File size: 10,395 Bytes
d0e893e ebe8085 d0e893e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
---
title: TiM
emoji: π
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 5.44.1
app_file: app.py
pinned: false
python_version: 3.10
---
<h1 align="center">Transition Models: Rethinking the Generative Learning Objective</h1>
<div align="center">
<a href="https://github.com/WZDTHU" target="_blank">ZiDong Wang</a><sup>1,2,*</sup>
  <b>·</b>  
<a href="https://invictus717.github.io" target="_blank">Yiyuan Zhang</a><sup>1,2,*,β‘</sup>
  <b>·</b>  
<a href="https://yuexy.github.io/" target="_blank">Xiaoyu Yue</a><sup>2,3</sup>
  <b>·</b>  
<a href="https://xyue.io" target="_blank">Xiangyu Yue</a><sup>1</sup>
  <b>·</b>  
<a href="https://yg256li.github.io" target="_blank">Yangguang Li</a><sup>1,β </sup>
  <b>·</b>  
<a href="https://wlouyang.github.io" target="_blank">Wanli Ouyang</a><sup>1,2</sup>
  <b>·</b>  
<a href="http://leibai.site" target="_blank">Lei Bai</a><sup>2,β </sup>
<sup>1</sup> MMLab CUHK   <sup>2</sup>Shanghai AI Lab   <sup>3</sup>USYD <br>
<sup>*</sup>Equal Contribution   <sup>β‘</sup>Project Lead   <sup>β </sup>Corresponding Authors   <br>
</div>
<h3 align="center">
<!-- [<a href="https://wzdthu.github.io/NiT">project page</a>]  -->
[<a href="https://arxiv.org/abs/2509.04394">arXiv</a>] 
[<a href="https://huggingface.co/GoodEnough/TiM-T2I">Model</a>] 
[<a href="https://huggingface.co/datasets/GoodEnough/TiM-Toy-T2I-Dataset">Dataset</a>] 
</h3>
<br>
<b>Highlights</b>: We propose Transition Models (TiM), a novel generative model that learns to navigate the entire generative trajectory with unprecedented flexibility.
* Our Transition Models (TiM) are trained to master arbitrary state-to-state transitions. This approach allows TiM to learn the entire solution manifold of the generative process, unifying the few-step and many-step regimes within a single, powerful model.

* Despite having only 865M parameters, TiM achieves state-of-the-art performance, surpassing leading models such as SD3.5 (8B parameters) and FLUX.1 (12B parameters) across all evaluated step counts on GenEval benchmark. Importantly, unlike previous few-step generators, TiM demonstrates monotonic quality improvement as the sampling budget increases.

* Additionally, when employing our native-resolution strategy, TiM delivers exceptional fidelity at resolutions up to $4096\times4096$.

## π¨ News
- `2025-9-5` We are delighted to introduce TiM, which is the first text-to-image generator support any-step generation, entirely trained from scratch. We have released the codes and pretrained models of TiM.
## 1. Setup
First, clone the repo:
```bash
git clone https://github.com/WZDTHU/TiM.git && cd TiM
```
### 1.1 Environment Setup
```bash
conda create -n tim_env python=3.10
pip install torch==2.5.1 torchvision==0.20.1 --index-url https://download.pytorch.org/whl/cu118
pip install flash-attn
pip install -r requirements.txt
pip install -e .
