D)
516
+ y = self.y_embedder(y) # (B, M, D)
517
+ c = t_embed + delta_embed # (B, 1, D)
518
+
519
+ freqs_cos, freqs_sin = self.get_rope(
520
+ int(H / self.patch_size), int(W / self.patch_size), attn_type
521
+ )
522
+
523
+ for i, block in enumerate(self.blocks):
524
+ if not self.use_checkpoint or jvp:
525
+ x = block(
526
+ x, y, c, freqs_cos, freqs_sin, attn_type, delta_embed
527
+ ) # (B, N, D)
528
+ else:
529
+ x = torch.utils.checkpoint.checkpoint(
530
+ self.ckpt_wrapper(block),
531
+ x,
532
+ y,
533
+ c,
534
+ freqs_cos,
535
+ freqs_sin,
536
+ attn_type,
537
+ delta_embed,
538
+ )
539
+ if (i + 1) == self.encoder_depth:
540
+ h_proj = self.projector(x)
541
+ x = self.final_layer(x, c) # (B, N, patch_size ** 2 * out_channels)
542
+ x = self.unpatchify(x, H, W) # (b, out_channels, H, W)
543
+
544
+ if return_zs:
545
+ return x, h_proj
546
+ else:
547
+ return x
548
+
549
+ def get_delta_embed(self, t, r):
550
+ if self.use_new_embed:
551
+ delta_embedder = self.delta_embedder
552
+ else:
553
+ delta_embedder = self.t_embedder
554
+ if self.new_condition == "t-r":
555
+ delta_embed = delta_embedder(t - r)
556
+ elif self.new_condition == "r":
557
+ delta_embed = delta_embedder(r)
558
+ elif self.new_condition == "t,r":
559
+ delta_embed = self.t_embedder(t) + delta_embedder(r)
560
+ elif self.new_condition == "t,t-r":
561
+ delta_embed = self.t_embedder(t) + delta_embedder(t - r)
562
+ elif self.new_condition == "r,t-r":
563
+ delta_embed = self.t_embedder(r) + delta_embedder(t - r)
564
+ elif self.new_condition == "t,r,t-r":
565
+ delta_embed = (
566
+ self.t_embedder(t) + self.t_embedder(r) + delta_embedder(t - r)
567
+ )
568
+ else:
569
+ raise NotImplementedError
570
+ return delta_embed
571
+
572
+ def ckpt_wrapper(self, module):
573
+ def ckpt_forward(*inputs):
574
+ outputs = module(*inputs)
575
+ return outputs
576
+
577
+ return ckpt_forward
578
+
579
+ @property
580
+ def dtype(self) -> torch.dtype:
581
+ """
582
+ `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
583
+ """
584
+ return get_parameter_dtype(self)
tim/models/utils/funcs.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from torch import Tensor
5
+ from typing import List, Tuple
6
+ from itertools import chain
7
+
8
+
9
+
10
+ def expand_t_like_x(t, x):
11
+ """Function to reshape time t to broadcastable dimension of x
12
+ Args:
13
+ t: [batch_dim,], time vector
14
+ x: [batch_dim,...], data point
15
+ """
16
+ dims = [1] * (len(x.size()) - 1)
17
+ t = t.view(t.size(0), *dims)
18
+ return t
19
+
20
+
21
+ def build_mlp(hidden_size, projector_dim, z_dim):
22
+ return nn.Sequential(
23
+ nn.Linear(hidden_size, projector_dim),
24
+ nn.SiLU(),
25
+ nn.Linear(projector_dim, projector_dim),
26
+ nn.SiLU(),
27
+ nn.Linear(projector_dim, z_dim),
28
+ )
29
+
30
+ def modulate(x, shift, scale):
31
+ return x * (1 + scale) + shift
32
+
33
+
34
+ def get_parameter_dtype(parameter: torch.nn.Module):
35
+ try:
36
+ params = tuple(parameter.parameters())
37
+ if len(params) > 0:
38
+ return params[0].dtype
39
+
40
+ buffers = tuple(parameter.buffers())
41
+ if len(buffers) > 0:
42
+ return buffers[0].dtype
43
+
44
+ except StopIteration:
45
+ # For torch.nn.DataParallel compatibility in PyTorch 1.5
46
+
47
+ def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
48
+ tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
49
+ return tuples
50
+
51
+ gen = parameter._named_members(get_members_fn=find_tensor_attributes)
52
+ first_tuple = next(gen)
53
+ return first_tuple[1].dtype
tim/models/utils/norms.py ADDED
@@ -0,0 +1,403 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the BSD-style license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import math
8
+
9
+ from functools import partial
10
+
11
+ import torch
12
+ import torch.nn as nn
13
+
14
+ import triton
15
+ import triton.language as tl
16
+ import torch.nn.functional as F
17
+
18
+
19
+ def create_norm(norm_type: str, dim: int, eps: float = 1e-6):
20
+ """
21
+ Creates the specified normalization layer based on the norm_type.
22
+
23
+ Args:
24
+ norm_type (str): The type of normalization layer to create.
25
+ Supported types: 1. rmsnorm 2. fused_rmsnorm 3. layernorm 4. np_layernorm
26
+ dim (int): The dimension of the normalization layer.
27
+ eps (float, optional): The epsilon value for numerical stability. Defaults to 1e-6.
28
+
29
+ Returns:
30
+ The created normalization layer.
31
+
32
+ Raises:
33
+ NotImplementedError: If an unknown norm_type is provided.
