Julien Blanchon
commited on
Commit
·
d0e893e
0
Parent(s):
Clean Space repo (code only, checkpoints in model repo)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +39 -0
- .gitignore +183 -0
- .python-version +1 -0
- README.md +280 -0
- app.py +343 -0
- configs/c2i/tim_b_p4.yaml +78 -0
- configs/c2i/tim_xl_p1_512.yaml +85 -0
- configs/c2i/tim_xl_p1_512_mg.yaml +85 -0
- configs/c2i/tim_xl_p2_256.yaml +85 -0
- configs/c2i/tim_xl_p2_256_mg.yaml +85 -0
- configs/t2i/tim_xl_p1_t2i.yaml +81 -0
- pyproject.toml +31 -0
- requirements.txt +15 -0
- setup.py +12 -0
- tim/data/c2i_data.py +150 -0
- tim/data/sampler_utils.py +52 -0
- tim/data/t2i_data.py +126 -0
- tim/models/c2i/tim_model.py +406 -0
- tim/models/nvidia_radio/hubconf.py +192 -0
- tim/models/nvidia_radio/radio/__init__.py +17 -0
- tim/models/nvidia_radio/radio/adaptor_base.py +37 -0
- tim/models/nvidia_radio/radio/adaptor_generic.py +69 -0
- tim/models/nvidia_radio/radio/adaptor_mlp.py +174 -0
- tim/models/nvidia_radio/radio/adaptor_registry.py +37 -0
- tim/models/nvidia_radio/radio/block.py +54 -0
- tim/models/nvidia_radio/radio/cls_token.py +59 -0
- tim/models/nvidia_radio/radio/common.py +108 -0
- tim/models/nvidia_radio/radio/conv.py +65 -0
- tim/models/nvidia_radio/radio/dinov2_arch.py +1016 -0
- tim/models/nvidia_radio/radio/dual_hybrid_vit.py +213 -0
- tim/models/nvidia_radio/radio/enable_cpe_support.py +224 -0
- tim/models/nvidia_radio/radio/enable_damp.py +42 -0
- tim/models/nvidia_radio/radio/enable_spectral_reparam.py +277 -0
- tim/models/nvidia_radio/radio/eradio_model.py +1392 -0
- tim/models/nvidia_radio/radio/extra_models.py +206 -0
- tim/models/nvidia_radio/radio/extra_timm_models.py +206 -0
- tim/models/nvidia_radio/radio/feature_normalizer.py +111 -0
- tim/models/nvidia_radio/radio/forward_intermediates.py +138 -0
- tim/models/nvidia_radio/radio/hf_model.py +202 -0
- tim/models/nvidia_radio/radio/input_conditioner.py +49 -0
- tim/models/nvidia_radio/radio/open_clip_adaptor.py +41 -0
- tim/models/nvidia_radio/radio/radio_model.py +375 -0
- tim/models/nvidia_radio/radio/vision_transformer_xpos.py +357 -0
- tim/models/nvidia_radio/radio/vit_patch_generator.py +287 -0
- tim/models/nvidia_radio/radio/vitdet.py +188 -0
- tim/models/t2i/tim_model.py +493 -0
- tim/models/utils/funcs.py +53 -0
- tim/models/utils/norms.py +403 -0
- tim/models/utils/rope.py +305 -0
- tim/models/utils/text_encoders.py +63 -0
.gitattributes
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
checkpoints/** filter=lfs diff=lfs merge=lfs -text
|
37 |
+
checkpoints/c2i_model_256.safetensors filter=lfs diff=lfs merge=lfs -text
|
38 |
+
checkpoints/c2i_model_512.safetensors filter=lfs diff=lfs merge=lfs -text
|
39 |
+
checkpoints/t2i_model.bin filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# UV