```
### 1.2 Model Zoo (WIP)
#### Text-to-Image Generation
A single TiM model can perform any-step generation (one-step, few-step, and multi-step) and demonstrate monotonic quality improvement as the sampling budget increases.
| Model | Model Zoo | Model Size | VAE | 1-NFE GenEval | 8-NFE GenEval | 128-NFE GenEval |
|---------------|------------|---------|------------|-------|-------|-------|
| TiM-T2I | [π€ HF](https://huggingface.co/GoodEnough/TiM-T2I/blob/main/t2i_model.bin) | 865M | [DC-AE](https://huggingface.co/mit-han-lab/dc-ae-f32c32-sana-1.1-diffusers) | 0.67 | 0.76 | 0.83 |
```bash
mkdir checkpoints
wget -c "https://huggingface.co/GoodEnough/TiM-T2I/resolve/main/t2i_model.bin" -O checkpoints/t2i_model.bin
```
#### Class-guided Image Generation:
| Model | Model Zoo | Model Size | VAE | 2-NFE FID | 500-NFE FID |
|---------------|------------|---------|------------|------------|------------|
| TiM-C2I-256 | [π€ HF](https://huggingface.co/GoodEnough/TiM-C2I/blob/main/c2i_model_256.safetensors) | 664M | [SD-VAE](https://huggingface.co/stabilityai/sd-vae-ft-ema) | 6.14 | 1.65
| TiM-C2I-512 | [π€ HF](https://huggingface.co/GoodEnough/TiM-C2I/blob/main/c2i_model_512.safetensors) | 664M | [DC-AE](https://huggingface.co/mit-han-lab/dc-ae-f32c32-sana-1.1-diffusers) | 4.79 | 1.69
```bash
mkdir checkpoints
wget -c "https://huggingface.co/GoodEnough/TiM-C2I/resolve/main/c2i_model_256.safetensors" -O checkpoints/c2i_model_256.safetensors
wget -c "https://huggingface.co/GoodEnough/TiM-C2I/resolve/main/c2i_model_512.safetensors" -O checkpoints/c2i_model_512.safetensors
```
## 2. Sampling
#### Text-to-Image Generation
We provide the sampling scripts on three benchmarks: GenEval, DPGBench, and MJHQ30K. You can specify the sampling steps, resolutions, and CFG scale in the corresponding scripts.
Sampling with TiM-T2I model on GenEval benchmark:
```bash
bash scripts/sample/t2i/sample_t2i_geneval.sh
```
Sampling with TiM-T2I model on DPGBench benchmark:
```bash
bash scripts/sample/t2i/sample_t2i_dpgbench.sh
```
Sampling with TiM-T2I model on MJHQ30k benchmark:
```bash
bash scripts/sample/t2i/sample_t2i_mjhq30k.sh
```
#### Class-guided Image Generation
We provide the sampling scripts for ImageNet-256 and ImageNet-512.
Sampling with C2I model on $256\times256$ resolution:
```bash
bash scripts/sample/c2i/sample_256x256.sh
```
Sampling with C2I model on $512\times512$ resolution:
```bash
bash scripts/sample/c2i/sample_512x512.sh
```
## 3. Evaluation
### Text-to-Image Generation
#### GenEval
Please follow the [GenEval](https://github.com/djghosh13/geneval) to setup the conda-environment.
Given the directory of the generated images `SAMPLING_DIR` and folder of object dector `OBJECT_DETECTOR_FOLDER`, run the following codes:
```bash
python projects/evaluate/geneval/evaluation/evaluate_images.py $SAMPLING_DIR --outfile geneval_results.jsonl --model-path $OBJECT_DETECTOR_FOLDER
```
This will result in a JSONL file with each line corresponding to an image. Run the following codes to obtain the GenEval Score:
```bash
python projects/evaluate/geneval/evaluation/summary_scores.py geneval_results.jsonl
```
#### DPGBench
Please follow the [DPGBench](https://github.com/TencentQQGYLab/ELLA) to setup the conda-environment.
Given the directory of the generated images `SAMPLING_DIR` , run the following codes:
```bash
python projects/evaluate/dpg_bench/compute_dpg_bench.py --image-root-path $SAMPLING_DIR --res-path dpgbench_results.txt --pic-num 4
```
#### MJHQ30K
Please download [MJHQ30K](https://huggingface.co/datasets/playgroundai/MJHQ-30K) as the reference-image.