34
+ """
35
+ if norm_type == None or norm_type == "":
36
+ return nn.Identity()
37
+ norm_type = norm_type.lower() # Normalize to lowercase
38
+
39
+ if norm_type == "layernorm":
40
+ return nn.LayerNorm(dim, eps=eps, bias=False)
41
+ elif norm_type == "np_layernorm":
42
+ return nn.LayerNorm(dim, eps=eps, elementwise_affine=False, bias=False)
43
+ elif norm_type == "np_layernorm_32":
44
+ return FP32_Layernorm(dim, eps=eps, elementwise_affine=False, bias=True)
45
+ elif norm_type == "layernorm_32":
46
+ return FP32_Layernorm(dim, eps=eps, bias=True)
47
+ elif norm_type == "rmsnorm":
48
+ return RMSNorm(dim, include_weight=True, eps=eps)
49
+ elif norm_type == "np_rmsnorm":
50
+ return RMSNorm(dim, include_weight=False, eps=1e-6)
51
+ elif norm_type == "fused_rmsnorm":
52
+ return FusedRMSNorm(dim, eps=1/65536)
53
+ elif norm_type == "fused_rmsnorm_32":
54
+ return FusedRMSNorm32(dim, eps=1e-6)
55
+ elif norm_type == 'none':
56
+ return nn.Identity()
57
+ else:
58
+ return nn.Identity()
59
+
60
+ class FP32_Layernorm(nn.LayerNorm):
61
+ def forward(self, inputs: torch.Tensor) -> torch.Tensor:
62
+ origin_dtype = inputs.dtype
63
+ if self.bias == None and self.weight == None:
64
+ return F.layer_norm(
65
+ input=inputs.float(),
66
+ normalized_shape=self.normalized_shape,
67
+ eps=self.eps
68
+ ).to(origin_dtype)
69
+ elif self.bias == None:
70
+ return F.layer_norm(
71
+ input=inputs.float(),
72
+ normalized_shape=self.normalized_shape,
73
+ weight=self.weight.float(),
74
+ eps=self.eps
75
+ ).to(origin_dtype)
76
+ else:
77
+ return F.layer_norm(
78
+ input=inputs.float(),
79
+ normalized_shape=self.normalized_shape,
80
+ weight=self.weight.float(),
81
+ bias=self.bias.float(),
82
+ eps=self.eps
83
+ ).to(origin_dtype)
84
+
85
+ class FusedRMSNorm(nn.Module):
86
+ """Fused RMS Norm, wraps a fused Triton Kernel"""
87
+
88
+ def __init__(
89
+ self,
90
+ dim: int,
91
+ eps: float = 1e-6,
92
+ ):
93
+ super().__init__()
94
+ self.eps = eps
95
+ self.weight = nn.Parameter(torch.ones(dim))
96
+ self.fused_rms_norm_fn = fused_rms_norm_fn
97
+
98
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
99
+ """leverages Triton Fused RMS Norm kernel"""
100
+ return self.fused_rms_norm_fn(
101
+ x,
102
+ self.weight,
103
+ eps=self.eps,
104
+ )
105
+
106
+ def reset_parameters(self):
107
+ torch.nn.init.ones_(self.weight) # type: ignore
108
+
109
+ class FusedRMSNorm32(nn.Module):
110
+ """Fused RMS Norm, wraps a fused Triton Kernel"""
111
+
112
+ def __init__(
113
+ self,
114
+ dim: int,
115
+ eps: float = 1e-6,
116
+ ):
117
+ super().__init__()
118
+ self.eps = eps
119
+ self.weight = nn.Parameter(torch.ones(dim))
120
+ self.fused_rms_norm_fn = fused_rms_norm_fn
121
+
122
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
123
+ """leverages Triton Fused RMS Norm kernel"""
124
+ dtype = x.dtype
125
+ return self.fused_rms_norm_fn(
126
+ x.to(torch.float32),
127
+ self.weight,
128
+ eps=self.eps,
129
+ ).to(dtype)
130
+
131
+ def reset_parameters(self):
132
+ torch.nn.init.ones_(self.weight) # type: ignore
133
+
134
+ class RMSNorm(nn.Module):
135
+ def __init__(self, dim: int, include_weight: bool = True, eps: float = 1e-6, **block_kwargs):
136
+ """
137
+ Initialize the RMSNorm normalization layer.
138
+
139
+ Args:
140
+ dim (int): The dimension of the input tensor.
141
+ include_weight: bool: Whether include weight in the normalization
142
+ eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
143
+
144
+ Attributes:
145
+ eps (float): A small value added to the denominator for numerical stability.
146
+ weight (nn.Parameter): Learnable scaling parameter.
147
+
148
+ """
149
+ super().__init__()
150
+ self.eps = eps
151
+ if include_weight:
152
+ self.weight = nn.Parameter(torch.ones(dim))
153
+ else:
154
+ self.weight = None
155
+
156
+ def _norm(self, x):
157
+ """
158
+ Apply the RMSNorm normalization to the input tensor.
159
+
160
+ Args:
161
+ x (torch.Tensor): The input tensor.
162
+
163
+ Returns:
164
+ torch.Tensor: The normalized tensor.
165
+
166
+ """
167
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
168
+
169
+ def forward(self, x):
170
+ """
171
+ Forward pass through the RMSNorm layer.
172
+
173
+ Args:
174
+ x (torch.Tensor): The input tensor.
175
+
176
+ Returns:
177
+ torch.Tensor: The output tensor after applying RMSNorm.