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
#uv.lock
|
102 |
+
|
103 |
+
# poetry
|
104 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
105 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
106 |
+
# commonly ignored for libraries.
|
107 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
108 |
+
#poetry.lock
|
109 |
+
|
110 |
+
# pdm
|
111 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
112 |
+
#pdm.lock
|
113 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
114 |
+
# in version control.
|
115 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
116 |
+
.pdm.toml
|
117 |
+
.pdm-python
|
118 |
+
.pdm-build/
|
119 |
+
|
120 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
121 |
+
__pypackages__/
|
122 |
+
|
123 |
+
# Celery stuff
|
124 |
+
celerybeat-schedule
|
125 |
+
celerybeat.pid
|
126 |
+
|
127 |
+
# SageMath parsed files
|
128 |
+
*.sage.py
|
129 |
+
|
130 |
+
# Environments
|
131 |
+
.env
|
132 |
+
.venv
|
133 |
+
env/
|
134 |
+
venv/
|
135 |
+
ENV/
|
136 |
+
env.bak/
|
137 |
+
venv.bak/
|
138 |
+
|
139 |
+
# Spyder project settings
|
140 |
+
.spyderproject
|
141 |
+
.spyproject
|
142 |
+
|
143 |
+
# Rope project settings
|
144 |
+
.ropeproject
|
145 |
+
|
146 |
+
# mkdocs documentation
|
147 |
+
/site
|
148 |
+
|
149 |
+
# mypy
|
150 |
+
.mypy_cache/
|
151 |
+
.dmypy.json
|
152 |
+
dmypy.json
|
153 |
+
|
154 |
+
# Pyre type checker
|
155 |
+
.pyre/
|
156 |
+
|
157 |
+
# pytype static type analyzer
|
158 |
+
.pytype/
|
159 |
+
|
160 |
+
# Cython debug symbols
|
161 |
+
cython_debug/
|
162 |
+
|
163 |
+
# PyCharm
|
164 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
165 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
166 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
167 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
168 |
+
#.idea/
|
169 |
+
|
170 |
+
# Ruff stuff:
|
171 |
+
.ruff_cache/
|
172 |
+
|
173 |
+
# PyPI configuration file
|
174 |
+
.pypirc
|
175 |
+
|
176 |
+
|
177 |
+
*.json
|
178 |
+
*.svg
|
179 |
+
/workdir
|
180 |
+
/datasets
|
181 |
+
/wandb
|
182 |
+
|
183 |
+
samples/
|
.python-version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
3.10
|
README.md
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: TiM
|
3 |
+
emoji: 🏆
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: red
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.44.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
<h1 align="center">Transition Models: Rethinking the Generative Learning Objective</h1>
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
<div align="center">
|
17 |
+
<a href="https://github.com/WZDTHU" target="_blank">ZiDong Wang</a><sup>1,2,*</sup>
|
18 |
+
  <b>·</b>  
|
19 |
+
<a href="https://invictus717.github.io" target="_blank">Yiyuan Zhang</a><sup>1,2,*,‡</sup>
|
20 |
+
  <b>·</b>  
|
21 |
+
<a href="https://yuexy.github.io/" target="_blank">Xiaoyu Yue</a><sup>2,3</sup>
|
22 |
+
  <b>·</b>  
|
23 |
+
<a href="https://xyue.io" target="_blank">Xiangyu Yue</a><sup>1</sup>
|
24 |
+
  <b>·</b>  
|
25 |
+
<a href="https://yg256li.github.io" target="_blank">Yangguang Li</a><sup>1,†</sup>
|
26 |
+
  <b>·</b>  
|
27 |
+
<a href="https://wlouyang.github.io" target="_blank">Wanli Ouyang</a><sup>1,2</sup>
|
28 |
+
  <b>·</b>  
|
29 |
+
<a href="http://leibai.site" target="_blank">Lei Bai</a><sup>2,†</sup>
|
30 |
+
|
31 |
+
<sup>1</sup> MMLab CUHK   <sup>2</sup>Shanghai AI Lab   <sup>3</sup>USYD <br>
|
32 |
+
<sup>*</sup>Equal Contribution   <sup>‡</sup>Project Lead   <sup>†</sup>Corresponding Authors   <br>
|
33 |
+
</div>
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
<h3 align="center">
|
38 |
+
<!-- [<a href="https://wzdthu.github.io/NiT">project page</a>]  -->
|
39 |
+
[<a href="https://arxiv.org/abs/2509.04394">arXiv</a>] 
|
40 |
+
[<a href="https://huggingface.co/GoodEnough/TiM-T2I">Model</a>] 
|
41 |
+
[<a href="https://huggingface.co/datasets/GoodEnough/TiM-Toy-T2I-Dataset">Dataset</a>] 
|
42 |
+
</h3>
|
43 |
+
<br>
|
44 |
+
|
45 |
+
<b>Highlights</b>: We propose Transition Models (TiM), a novel generative model that learns to navigate the entire generative trajectory with unprecedented flexibility.
|
46 |
+
* Our Transition Models (TiM) are trained to master arbitrary state-to-state transitions. This approach allows TiM to learn the entire solution manifold of the generative process, unifying the few-step and many-step regimes within a single, powerful model.
|
47 |
+

|
48 |
+
* Despite having only 865M parameters, TiM achieves state-of-the-art performance, surpassing leading models such as SD3.5 (8B parameters) and FLUX.1 (12B parameters) across all evaluated step counts on GenEval benchmark. Importantly, unlike previous few-step generators, TiM demonstrates monotonic quality improvement as the sampling budget increases.
|
49 |
+

|
50 |
+
* Additionally, when employing our native-resolution strategy, TiM delivers exceptional fidelity at resolutions up to $4096\times4096$.
|
51 |
+

|
52 |
+
|
53 |
+
|
54 |
+
## 🚨 News
|
55 |
+
|
56 |
+
- `2025-9-5` We are delighted to introduce TiM, which is the first text-to-image generator support any-step generation, entirely trained from scratch. We have released the codes and pretrained models of TiM.