Given the directory of the reference-image direcotry `REFERENCE_DIR` and the directory of the generated images `SAMPLING_DIR`, run the following codes to calculate the FID Score:
```bash
python projects/evaluate/mjhq30k/calculate_fid.py $REFERENCE_DIR $SAMPLING_DIR
```
For CLIP Score, first compute the text features and save it in `MJHQ30K_TEXT_FEAT`:
```bash
python projects/evaluate/mjhq30k/calculate_clip.py projects/evaluate/mjhq30k/meta_data.json $MJHQ30K_TEXT_FEAT/clip_feat.safetensors --save-stats
```
Then run the following codes to calculate the CLIP Score:
```bash
python projects/evaluate/mjhq30k/calculate_clip.py $MJHQ30K_TEXT_FEAT/clip_feat.safetensors $SAMPLING_DIR
```
### Class-guided Image Generation
The sampling generates a folder of samples to compute FID, Inception Score and other metrics.
<b>Note that we do not pack the generate samples as a `.npz` file, this does not affect the calculation of FID and other metrics.</b>
Please follow the [ADM's TensorFlow
evaluation suite](https://github.com/openai/guided-diffusion/tree/main/evaluations)
to setup the conda-environment and download the reference batch.
```bash
wget -c "https://openaipublic.blob.core.windows.net/diffusion/jul-2021/ref_batches/classify_image_graph_def.pb" -O checkpoints/classify_image_graph_def.pb
```
Given the directory of the reference batch `REFERENCE_DIR` and the directory of the generated images `SAMPLING_DIR`, run the following codes:
```bash
python projects/evaluate/adm_evaluator.py $REFERENCE_DIR $SAMPLING_DIR
```
## 4. Training
### 4.1 Dataset Setup
Currently, we provide all the [preprocessed dataset](https://huggingface.co/datasets/GoodEnough/NiT-Preprocessed-ImageNet1K) for ImageNet1K. Please use the following commands to download the preprocessed latents.
```bash
bash tools/download_imagenet_256x256.sh
bash tools/download_imagenet_512x512.sh
```
For text-to-image generation, we provide a [toy dataset](https://huggingface.co/datasets/GoodEnough/TiM-Toy-T2I-Dataset). Please use the following command to download this dataset.
```bash
bash tools/download_toy_t2i_dataset.sh
```
### 4.2 Download Image Encoder
We use RADIO-v2.5-b as our image encoder for REPA-loss.
```bash
wget -c "https://huggingface.co/nvidia/RADIO/resolve/main/radio-v2.5-b_half.pth.tar" -O checkpoints/radio-v2.5-b_half.pth.tar
```
### 4.3 Training Scripts
Specify the `image_dir` in `configs/c2i/tim_b_p4.yaml` and train the base-model (131M) on ImageNet-256:
```bash
bash scripts/train/c2i/train_tim_c2i_b.sh
```
Specify the `image_dir` in `configs/c2i/tim_xl_p2_256.yaml` and train the XL-model (664M) on ImageNet-256:
```bash
bash scripts/train/c2i/train_tim_c2i_xl_256.sh
```
Specify the `image_dir` in `configs/c2i/tim_xl_p2_512.yaml` and train the XL-model (664M) on ImageNet-512:
```bash
bash scripts/train/c2i/train_tim_c2i_xl_512.sh
```
Specify the `root_dir` in `configs/t2i/tim_xl_p1_t2i.yaml` and train the T2I-model (865M) on Toy-T2I-Dataset:
```bash
bash scripts/train/t2i/train_tim_t2i.sh
```
## Citations
If you find the project useful, please kindly cite:
```bibtex
@article{wang2025transition,
title={Transition Models: Rethinking the Generative Learning Objective},
author={Wang, Zidong and Zhang, Yiyuan and Yue, Xiaoyu and Yue, Xiangyu and Li, Yangguang and Ouyang, Wanli and Bai, Lei},
year={2025},
eprint={2509.04394},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
https://arxiv.org/abs/
## License
This project is licensed under the Apache-2.0 license.
|