178
+
179
+ """
180
+ output = self._norm(x.float()).type_as(x)
181
+ if self.weight == None:
182
+ return output
183
+ else:
184
+ return output * self.weight
185
+
186
+
187
+
188
+ # FusedRMSNorm in Triton
189
+
190
+ # Credit
191
+ # Tri Dao's Triton LayerNorm: https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/ops/triton/layer_norm.py
192
+ # Triton LayerNorm tutorial: https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
193
+
194
+
195
+ @triton.autotune(
196
+ configs=[
197
+ triton.Config({}, num_warps=1),
198
+ triton.Config({}, num_warps=2),
199
+ triton.Config({}, num_warps=4),
200
+ triton.Config({}, num_warps=8),
201
+ triton.Config({}, num_warps=16),
202
+ triton.Config({}, num_warps=32),
203
+ ],
204
+ key=["N"],
205
+ )
206
+ @triton.jit
207
+ def _rms_norm_fwd_kernel(
208
+ X,
209
+ stride_x,
210
+ Y,
211
+ stride_y,
212
+ W,
213
+ Rstd,
214
+ eps,
215
+ M, # num rows
216
+ N, # num cols
217
+ block_N: tl.constexpr,
218
+ ):
219
+ row = tl.program_id(0)
220
+ cols = tl.arange(0, block_N)
221
+
222
+ # Load input data and weights
223
+ mask = cols < N
224
+ x = tl.load(X + row * stride_x + cols, mask=mask, other=0.0).to(tl.float32)
225
+ w = tl.load(W + cols, mask=mask, other=0.0).to(tl.float32)
226
+
227
+ # Compute mean and variance
228
+ xbar = tl.where(cols < N, x, 0.0)
229
+ var = tl.sum(xbar * xbar, axis=0) / N
230
+ rstd = 1 / tl.sqrt(var + eps)
231
+
232
+ # Store the reciprocal standard deviation
233
+ tl.store(Rstd + row, rstd)
234
+
235
+ # Normalize and apply linear transformation
236
+ x_hat = x * rstd
237
+ y = x_hat * w
238
+
239
+ # Write output
240
+ tl.store(Y + row * stride_y + cols, y, mask=mask)
241
+
242
+
243
+ @triton.autotune(
244
+ configs=[
245
+ triton.Config({}, num_warps=1),
246
+ triton.Config({}, num_warps=2),
247
+ triton.Config({}, num_warps=4),
248
+ triton.Config({}, num_warps=8),
249
+ triton.Config({}, num_warps=16),
250
+ triton.Config({}, num_warps=32),
251
+ ],
252
+ key=["N"],
253
+ )
254
+ @triton.jit
255
+ def _rms_norm_bwd_kernel_sm(
256
+ X,
257
+ stride_x,
258
+ W,
259
+ DY,
260
+ stride_dy,
261
+ DX,
262
+ stride_dx,
263
+ Rstd,
264
+ DW,
265
+ eps,
266
+ M, # num rows
267
+ N, # num cols
268
+ rows_per_program,
269
+ block_N: tl.constexpr,
270
+ ):
271
+ row_block_id = tl.program_id(0)
272
+ row_start = row_block_id * rows_per_program
273
+ cols = tl.arange(0, block_N)
274
+ mask = cols < N
275
+
276
+ # Load weights
277
+ w = tl.load(W + cols, mask=mask, other=0.0).to(tl.float32)
278
+
279
+ # Accumulate gradients for weights
280
+ dw = tl.zeros((block_N,), dtype=tl.float32)
281
+
282
+ row_end = min(row_start + rows_per_program, M)
283
+ for row in range(row_start, row_end):
284
+ # Load input, output gradient, and reciprocal standard deviation
285
+ x = tl.load(X + row * stride_x + cols, mask=mask, other=0.0).to(tl.float32)
286
+ dy = tl.load(DY + row * stride_dy + cols, mask=mask, other=0.0).to(tl.float32)
287
+ rstd = tl.load(Rstd + row)
288
+
289
+ # Compute normalized input and gradients
290
+ x_hat = x * rstd
291
+ wdy = w * dy
292
+ dw += dy * x_hat
293
+ c1 = tl.sum(x_hat * wdy, axis=0) / N
294
+ dx = (wdy - x_hat * c1) * rstd
295
+
296
+ # Store input gradient
297
+ tl.store(DX + row * stride_dx + cols, dx, mask=mask)
298
+
299
+ # Store weight gradients
300
+ tl.store(DW + row_block_id * N + cols, dw, mask=mask)
301
+
302
+
303
+ class TritonFusedRMSNorm(torch.autograd.Function):
304
+ @staticmethod
305
+ def forward(ctx, x, weight, eps):
306
+ x_shape_start = x.shape
307
+
308
+ # Flatten input
309
+ x = x.view(-1, x.shape[-1])
310
+ if x.stride(-1) != 1:
311
+ x = x.contiguous()
312
+ if weight.stride(-1) != 1:
313
+ weight = weight.contiguous()
314
+
315
+ M, N = x.shape
316
+ y = torch.empty_like(x)
317
+ rstd = torch.empty((M,), dtype=torch.float32, device=x.device)
318
+
319
+ max_size = 65536 // x.element_size()
320
+ block_N = min(max_size, triton.next_power_of_2(N))
321
+
322
+ if N > block_N:
323
+ raise ValueError(f"N {N} must be <= {block_N=}")
324
+
325
+ grid = lambda meta: (M,)
326
+ _rms_norm_fwd_kernel[grid](
327
+ x,
328
+ x.stride(0),
329
+ y,
330
+ y.stride(0),
331
+ weight,
332
+ rstd,
333
+ eps,
334
+ M,
335
+ N,
336
+ block_N,
337
+ )
338
+
339
+ ctx.eps = eps
340
+ ctx.save_for_backward(x, weight, rstd)
341
+ ctx.x_shape_start = x_shape_start
342
+
343
+ y = y.reshape(x_shape_start)
344
+ return y
345
+
346
+ @staticmethod
347
+ def backward(ctx, dy):
348
+ x, weight, rstd = ctx.saved_tensors
349
+ eps = ctx.eps
350
+ x_shape_start = ctx.x_shape_start
351
+
352
+ # Flatten input and output gradients
353
+ dy = dy.view(-1, dy.shape[-1])
354
+ if dy.stride(-1) != 1:
355
+ dy = dy.contiguous()
356
+
357
+ M, N = dy.shape
358
+ dx = torch.empty_like(x)
359
+ dw = torch.empty_like(weight)
360
+
361
+ sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count
362
+ _dw = torch.empty((sm_count, N), dtype=torch.float32, device=weight.device)
363
+
364