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
## 1. Setup
|
61 |
+
|
62 |
+
First, clone the repo:
|
63 |
+
```bash
|
64 |
+
git clone https://github.com/WZDTHU/TiM.git && cd TiM
|
65 |
+
```
|
66 |
+
|
67 |
+
### 1.1 Environment Setup
|
68 |
+
|
69 |
+
```bash
|
70 |
+
conda create -n tim_env python=3.10
|
71 |
+
pip install torch==2.5.1 torchvision==0.20.1 --index-url https://download.pytorch.org/whl/cu118
|
72 |
+
pip install flash-attn
|
73 |
+
pip install -r requirements.txt
|
74 |
+
pip install -e .
|
75 |
+
```
|
76 |
+
|
77 |
+
|
78 |
+
### 1.2 Model Zoo (WIP)
|
79 |
+
|
80 |
+
|
81 |
+
#### Text-to-Image Generation
|
82 |
+
|
83 |
+
A single TiM model can perform any-step generation (one-step, few-step, and multi-step) and demonstrate monotonic quality improvement as the sampling budget increases.
|
84 |
+
| Model | Model Zoo | Model Size | VAE | 1-NFE GenEval | 8-NFE GenEval | 128-NFE GenEval |
|
85 |
+
|---------------|------------|---------|------------|-------|-------|-------|
|
86 |
+
| TiM-T2I | [🤗 HF](https://huggingface.co/GoodEnough/TiM-T2I/blob/main/t2i_model.bin) | 865M | [DC-AE](https://huggingface.co/mit-han-lab/dc-ae-f32c32-sana-1.1-diffusers) | 0.67 | 0.76 | 0.83 |
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
```bash
|
91 |
+
mkdir checkpoints
|
92 |
+
wget -c "https://huggingface.co/GoodEnough/TiM-T2I/resolve/main/t2i_model.bin" -O checkpoints/t2i_model.bin
|
93 |
+
```
|
94 |
+
|
95 |
+
|
96 |
+
#### Class-guided Image Generation:
|
97 |
+
|
98 |
+
| Model | Model Zoo | Model Size | VAE | 2-NFE FID | 500-NFE FID |
|
99 |
+
|---------------|------------|---------|------------|------------|------------|
|
100 |
+
| TiM-C2I-256 | [🤗 HF](https://huggingface.co/GoodEnough/TiM-C2I/blob/main/c2i_model_256.safetensors) | 664M | [SD-VAE](https://huggingface.co/stabilityai/sd-vae-ft-ema) | 6.14 | 1.65
|
101 |
+
| TiM-C2I-512 | [🤗 HF](https://huggingface.co/GoodEnough/TiM-C2I/blob/main/c2i_model_512.safetensors) | 664M | [DC-AE](https://huggingface.co/mit-han-lab/dc-ae-f32c32-sana-1.1-diffusers) | 4.79 | 1.69
|
102 |
+
|
103 |
+
|
104 |
+
```bash
|
105 |
+
mkdir checkpoints
|
106 |
+
wget -c "https://huggingface.co/GoodEnough/TiM-C2I/resolve/main/c2i_model_256.safetensors" -O checkpoints/c2i_model_256.safetensors
|
107 |
+
wget -c "https://huggingface.co/GoodEnough/TiM-C2I/resolve/main/c2i_model_512.safetensors" -O checkpoints/c2i_model_512.safetensors
|
108 |
+
```
|
109 |
+
|
110 |
+
|
111 |
+
## 2. Sampling
|
112 |
+
|
113 |
+
#### Text-to-Image Generation
|
114 |
+
|
115 |
+
We provide the sampling scripts on three benchmarks: GenEval, DPGBench, and MJHQ30K. You can specify the sampling steps, resolutions, and CFG scale in the corresponding scripts.
|
116 |
+
|
117 |
+
Sampling with TiM-T2I model on GenEval benchmark:
|
118 |
+
```bash
|
119 |
+
bash scripts/sample/t2i/sample_t2i_geneval.sh
|
120 |
+
```
|
121 |
+
|
122 |
+
Sampling with TiM-T2I model on DPGBench benchmark:
|
123 |
+
```bash
|
124 |
+
bash scripts/sample/t2i/sample_t2i_dpgbench.sh
|
125 |
+
```
|
126 |
+
|
127 |
+
Sampling with TiM-T2I model on MJHQ30k benchmark:
|
128 |
+
```bash
|
129 |
+
bash scripts/sample/t2i/sample_t2i_mjhq30k.sh
|
130 |
+
```
|
131 |
+
|
132 |
+
#### Class-guided Image Generation
|
133 |
+
|
134 |
+
We provide the sampling scripts for ImageNet-256 and ImageNet-512.
|
135 |
+
|
136 |
+
Sampling with C2I model on $256\times256$ resolution:
|
137 |
+
```bash
|
138 |
+
bash scripts/sample/c2i/sample_256x256.sh
|
139 |
+
```
|
140 |
+
|
141 |
+
Sampling with C2I model on $512\times512$ resolution:
|
142 |
+
```bash
|
143 |
+
bash scripts/sample/c2i/sample_512x512.sh
|
144 |
+
```
|
145 |
+
|
146 |
+
|
147 |
+
## 3. Evaluation
|
148 |
+
|
149 |
+
|
150 |
+
### Text-to-Image Generation
|
151 |
+
|
152 |
+
#### GenEval
|
153 |
+
|
154 |
+
Please follow the [GenEval](https://github.com/djghosh13/geneval) to setup the conda-environment.