+ max_size = 65536 // x.element_size()
365
+ block_N = min(max_size, triton.next_power_of_2(N))
366
+ rows_per_sm = math.ceil(M / sm_count)
367
+
368
+ if N > block_N:
369
+ raise ValueError(f"N {N} must be <= {block_N=}")
370
+
371
+ grid = lambda meta: (sm_count,)
372
+ _rms_norm_bwd_kernel_sm[grid](
373
+ x,
374
+ x.stride(0),
375
+ weight,
376
+ dy,
377
+ dy.stride(0),
378
+ dx,
379
+ dx.stride(0),
380
+ rstd,
381
+ _dw,
382
+ eps,
383
+ M,
384
+ N,
385
+ rows_per_sm,
386
+ block_N,
387
+ )
388
+ dw = _dw.sum(0).to(weight.dtype)
389
+ dx = dx.view(x_shape_start)
390
+ return dx, dw, None
391
+
392
+
393
+ # expose fusedRMSNorm as a function
394
+ def fused_rms_norm_fn(
395
+ x,
396
+ weight,
397
+ eps=1e-6,
398
+ ):
399
+ return TritonFusedRMSNorm.apply(
400
+ x,
401
+ weight,
402
+ eps,
403
+ )
tim/models/utils/rope.py ADDED
@@ -0,0 +1,305 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # FiT: A Flexible Vision Transformer for Image Generation
3
+ #
4
+ # Based on the following repository
5
+ # https://github.com/lucidrains/rotary-embedding-torch
6
+ # https://github.com/jquesnelle/yarn/blob/HEAD/scaled_rope
7
+ # https://colab.research.google.com/drive/1VI2nhlyKvd5cw4-zHvAIk00cAVj2lCCC#scrollTo=b80b3f37
8
+ # --------------------------------------------------------
9
+
10
+ import math
11
+ from math import pi
12
+ from typing import Optional, Any, Union, Tuple
13
+ import torch
14
+ from torch import nn
15
+
16
+ from einops import rearrange, repeat
17
+ from functools import lru_cache
18
+
19
+ #################################################################################
20
+ # NTK Operations #
21
+ #################################################################################
22
+
23
+ def find_correction_factor(num_rotations, dim, base=10000, max_position_embeddings=2048):
24
+ return (dim * math.log(max_position_embeddings/(num_rotations * 2 * math.pi)))/(2 * math.log(base)) #Inverse dim formula to find number of rotations
25
+
26
+ def find_correction_range(low_rot, high_rot, dim, base=10000, max_position_embeddings=2048):
27
+ low = math.floor(find_correction_factor(low_rot, dim, base, max_position_embeddings))
28
+ high = math.ceil(find_correction_factor(high_rot, dim, base, max_position_embeddings))
29
+ return max(low, 0), min(high, dim-1) #Clamp values just in case
30
+
31
+ def linear_ramp_mask(min, max, dim):
32
+ if min == max:
33
+ max += 0.001 #Prevent singularity
34
+
35
+ linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
36
+ ramp_func = torch.clamp(linear_func, 0, 1)
37
+ return ramp_func
38
+
39
+ def find_newbase_ntk(dim, base=10000, scale=1):
40
+ # Base change formula
41
+ return base * scale ** (dim / (dim-2))
42
+
43
+ def get_mscale(scale=torch.Tensor):
44
+ # if scale <= 1:
45
+ # return 1.0
46
+ # return 0.1 * math.log(scale) + 1.0
47
+ return torch.where(scale <= 1., torch.tensor(1.0), 0.1 * torch.log(scale) + 1.0)
48
+
49
+ def get_proportion(L_test, L_train):
50
+ L_test = L_test * 2
51
+ return torch.where(torch.tensor(L_test/L_train) <= 1., torch.tensor(1.0), torch.sqrt(torch.log(torch.tensor(L_test))/torch.log(torch.tensor(L_train))))
52
+ # return torch.sqrt(torch.log(torch.tensor(L_test))/torch.log(torch.tensor(L_train)))
53
+
54
+
55
+
56
+ #################################################################################
57
+ # Rotate Q or K #
58
+ #################################################################################
59
+
60
+ def rotate_half(x):
61
+ x = rearrange(x, '... (d r) -> ... d r', r = 2)
62
+ x1, x2 = x.unbind(dim = -1)
63
+ x = torch.stack((-x2, x1), dim = -1)
64
+ return rearrange(x, '... d r -> ... (d r)')
65
+
66
+
67
+
68
+ #################################################################################
69
+ # Core Vision RoPE #
70
+ #################################################################################
71
+
72
+ class VisionRotaryEmbedding(nn.Module):
73
+ def __init__(
74
+ self,
75
+ head_dim: int, # embed dimension for each head
76
+ custom_freqs: str = 'normal',
77
+ theta: int = 10000,
78
+ online_rope: bool = False,
79
+ max_cached_len: int = 1024,
80
+ max_pe_len_h: Optional[int] = None,
81
+ max_pe_len_w: Optional[int] = None,
82
+ decouple: bool = False,
83
+ ori_max_pe_len: Optional[int] = None,
84
+ ):
85
+ super().__init__()
86
+
87
+ dim = head_dim // 2
88
+ assert dim % 2 == 0 # accually, this is important
89
+ self.dim = dim
90
+ self.custom_freqs = custom_freqs.lower()
91
+ self.theta = theta
92
+ self.decouple = decouple
93
+ self.ori_max_pe_len = ori_max_pe_len
94
+
95
+ self.custom_freqs = custom_freqs.lower()
96
+ if not online_rope:
97
+ if self.custom_freqs in ['normal', 'scale1', 'scale2']:
98
+ freqs_h = 1. / (theta ** (torch.arange(0, dim, 2).float() / dim))
99
+ freqs_w = 1. / (theta ** (torch.arange(0, dim, 2).float() / dim))
100
+ else:
101
+ if decouple:
102
+ freqs_h = self.get_1d_rope_freqs(theta, dim, max_pe_len_h, ori_max_pe_len)
103