|
155 |
+
|
156 |
+
Given the directory of the generated images `SAMPLING_DIR` and folder of object dector `OBJECT_DETECTOR_FOLDER`, run the following codes:
|
157 |
+
```bash
|
158 |
+
python projects/evaluate/geneval/evaluation/evaluate_images.py $SAMPLING_DIR --outfile geneval_results.jsonl --model-path $OBJECT_DETECTOR_FOLDER
|
159 |
+
```
|
160 |
+
This will result in a JSONL file with each line corresponding to an image. Run the following codes to obtain the GenEval Score:
|
161 |
+
```bash
|
162 |
+
python projects/evaluate/geneval/evaluation/summary_scores.py geneval_results.jsonl
|
163 |
+
```
|
164 |
+
|
165 |
+
|
166 |
+
#### DPGBench
|
167 |
+
Please follow the [DPGBench](https://github.com/TencentQQGYLab/ELLA) to setup the conda-environment.
|
168 |
+
Given the directory of the generated images `SAMPLING_DIR` , run the following codes:
|
169 |
+
```bash
|
170 |
+
python projects/evaluate/dpg_bench/compute_dpg_bench.py --image-root-path $SAMPLING_DIR --res-path dpgbench_results.txt --pic-num 4
|
171 |
+
```
|
172 |
+
|
173 |
+
#### MJHQ30K
|
174 |
+
Please download [MJHQ30K](https://huggingface.co/datasets/playgroundai/MJHQ-30K) as the reference-image.
|
175 |
+
|
176 |
+
|
177 |
+
Given the directory of the reference-image direcotry `REFERENCE_DIR` and the directory of the generated images `SAMPLING_DIR`, run the following codes to calculate the FID Score:
|
178 |
+
```bash
|
179 |
+
python projects/evaluate/mjhq30k/calculate_fid.py $REFERENCE_DIR $SAMPLING_DIR
|
180 |
+
```
|
181 |
+
|
182 |
+
For CLIP Score, first compute the text features and save it in `MJHQ30K_TEXT_FEAT`:
|
183 |
+
```bash
|
184 |
+
python projects/evaluate/mjhq30k/calculate_clip.py projects/evaluate/mjhq30k/meta_data.json $MJHQ30K_TEXT_FEAT/clip_feat.safetensors --save-stats
|
185 |
+
```
|
186 |
+
Then run the following codes to calculate the CLIP Score:
|
187 |
+
```bash
|
188 |
+
python projects/evaluate/mjhq30k/calculate_clip.py $MJHQ30K_TEXT_FEAT/clip_feat.safetensors $SAMPLING_DIR
|
189 |
+
```
|
190 |
+
|
191 |
+
|
192 |
+
|
193 |
+
### Class-guided Image Generation
|
194 |
+
|
195 |
+
The sampling generates a folder of samples to compute FID, Inception Score and other metrics.
|
196 |
+
<b>Note that we do not pack the generate samples as a `.npz` file, this does not affect the calculation of FID and other metrics.</b>
|
197 |
+
Please follow the [ADM's TensorFlow
|
198 |
+
evaluation suite](https://github.com/openai/guided-diffusion/tree/main/evaluations)
|
199 |
+
to setup the conda-environment and download the reference batch.
|
200 |
+
|
201 |
+
```bash
|
202 |
+
wget -c "https://openaipublic.blob.core.windows.net/diffusion/jul-2021/ref_batches/classify_image_graph_def.pb" -O checkpoints/classify_image_graph_def.pb
|
203 |
+
```
|
204 |
+
|
205 |
+
|
206 |
+
Given the directory of the reference batch `REFERENCE_DIR` and the directory of the generated images `SAMPLING_DIR`, run the following codes:
|
207 |
+
```bash
|
208 |
+
python projects/evaluate/adm_evaluator.py $REFERENCE_DIR $SAMPLING_DIR
|
209 |
+
```
|
210 |
+
|
211 |
+
|
212 |
+
|
213 |
+
|
214 |
+
|
215 |
+
## 4. Training
|
216 |
+
|
217 |
+
### 4.1 Dataset Setup
|
218 |
+
|
219 |
+
Currently, we provide all the [preprocessed dataset](https://huggingface.co/datasets/GoodEnough/NiT-Preprocessed-ImageNet1K) for ImageNet1K. Please use the following commands to download the preprocessed latents.
|
220 |
+
|
221 |
+
```bash
|
222 |
+
bash tools/download_imagenet_256x256.sh
|
223 |
+
bash tools/download_imagenet_512x512.sh
|
224 |
+
```
|
225 |
+
|
226 |
+
For text-to-image generation, we provide a [toy dataset](https://huggingface.co/datasets/GoodEnough/TiM-Toy-T2I-Dataset). Please use the following command to download this dataset.
|
227 |
+
```bash
|
228 |
+
bash tools/download_toy_t2i_dataset.sh
|
229 |
+
```
|
230 |
+
|
231 |
+
|
232 |
+
### 4.2 Download Image Encoder
|
233 |
+
|
234 |
+
We use RADIO-v2.5-b as our image encoder for REPA-loss.
|
235 |
+
|
236 |
+
```bash
|
237 |
+
wget -c "https://huggingface.co/nvidia/RADIO/resolve/main/radio-v2.5-b_half.pth.tar" -O checkpoints/radio-v2.5-b_half.pth.tar
|
238 |
+
```
|
239 |
+
|
240 |
+
|
241 |
+
### 4.3 Training Scripts
|
242 |
+
|
243 |
+
Specify the `image_dir` in `configs/c2i/tim_b_p4.yaml` and train the base-model (131M) on ImageNet-256:
|
244 |
+
```bash
|
245 |
+
bash scripts/train/c2i/train_tim_c2i_b.sh
|
246 |
+
```
|
247 |
+
|
248 |
+
Specify the `image_dir` in `configs/c2i/tim_xl_p2_256.yaml` and train the XL-model (664M) on ImageNet-256:
|
249 |
+
```bash
|
250 |
+
bash scripts/train/c2i/train_tim_c2i_xl_256.sh
|
251 |
+
```
|
252 |
+
|
253 |
+
Specify the `image_dir` in `configs/c2i/tim_xl_p2_512.yaml` and train the XL-model (664M) on ImageNet-512:
|
254 |
+
```bash
|
255 |
+
bash scripts/train/c2i/train_tim_c2i_xl_512.sh
|
256 |
+
```
|
257 |
+
|
258 |
+
Specify the `root_dir` in `configs/t2i/tim_xl_p1_t2i.yaml` and train the T2I-model (865M) on Toy-T2I-Dataset:
|
259 |
+
```bash
|
260 |
+
bash scripts/train/t2i/train_tim_t2i.sh
|
261 |
+
```
|
262 |
+
|
263 |
+
|
264 |
+
|
265 |
+
|
266 |
+
## Citations
|
267 |
+
If you find the project useful, please kindly cite:
|
268 |
+
```bibtex
|
269 |
+
@article{wang2025transition,
|
270 |
+
title={Transition Models: Rethinking the Generative Learning Objective},
|
271 |
+
author={Wang, Zidong and Zhang, Yiyuan and Yue, Xiaoyu and Yue, Xiangyu and Li, Yangguang and Ouyang, Wanli and Bai, Lei},
|
272 |
+
year={2025},
|
273 |
+
eprint={2509.04394},
|
274 |
+
archivePrefix={arXiv},
|
275 |
+
primaryClass={cs.LG}
|
276 |
+
}
|
277 |
+
```
|
278 |
+
https://arxiv.org/abs/
|
279 |
+
## License
|
280 |
+
This project is licensed under the Apache-2.0 license.
|
app.py
ADDED
@@ -0,0 +1,343 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces # type: ignore - ZeroGPU spaces library
|
3 |
+
import numpy as np
|
4 |
+
import random
|
5 |
+
import torch
|
6 |
+
import functools
|
7 |
+
from pathlib import Path
|
8 |
+
from PIL import Image
|
9 |
+
from omegaconf import OmegaConf # type: ignore - YAML configuration library
|
10 |
+
from tim.schedulers.transition import TransitionSchedule
|
11 |
+
from tim.utils.misc_utils import instantiate_from_config, init_from_ckpt
|
12 |
+
from tim.models.vae import get_sd_vae, get_dc_ae, sd_vae_decode, dc_ae_decode
|
13 |
+
from tim.models.utils.text_encoders import load_text_encoder, encode_prompt
|
14 |
+
|
15 |
+
# Configuration
|
16 |
+
dtype = torch.bfloat16
|
17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
+
MAX_SEED = np.iinfo(np.int32).max
|
19 |
+
MAX_IMAGE_SIZE = 2048
|
20 |
+
|
21 |
+
# Global variables to store loaded components
|
22 |
+
model = None
|
23 |
+
scheduler = None
|
24 |
+
text_encoder = None
|
25 |
+
tokenizer = None
|
26 |
+
decode_func = None
|
27 |
+
null_cap_feat = None
|
28 |
+
null_cap_mask = None
|
29 |
+
config = None
|
30 |
+
|
31 |
+
|
32 |
+
def load_model_components(device: str = "cuda"):
|
33 |
+
"""Load all model components once at startup"""
|
34 |
+
global \
|
35 |
+
model, \
|
36 |
+
scheduler, \
|
37 |
+
text_encoder, \
|
38 |
+
tokenizer, \
|
39 |
+
decode_func, \
|
40 |
+
null_cap_feat, \
|
41 |
+
null_cap_mask, \
|
42 |
+
config
|
43 |
+
|
44 |
+
try:
|
45 |
+
# Load configuration
|
46 |
+
config_path = "configs/t2i/tim_xl_p1_t2i.yaml"
|
47 |
+
ckpt_path = "checkpoints/t2i_model.bin"
|
48 |
+
|
49 |
+
if not Path(config_path).exists():
|
50 |
+
raise FileNotFoundError(f"Config file not found: {config_path}")
|
51 |
+
if not Path(ckpt_path).exists():
|
52 |
+
raise FileNotFoundError(f"Checkpoint file not found: {ckpt_path}")
|
53 |
+
|
54 |
+
print("Loading configuration...")