+ freqs_w = self.get_1d_rope_freqs(theta, dim, max_pe_len_w, ori_max_pe_len)
104
+ else:
105
+ max_pe_len = max(max_pe_len_h, max_pe_len_w)
106
+ freqs_h = self.get_1d_rope_freqs(theta, dim, max_pe_len, ori_max_pe_len)
107
+ freqs_w = self.get_1d_rope_freqs(theta, dim, max_pe_len, ori_max_pe_len)
108
+
109
+ self.register_buffer('freqs_h', freqs_h, persistent=False)
110
+ self.register_buffer('freqs_w', freqs_w, persistent=False)
111
+
112
+ if max_pe_len_h != None and max_pe_len_w != None and ori_max_pe_len != None:
113
+ attn_factor = 1.0
114
+ scale = torch.clamp_min(torch.tensor(max(max_pe_len_h, max_pe_len_w)) / ori_max_pe_len, 1.0) # dynamic scale
115
+ self.mscale = get_mscale(scale).to(scale) * attn_factor # Get n-d magnitude scaling corrected for interpolation
116
+ self.proportion1 = get_proportion(max(max_pe_len_h, max_pe_len_w), ori_max_pe_len)
117
+ self.proportion2 = get_proportion(max_pe_len_h * max_pe_len_w, ori_max_pe_len ** 2)
118
+
119
+
120
+ freqs_h_cached = torch.einsum('..., f -> ... f', torch.arange(max_cached_len), self.freqs_h)
121
+ freqs_h_cached = repeat(freqs_h_cached, '... n -> ... (n r)', r = 2)
122
+ self.register_buffer('freqs_h_cached', freqs_h_cached, persistent=False)
123
+ freqs_w_cached = torch.einsum('..., f -> ... f', torch.arange(max_cached_len), self.freqs_w)
124
+ freqs_w_cached = repeat(freqs_w_cached, '... n -> ... (n r)', r = 2)
125
+ self.register_buffer('freqs_w_cached', freqs_w_cached, persistent=False)
126
+
127
+
128
+ def get_1d_rope_freqs(self, theta, dim, max_pe_len, ori_max_pe_len):
129
+ # scaling operations for extrapolation
130
+ assert isinstance(ori_max_pe_len, int)
131
+ # scale = max_pe_len / ori_max_pe_len
132
+ if not isinstance(max_pe_len, torch.Tensor):
133
+ max_pe_len = torch.tensor(max_pe_len)
134
+ scale = torch.clamp_min(max_pe_len / ori_max_pe_len, 1.0) # dynamic scale
135
+
136
+ if self.custom_freqs == 'linear': # equal to position interpolation
137
+ freqs = 1. / torch.einsum('..., f -> ... f', scale, theta ** (torch.arange(0, dim, 2).float() / dim))
138
+ elif self.custom_freqs == 'ntk-aware' or self.custom_freqs == 'ntk-aware-pro1' or self.custom_freqs == 'ntk-aware-pro2':
139
+ freqs = 1. / torch.pow(
140
+ find_newbase_ntk(dim, theta, scale).view(-1, 1),
141
+ (torch.arange(0, dim, 2).to(scale).float() / dim)
142
+ ).squeeze()
143
+ elif self.custom_freqs == 'ntk-by-parts':
144
+ #Interpolation constants found experimentally for LLaMA (might not be totally optimal though)
145
+ #Do not change unless there is a good reason for doing so!
146
+ beta_0 = 1.25
147
+ beta_1 = 0.75
148
+ gamma_0 = 16
149
+ gamma_1 = 2
150
+ ntk_factor = 1
151
+ extrapolation_factor = 1
152
+
153
+ #Three RoPE extrapolation/interpolation methods
154
+ freqs_base = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim))
155
+ freqs_linear = 1.0 / torch.einsum('..., f -> ... f', scale, (theta ** (torch.arange(0, dim, 2).to(scale).float() / dim)))
156
+ freqs_ntk = 1. / torch.pow(
157
+ find_newbase_ntk(dim, theta, scale).view(-1, 1),
158
+ (torch.arange(0, dim, 2).to(scale).float() / dim)
159
+ ).squeeze()
160
+
161
+ #Combine NTK and Linear
162
+ low, high = find_correction_range(beta_0, beta_1, dim, theta, ori_max_pe_len)
163
+ freqs_mask = (1 - linear_ramp_mask(low, high, dim // 2).to(scale)) * ntk_factor
164
+ freqs = freqs_linear * (1 - freqs_mask) + freqs_ntk * freqs_mask
165
+
166
+ #Combine Extrapolation and NTK and Linear
167
+ low, high = find_correction_range(gamma_0, gamma_1, dim, theta, ori_max_pe_len)
168
+ freqs_mask = (1 - linear_ramp_mask(low, high, dim // 2).to(scale)) * extrapolation_factor
169
+ freqs = freqs * (1 - freqs_mask) + freqs_base * freqs_mask
170
+
171
+ elif self.custom_freqs == 'yarn':
172
+ #Interpolation constants found experimentally for LLaMA (might not be totally optimal though)
173
+ #Do not change unless there is a good reason for doing so!
174
+ beta_fast = 32
175
+ beta_slow = 1
176
+ extrapolation_factor = 1
177
+
178
+ freqs_extrapolation = 1.0 / (theta ** (torch.arange(0, dim, 2).to(scale).float() / dim))
179
+ freqs_interpolation = 1.0 / torch.einsum('..., f -> ... f', scale, (theta ** (torch.arange(0, dim, 2).to(scale).float() / dim)))
180
+
181
+ low, high = find_correction_range(beta_fast, beta_slow, dim, theta, ori_max_pe_len)
182
+ freqs_mask = (1 - linear_ramp_mask(low, high, dim // 2).to(scale).float()) * extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
183
+ freqs = freqs_interpolation * (1 - freqs_mask) + freqs_extrapolation * freqs_mask
184
+ else:
185
+ raise ValueError(f'Unknown modality {self.custom_freqs}. Only support normal, linear, ntk-aware, ntk-by-parts, yarn!')
186
+ return freqs
187
+
188
+
189
+ def online_get_2d_rope_from_grid(self, grid, size):
190
+ '''
191
+ grid: (B, 2, N)
192
+ N = H * W
193
+ the first dimension represents width, and the second reprensents height
194
+ e.g., [0. 1. 2. 3. 0. 1. 2. 3. 0. 1. 2. 3.]
195
+ [0. 0. 0. 0. 1. 1. 1. 1. 2. 2. 2. 2.]