|
55 |
+
config = OmegaConf.load(config_path)
|
56 |
+
model_config = config.model
|
57 |
+
|
58 |
+
print("Loading VAE...")
|
59 |
+
# Load VAE
|
60 |
+
if "dc-ae" in model_config.vae_dir:
|
61 |
+
dc_ae = get_dc_ae(model_config.vae_dir, dtype=torch.float32, device=device)
|
62 |
+
dc_ae.enable_tiling(2560, 2560, 2560, 2560)
|
63 |
+
decode_func = functools.partial(dc_ae_decode, dc_ae, slice_vae=True)
|
64 |
+
elif "sd-vae" in model_config.vae_dir:
|
65 |
+
sd_vae = get_sd_vae(
|
66 |
+
model_config.vae_dir, dtype=torch.float32, device=device
|
67 |
+
)
|
68 |
+
decode_func = functools.partial(sd_vae_decode, sd_vae, slice_vae=True)
|
69 |
+
else:
|
70 |
+
raise ValueError("Unsupported VAE type")
|
71 |
+
|
72 |
+
print("Loading text encoder...")
|
73 |
+
# Load text encoder
|
74 |
+
text_encoder, tokenizer = load_text_encoder(
|
75 |
+
text_encoder_dir=model_config.text_encoder_dir,
|
76 |
+
device=device,
|
77 |
+
weight_dtype=torch.bfloat16,
|
78 |
+
)
|
79 |
+
|
80 |
+
print("Encoding null caption...")
|
81 |
+
# Get null caption features
|
82 |
+
null_cap_feat, null_cap_mask = encode_prompt(
|
83 |
+
tokenizer,
|
84 |
+
text_encoder,
|
85 |
+
device,
|
86 |
+
torch.bfloat16,
|
87 |
+
[""],
|
88 |
+
model_config.use_last_hidden_state,
|
89 |
+
max_seq_length=model_config.max_seq_length,
|
90 |
+
)
|
91 |
+
|
92 |
+
print("Loading main model...")
|
93 |
+
# Load main model
|
94 |
+
model = instantiate_from_config(model_config.network).to(
|
95 |
+
device=device, dtype=dtype
|
96 |
+
)
|
97 |
+
init_from_ckpt(model, checkpoint_dir=ckpt_path, ignore_keys=None, verbose=True)
|
98 |
+
model.eval()
|
99 |
+
|
100 |
+
print("Loading scheduler...")
|
101 |
+
# Load scheduler
|
102 |
+
transport = instantiate_from_config(model_config.transport)
|
103 |
+
scheduler = TransitionSchedule(
|
104 |
+
transport=transport, **OmegaConf.to_container(model_config.transition_loss)
|
105 |
+
)
|
106 |
+
|
107 |
+
print("All components loaded successfully!")
|
108 |
+
|
109 |
+
except Exception as e:
|
110 |
+
print(f"Error loading model components: {e}")
|
111 |
+
raise e
|
112 |
+
|
113 |
+
|
114 |
+
@spaces.GPU(duration=60)
|
115 |
+
def generate_image(
|
116 |
+
prompt,
|
117 |
+
seed=42,
|
118 |
+
randomize_seed=False,
|
119 |
+
width=1024,
|
120 |
+
height=1024,
|
121 |
+
guidance_scale=2.5,
|
122 |
+
num_inference_steps=16,
|
123 |
+
progress=gr.Progress(track_tqdm=True),
|
124 |
+
):
|
125 |
+
"""Generate image from text prompt"""
|
126 |
+
try:
|
127 |
+
# Validate inputs
|
128 |
+
if not prompt or len(prompt.strip()) == 0:
|
129 |
+
raise ValueError("Please enter a valid prompt")
|
130 |
+
|
131 |
+
if model is None or scheduler is None:
|
132 |
+
raise RuntimeError("Model components not loaded. Please check the setup.")
|
133 |
+
|
134 |
+
# Validate dimensions
|
135 |
+
if (
|
136 |
+
width < 256
|
137 |
+
or width > MAX_IMAGE_SIZE
|
138 |
+
or height < 256
|
139 |
+
or height > MAX_IMAGE_SIZE
|
140 |
+
):
|
141 |
+
raise ValueError(
|
142 |
+
f"Image dimensions must be between 256 and {MAX_IMAGE_SIZE}"
|
143 |
+
)
|
144 |
+
|
145 |
+
if width % 32 != 0 or height % 32 != 0:
|
146 |
+
raise ValueError("Image dimensions must be divisible by 32")
|
147 |
+
|
148 |
+
if randomize_seed:
|
149 |
+
seed = random.randint(0, MAX_SEED)
|
150 |
+
|
151 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
152 |
+
|
153 |
+
# Calculate latent dimensions
|
154 |
+
spatial_downsample = 32 if "dc-ae" in config.model.vae_dir else 8
|
155 |
+
latent_h = int(height / spatial_downsample)
|
156 |
+
latent_w = int(width / spatial_downsample)
|
157 |
+
|
158 |
+
progress(0.1, desc="Generating random latent...")
|
159 |
+
|
160 |
+
# Generate random latent
|
161 |
+
z = torch.randn(
|
162 |
+
(1, model.in_channels, latent_h, latent_w),
|
163 |
+
device=device,
|
164 |
+
dtype=dtype,
|
165 |
+
generator=generator,
|
166 |
+
)
|
167 |
+
|
168 |
+
progress(0.1, desc="Encoding prompt...")
|
169 |
+
|
170 |
+
# Encode prompt
|
171 |
+
cap_features, cap_mask = encode_prompt(
|
172 |
+
tokenizer,
|
173 |
+
text_encoder,
|
174 |
+
device,
|
175 |
+
dtype,
|
176 |
+
[prompt],
|
177 |
+
config.model.use_last_hidden_state,
|
178 |
+
max_seq_length=config.model.max_seq_length,
|
179 |
+
)
|
180 |
+
|
181 |
+
cur_max_seq_len = cap_mask.sum(dim=-1).max()
|
182 |
+
y = cap_features[:, :cur_max_seq_len]
|
183 |
+
|
184 |
+
y_null = null_cap_feat[:, :cur_max_seq_len]
|
185 |
+
y_null = y_null.expand(y.shape[0], cur_max_seq_len, null_cap_feat.shape[-1])
|
186 |
+
|
187 |
+
# Generate image
|
188 |
+
with torch.no_grad():
|
189 |
+
samples = scheduler.sample(
|
190 |
+
model,
|
191 |
+
y,
|
192 |
+
y_null,
|
193 |
+
z,
|
194 |
+
T_max=1.0,
|
195 |
+
T_min=0.0,
|
196 |
+
num_steps=num_inference_steps,
|
197 |
+
cfg_scale=guidance_scale,
|
198 |
+
cfg_low=0.0,
|
199 |
+
cfg_high=1.0,
|
200 |
+
stochasticity_ratio=0.0,
|
201 |
+
sample_type="transition",
|
202 |
+
step_callback=lambda step: progress(
|
203 |
+
0.1 + 0.9 * (step / num_inference_steps), desc="Generating image..."
|
204 |
+
),
|
205 |
+
)[-1]
|
206 |
+
samples = samples.to(torch.float32)
|
207 |
+
|
208 |
+
# Decode to image
|
209 |
+
images = decode_func(samples)
|
210 |
+
images = (
|
211 |
+
torch.clamp(127.5 * images + 128.0, 0, 255)
|
212 |
+
.permute(0, 2, 3, 1)
|
213 |
+
.to(torch.uint8)
|
214 |
+
.contiguous()
|
215 |
+
)
|
216 |
+
image = Image.fromarray(images[0].cpu().numpy())
|
217 |
+
|
218 |
+
progress(1.0, desc="Complete!")
|
219 |
+
|
220 |
+
return image, seed
|
221 |
+
|
222 |
+
except Exception as e:
|
223 |
+
print(f"Error during image generation: {e}")
|
224 |
+
# Return a placeholder image or error message
|
225 |
+
error_img = Image.new("RGB", (512, 512), color="red")
|
226 |
+
return error_img, seed
|
227 |
+
|
228 |
+
|
229 |
+
# Example prompts
|
230 |
+
examples = [
|
231 |
+
["a tiny astronaut hatching from an egg on the moon"],
|
232 |
+
["🐶 Wearing 🕶 flying on the 🌈"],
|
233 |
+
["an anime illustration of a wiener schnitzel"],
|
234 |
+
["a photorealistic landscape of mountains at sunset"],
|
235 |
+
["a majestic lion in a golden savanna at sunset"],
|
236 |
+
["a futuristic city with flying cars and neon lights"],
|
237 |
+
["a cozy cabin in a snowy forest with smoke coming from the chimney"],
|
238 |
+
["a beautiful mermaid swimming in crystal clear water"],
|
239 |
+
]
|
240 |
+
|
241 |
+
# CSS styling
|
242 |
+
css = """
|
243 |
+
#col-container {
|
244 |
+
margin: 0 auto;
|
245 |
+
max-width: 520px;
|
246 |
+
}
|
247 |
+
"""
|
248 |
+
|
249 |
+
# Initialize model components
|
250 |
+
try:
|
251 |
+
load_model_components(device)
|
252 |
+
print("Model components loaded successfully!")