196
+ size: (B, 1, 2), h goes first and w goes last
197
+ '''
198
+ size = size.squeeze() # (B, 1, 2) -> (B, 2)
199
+ if self.decouple:
200
+ size_h = size[:, 0]
201
+ size_w = size[:, 1]
202
+ freqs_h = self.get_1d_rope_freqs(self.theta, self.dim, size_h, self.ori_max_pe_len)
203
+ freqs_w = self.get_1d_rope_freqs(self.theta, self.dim, size_w, self.ori_max_pe_len)
204
+ else:
205
+ size_max = torch.max(size[:, 0], size[:, 1])
206
+ freqs_h = self.get_1d_rope_freqs(self.theta, self.dim, size_max, self.ori_max_pe_len)
207
+ freqs_w = self.get_1d_rope_freqs(self.theta, self.dim, size_max, self.ori_max_pe_len)
208
+ freqs_w = grid[:, 0][..., None] * freqs_w[:, None, :]
209
+ freqs_w = repeat(freqs_w, '... n -> ... (n r)', r = 2)
210
+
211
+ freqs_h = grid[:, 1][..., None] * freqs_h[:, None, :]
212
+ freqs_h = repeat(freqs_h, '... n -> ... (n r)', r = 2)
213
+
214
+ freqs = torch.cat([freqs_h, freqs_w], dim=-1) # (B, N, D)
215
+
216
+ if self.custom_freqs == 'yarn':
217
+ freqs_cos = freqs.cos() * self.mscale[:, None, None]
218
+ freqs_sin = freqs.sin() * self.mscale[:, None, None]
219
+ elif self.custom_freqs == 'ntk-aware-pro1':
220
+ freqs_cos = freqs.cos() * self.proportion1[:, None, None]
221
+ freqs_sin = freqs.sin() * self.proportion1[:, None, None]
222
+ elif self.custom_freqs == 'ntk-aware-pro2':
223
+ freqs_cos = freqs.cos() * self.proportion2[:, None, None]
224
+ freqs_sin = freqs.sin() * self.proportion2[:, None, None]
225
+ else:
226
+ freqs_cos = freqs.cos()
227
+ freqs_sin = freqs.sin()
228
+
229
+ return freqs_cos, freqs_sin
230
+
231
+ @lru_cache()
232
+ def get_2d_rope_from_grid(self, grid):
233
+ '''
234
+ grid: (B, 2, N)
235
+ N = H * W
236
+ the first dimension represents width, and the second reprensents height
237
+ e.g., [0. 1. 2. 3. 0. 1. 2. 3. 0. 1. 2. 3.]
238
+ [0. 0. 0. 0. 1. 1. 1. 1. 2. 2. 2. 2.]
239
+ '''
240
+ freqs_h = torch.einsum('..., f -> ... f', grid[:, 0], self.freqs_h)
241
+ freqs_h = repeat(freqs_h, '... n -> ... (n r)', r = 2)
242
+ freqs_w = torch.einsum('..., f -> ... f', grid[:, 1], self.freqs_w)
243
+ freqs_w = repeat(freqs_w, '... n -> ... (n r)', r = 2)
244
+
245
+ freqs = torch.cat([freqs_h, freqs_w], dim=-1) # (B, N, D)
246
+
247
+ if self.custom_freqs == 'yarn':
248
+ freqs_cos = freqs.cos() * self.mscale
249
+ freqs_sin = freqs.sin() * self.mscale
250
+ elif self.custom_freqs in ['ntk-aware-pro1', 'scale1']:
251
+ freqs_cos = freqs.cos() * self.proportion1
252
+ freqs_sin = freqs.sin() * self.proportion1
253
+ elif self.custom_freqs in ['ntk-aware-pro2', 'scale2']:
254
+ freqs_cos = freqs.cos() * self.proportion2
255
+ freqs_sin = freqs.sin() * self.proportion2
256
+ else:
257
+ freqs_cos = freqs.cos()
258
+ freqs_sin = freqs.sin()
259
+
260
+ return freqs_cos, freqs_sin
261
+
262
+ @lru_cache()
263
+ def get_cached_2d_rope_from_grid(self, grid: torch.Tensor):
264
+ '''
265
+ grid: (B, 2, N)
266
+ N = H * W
267
+ the first dimension represents width, and the second reprensents height
268
+ e.g., [0. 1. 2. 3. 0. 1. 2. 3. 0. 1. 2. 3.]
269
+ [0. 0. 0. 0. 1. 1. 1. 1. 2. 2. 2. 2.]
270
+ '''
271
+ if len(grid.shape) == 3: # (B, 2, N)
272
+ freqs_h, freqs_w = self.freqs_h_cached[grid[:, 0]], self.freqs_w_cached[grid[:, 1]]
273
+ elif len(grid.shape) == 2: # (2, N)
274
+ freqs_h, freqs_w = self.freqs_h_cached[grid[0]], self.freqs_w_cached[grid[1]]
275
+ freqs = torch.cat([freqs_h, freqs_w], dim=-1) # (B, N, D)
276
+
277
+ if self.custom_freqs == 'yarn':
278
+ freqs_cos = freqs.cos() * self.mscale
279
+ freqs_sin = freqs.sin() * self.mscale
280
+ elif self.custom_freqs in ['ntk-aware-pro1', 'scale1']:
281
+ freqs_cos = freqs.cos() * self.proportion1
282
+ freqs_sin = freqs.sin() * self.proportion1
283
+ elif self.custom_freqs in ['ntk-aware-pro2', 'scale2']:
284
+ freqs_cos = freqs.cos() * self.proportion2
285
+ freqs_sin = freqs.sin() * self.proportion2
286
+ else:
287
+ freqs_cos = freqs.cos()
288
+ freqs_sin = freqs.sin()
289
+
290
+ return freqs_cos, freqs_sin
291
+
292
+
293
+ def forward(self, x, grid):
294
+ '''
295
+ x: (B, n_head, N, D)
296
+ grid: (B, 2, N)
297
+ '''
298
+ # freqs_cos, freqs_sin = self.get_2d_rope_from_grid(grid)
299
+ # freqs_cos, freqs_sin = freqs_cos.unsqueeze(1), freqs_sin.unsqueeze(1)
300
+ # using cache to accelerate, this is the same with the above codes:
301
+ freqs_cos, freqs_sin = self.get_cached_2d_rope_from_grid(grid)
302
+ freqs_cos, freqs_sin = freqs_cos.unsqueeze(1), freqs_sin.unsqueeze(1)
303
+ return x * freqs_cos + rotate_half(x) * freqs_sin
304
+
305
+
tim/models/utils/text_encoders.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ from transformers import T5EncoderModel, Gemma3ForCausalLM, AutoTokenizer
4
+
5
+
6
+ # load text-encoder
7
+ def load_text_encoder(text_encoder_dir, device, weight_dtype):
8
+ os.environ["TOKENIZERS_PARALLELISM"] = "true"
9
+ tokenizer = AutoTokenizer.from_pretrained(text_encoder_dir)
10
+ if "gemma" in text_encoder_dir:
11
+ tokenizer.padding_side = "right"
12
+ text_encoder = Gemma3ForCausalLM.from_pretrained(
13
+ text_encoder_dir,
14
+ attn_implementation="sdpa",
15
+ device_map="cpu",
16
+ dtype=weight_dtype,
17
+ )
18
+ elif "t5" in text_encoder_dir:
19
+ text_encoder = T5EncoderModel.from_pretrained(
20
+ text_encoder_dir,
21
+ attn_implementation="sdpa",
22
+ device_map="cpu",
23
+ dtype=weight_dtype,
24
+ )
25
+ else:
26
+ raise NotImplementedError
27
+ # Set requires_grad to False for all parameters to avoid functorch issues
28
+ # for param in text_encoder.parameters():
29
+ # param.requires_grad = False
30
+
31
+ text_encoder.model = text_encoder.model.eval().to(device=device, dtype=weight_dtype)
32
+
33
+ return text_encoder, tokenizer
34
+
35
+
36
+ def encode_prompt(
37
+ tokenizer,
38
+ text_encoder,
39
+ device,
40
+ weight_dtype,
41
+ captions,
42
+ use_last_hidden_state,
43
+ max_seq_length=256,
44
+ ):
45
+ text_inputs = tokenizer(
46
+ captions,
47
+ padding="max_length",
48
+ max_length=max_seq_length,
49
+ truncation=True,
50
+ return_tensors="pt",
51
+ )
52
+ text_input_ids = text_inputs.input_ids.to(device)
53
+ prompt_masks = text_inputs.attention_mask.to(device)
54
+ with torch.no_grad(), torch.autocast("cuda", dtype=weight_dtype):
55
+ results = text_encoder(
56
+ input_ids=text_input_ids,
57
+ attention_mask=prompt_masks,
58
+ output_hidden_states=True,
59
+ )
60
+
61
+ if use_last_hidden_state:
62
+ prompt_embeds = results.last_hidden_state
63
+ else: # from Imagen paper
64
+ prompt_embeds = results.hidden_states[-2]
65
+
66
+ return prompt_embeds, prompt_masks
tim/models/vae/__init__.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from .dc_ae import MyAutoencoderDC as AutoencoderDC
3
+ from .sd_vae import MyAutoencoderKL as AutoencoderKL
4
+
5
+
6
+ # dc-ae
7
+ def get_dc_ae(vae_dir, dtype, device):
8
+ dc_ae = AutoencoderDC.from_pretrained(vae_dir).to(dtype=dtype, device=device)
9
+ dc_ae.eval()
10
+ # Set requires_grad to False for all parameters to avoid functorch issues
11
+ # for param in dc_ae.parameters():
12
+ # param.requires_grad = False
13
+ return dc_ae
14
+
15
+
16
+ def dc_ae_encode(dc_ae, images):
17
+ with torch.no_grad():
18
+ z = dc_ae.encode(images).latent
19
+ latents = (z - dc_ae.mean) / dc_ae.std
20
+ return latents
21
+
22
+
23
+ def dc_ae_decode(dc_ae, latents, slice_vae=False):
24
+ with torch.no_grad():
25
+ z = latents * dc_ae.std + dc_ae.mean
26
+ if slice_vae and z.size(0) > 1:
27
+ decoded_slices = [dc_ae._decode(z_slice) for z_slice in z.split(1)]
28
+ decoded = torch.cat(decoded_slices)
29
+ else:
30
+ decoded = dc_ae._decode(z)
31
+ images = decoded # decoded images
32
+ return images
33
+
34
+
35
+ # sd-vae
36
+ def get_sd_vae(vae_dir, dtype, device):
37
+ sd_vae = AutoencoderKL.from_pretrained(vae_dir).to(dtype=dtype, device=device)
38
+ sd_vae.eval()
39
+ # Set requires_grad to False for all parameters to avoid functorch issues
40
+ # for param in sd_vae.parameters():
41
+ # param.requires_grad = False
42
+ return sd_vae
43
+
44
+
45
+ def sd_vae_encode(sd_vae, images):
46
+ with torch.no_grad():
47
+ posterior = sd_vae.encode(images)
48
+ z = posterior.latent_dist.sample()
49
+ latents = (z - sd_vae.mean) / sd_vae.std
50
+ return latents
51
+
52
+
53
+ def sd_vae_decode(sd_vae, latents, slice_vae=False):
54
+ with torch.no_grad():
55
+ z = latents * sd_vae.std + sd_vae.mean
56
+ if slice_vae and z.shape[0] > 1:
57
+ decoded_slices = [sd_vae._decode(z_slice).sample for z_slice in z.split(1)]
58
+ decoded = torch.cat(decoded_slices)
59
+ else:
60
+ decoded = sd_vae._decode(z).sample
61
+ return decoded
tim/models/vae/dc_ae.py ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.utils.checkpoint import checkpoint
3
+ from diffusers.models.autoencoders.autoencoder_dc import Encoder, Decoder, AutoencoderDC
4
+
5
+
6
+ class MyEncoder(Encoder):
7
+ def __init__(
8
+ self,
9
+ in_channels,
10
+ latent_channels,
11
+ attention_head_dim = 32,
12
+ block_type = "ResBlock",
13
+ block_out_channels = ...,
14
+ layers_per_block = ...,
15
+ qkv_multiscales = ...,
16
+ downsample_block_type = "pixel_unshuffle",
17
+ out_shortcut = True
18
+ ):
19
+ super().__init__(
20
+ in_channels, latent_channels, attention_head_dim, block_type, block_out_channels,
21
+ layers_per_block, qkv_multiscales, downsample_block_type, out_shortcut
22
+ )
23
+
24
+ def forward(self, hidden_states: torch.Tensor, use_checkpoint=False) -> torch.Tensor:
25
+ hidden_states = self.conv_in(hidden_states)
26
+ for down_block in self.down_blocks:
27
+ if use_checkpoint:
28
+ hidden_states = checkpoint(self.ckpt_wrapper(down_block), hidden_states)
29
+ else:
30
+ hidden_states = down_block(hidden_states)
31
+
32
+ if self.out_shortcut:
33
+ x = hidden_states.unflatten(1, (-1, self.out_shortcut_average_group_size))
34
+ x = x.mean(dim=2)
35
+ hidden_states = self.conv_out(hidden_states) + x
36
+ else:
37
+ hidden_states = self.conv_out(hidden_states)
38
+
39
+ return hidden_states
40
+
41
+ def ckpt_wrapper(self, module):
42
+ def ckpt_forward(*inputs):
43
+ outputs = module(*inputs)
44
+ return outputs
45
+ return ckpt_forward
46
+
47
+
48
+
49
+
50
+ class MyDecoder(Decoder):
51
+ def __init__(
52
+ self,
53
+ in_channels,
54
+ latent_channels,
55
+ attention_head_dim = 32,
56
+ block_type = "ResBlock",
57
+ block_out_channels = ...,
58
+ layers_per_block = ...,
59
+ qkv_multiscales = ...,
60
+ norm_type = "rms_norm",
61
+ act_fn = "silu",
62
+ upsample_block_type = "pixel_shuffle",
63
+ in_shortcut = True
64
+ ):
65
+ super().__init__(
66
+ in_channels, latent_channels, attention_head_dim, block_type, block_out_channels,
67
+ layers_per_block, qkv_multiscales, norm_type, act_fn, upsample_block_type, in_shortcut
68
+ )
69
+
70
+ def forward(self, hidden_states: torch.Tensor, use_checkpoint=False) -> torch.Tensor:
71
+ if self.in_shortcut:
72
+ x = hidden_states.repeat_interleave(
73
+ self.in_shortcut_repeats, dim=1, output_size=hidden_states.shape[1] * self.in_shortcut_repeats
74
+ )
75
+ hidden_states = self.conv_in(hidden_states) + x
76
+ else:
77
+ hidden_states = self.conv_in(hidden_states)
78
+
79
+ for up_block in reversed(self.up_blocks):
80
+ if use_checkpoint:
81
+ hidden_states = checkpoint(self.ckpt_wrapper(up_block), hidden_states)
82
+ else:
83
+ hidden_states = up_block(hidden_states)
84
+
85
+ hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
86
+ hidden_states = self.conv_act(hidden_states)
87
+ hidden_states = self.conv_out(hidden_states)
88
+ return hidden_states
89
+
90
+ def ckpt_wrapper(self, module):
91
+ def ckpt_forward(*inputs):
92
+ outputs = module(*inputs)
93
+ return outputs
94
+ return ckpt_forward
95
+
96
+
97
+
98
+ class MyAutoencoderDC(AutoencoderDC):
99
+ def __init__(
100
+ self,
101
+ in_channels = 3,
102
+ latent_channels = 32,
103
+ attention_head_dim = 32,
104
+ encoder_block_types = "ResBlock",
105
+ decoder_block_types = "ResBlock",
106
+ encoder_block_out_channels = ...,
107
+ decoder_block_out_channels = ...,
108
+ encoder_layers_per_block = ...,
109
+ decoder_layers_per_block = ...,
110
+ encoder_qkv_multiscales = ...,
111
+ decoder_qkv_multiscales = ...,
112
+ upsample_block_type = "pixel_shuffle",
113
+ downsample_block_type = "pixel_unshuffle",
114
+ decoder_norm_types = "rms_norm",
115
+ decoder_act_fns = "silu",
116
+ scaling_factor = 1,
117
+ bn_momentum = 0.1,
118
+ ):
119
+ super().__init__(
120
+ in_channels, latent_channels, attention_head_dim, encoder_block_types,
121
+ decoder_block_types, encoder_block_out_channels, decoder_block_out_channels,
122
+ encoder_layers_per_block, decoder_layers_per_block, encoder_qkv_multiscales,
123
+ decoder_qkv_multiscales, upsample_block_type, downsample_block_type,
124
+ decoder_norm_types, decoder_act_fns, scaling_factor
125
+ )
126
+
127
+ self.encoder = MyEncoder(
128
+ in_channels=in_channels,
129
+ latent_channels=latent_channels,
130
+ attention_head_dim=attention_head_dim,
131
+ block_type=encoder_block_types,
132
+ block_out_channels=encoder_block_out_channels,
133
+ layers_per_block=encoder_layers_per_block,
134
+ qkv_multiscales=encoder_qkv_multiscales,
135
+ downsample_block_type=downsample_block_type,
136
+ )
137
+ self.decoder = MyDecoder(
138
+ in_channels=in_channels,
139
+ latent_channels=latent_channels,
140
+ attention_head_dim=attention_head_dim,
141
+ block_type=decoder_block_types,
142
+ block_out_channels=decoder_block_out_channels,
143
+ layers_per_block=decoder_layers_per_block,
144
+ qkv_multiscales=decoder_qkv_multiscales,
145
+ norm_type=decoder_norm_types,
146
+ act_fn=decoder_act_fns,
147
+ upsample_block_type=upsample_block_type,
148
+ )
149
+ self.bn = torch.nn.BatchNorm2d(
150
+ latent_channels, eps=1e-4, momentum=bn_momentum, affine=False, track_running_stats=True
151
+ )
152
+ self.bn.reset_running_stats()
153
+ self.init_bn()
154
+
155
+
156
+ def init_bn(self):
157
+ # self.bn.running_mean = torch.zeros_like(self.bn.running_mean).to(torch.float64)
158
+ # self.bn.running_var = torch.ones_like(self.bn.running_var).to(torch.float64) / self.config.scaling_factor ** 2
159
+ self.bn.running_mean = torch.zeros_like(self.bn.running_mean)
160
+ self.bn.running_var = torch.ones_like(self.bn.running_var) / self.config.scaling_factor ** 2
161
+ print(self.config.scaling_factor, self.bn.running_var.flatten())
162
+
163
+ @property
164
+ def mean(self):
165
+ mean = self.bn.running_mean.unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
166
+ return mean
167
+
168
+ @property
169
+ def std(self):
170
+ std = self.bn.running_var.sqrt().unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
171
+ return std
172
+
173
+ def forward(self, x: torch.Tensor, use_checkpoint=False) -> torch.Tensor:
174
+ z = self.encoder(x, use_checkpoint)
175
+ latent = self.bn(z)
176
+ recon = self.decoder(z, use_checkpoint)
177
+ posterior = None
178
+ return posterior, latent, recon