|
253 |
+
except Exception as e:
|
254 |
+
print(f"Error loading model components: {e}")
|
255 |
+
print("Please ensure config and checkpoint files are available")
|
256 |
+
|
257 |
+
# Create Gradio interface
|
258 |
+
with gr.Blocks(css=css) as demo:
|
259 |
+
with gr.Column(elem_id="col-container"):
|
260 |
+
gr.Markdown("# TiM Text-to-Image Generator")
|
261 |
+
gr.Markdown(
|
262 |
+
"Generate high-quality images from text prompts using the TiM (Transition in Matching) model"
|
263 |
+
)
|
264 |
+
|
265 |
+
with gr.Row():
|
266 |
+
prompt = gr.Text(
|
267 |
+
label="Prompt",
|
268 |
+
show_label=False,
|
269 |
+
max_lines=1,
|
270 |
+
placeholder="Enter your prompt",
|
271 |
+
container=False,
|
272 |
+
)
|
273 |
+
run_button = gr.Button("Generate", scale=0)
|
274 |
+
|
275 |
+
result = gr.Image(label="Result", show_label=False)
|
276 |
+
|
277 |
+
with gr.Accordion("Advanced Settings", open=False):
|
278 |
+
seed = gr.Slider(
|
279 |
+
label="Seed",
|
280 |
+
minimum=0,
|
281 |
+
maximum=MAX_SEED,
|
282 |
+
step=1,
|
283 |
+
value=0,
|
284 |
+
)
|
285 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
286 |
+
|
287 |
+
with gr.Row():
|
288 |
+
width = gr.Slider(
|
289 |
+
label="Width",
|
290 |
+
minimum=256,
|
291 |
+
maximum=MAX_IMAGE_SIZE,
|
292 |
+
step=32,
|
293 |
+
value=1024,
|
294 |
+
)
|
295 |
+
height = gr.Slider(
|
296 |
+
label="Height",
|
297 |
+
minimum=256,
|
298 |
+
maximum=MAX_IMAGE_SIZE,
|
299 |
+
step=32,
|
300 |
+
value=1024,
|
301 |
+
)
|
302 |
+
|
303 |
+
with gr.Row():
|
304 |
+
guidance_scale = gr.Slider(
|
305 |
+
label="Guidance Scale",
|
306 |
+
minimum=1,
|
307 |
+
maximum=15,
|
308 |
+
step=0.1,
|
309 |
+
value=2.5,
|
310 |
+
)
|
311 |
+
num_inference_steps = gr.Slider(
|
312 |
+
label="Number of inference steps",
|
313 |
+
minimum=1,
|
314 |
+
maximum=50,
|
315 |
+
step=1,
|
316 |
+
value=16,
|
317 |
+
)
|
318 |
+
|
319 |
+
gr.Examples(
|
320 |
+
examples=examples,
|
321 |
+
fn=generate_image,
|
322 |
+
inputs=[prompt],
|
323 |
+
outputs=[result, seed],
|
324 |
+
cache_examples="lazy",
|
325 |
+
)
|
326 |
+
|
327 |
+
gr.on(
|
328 |
+
triggers=[run_button.click, prompt.submit],
|
329 |
+
fn=generate_image,
|
330 |
+
inputs=[
|
331 |
+
prompt,
|
332 |
+
seed,
|
333 |
+
randomize_seed,
|
334 |
+
width,
|
335 |
+
height,
|
336 |
+
guidance_scale,
|
337 |
+
num_inference_steps,
|
338 |
+
],
|
339 |
+
outputs=[result, seed],
|
340 |
+
)
|
341 |
+
|
342 |
+
if __name__ == "__main__":
|
343 |
+
demo.launch()
|
configs/c2i/tim_b_p4.yaml
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
transport:
|
3 |
+
target: tim.schedulers.transports.OT_FM
|
4 |
+
params:
|
5 |
+
P_mean: -0.4
|
6 |
+
P_std: 1.0
|
7 |
+
sigma_d: 1.0
|
8 |
+
transition_loss:
|
9 |
+
diffusion_ratio: 0.5
|
10 |
+
consistency_ratio: 0.1
|
11 |
+
derivative_type: dde
|
12 |
+
differential_epsilon: 0.005
|
13 |
+
weight_time_type: sqrt
|
14 |
+
weight_time_tangent: True
|
15 |
+
network:
|
16 |
+
target: tim.models.c2i.tim_model.TiM
|
17 |
+
params:
|
18 |
+
input_size: 32
|
19 |
+
patch_size: 4
|
20 |
+
in_channels: 4
|
21 |
+
class_dropout_prob: 0.1
|
22 |
+
num_classes: 1000
|
23 |
+
depth: 12
|
24 |
+
hidden_size: 768
|
25 |
+
num_heads: 12
|
26 |
+
encoder_depth: 4
|
27 |
+
qk_norm: True
|
28 |
+
z_dim: 768
|
29 |
+
new_condition: t-r
|
30 |
+
use_new_embed: True
|
31 |
+
distance_aware: True
|
32 |
+
lora_hidden_size: 256
|
33 |
+
# pretrained_vae:
|
34 |
+
vae_dir: stabilityai/sd-vae-ft-ema
|
35 |
+
# repa encoder
|
36 |
+
enc_dir: checkpoints/radio/radio-v2.5-b_half.pth.tar
|
37 |
+
proj_coeff: 1.0
|
38 |
+
# ema
|
39 |
+
use_ema: True
|
40 |
+
ema_decay: 0.9999
|
41 |
+
|
42 |
+
data:
|
43 |
+
data_type: latent
|
44 |
+
dataset:
|
45 |
+
latent_dir: datasets/imagenet1k/sd-vae-ft-ema-256x256
|
46 |
+
image_dir: datasets/imagenet1k/images/train
|
47 |
+
image_size: 256
|
48 |
+
dataloader:
|
49 |
+
num_workers: 16
|
50 |
+
batch_size: 256 # Batch size (per device) for the training dataloader.
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
training:
|
55 |
+
tracker: null
|
56 |
+
max_train_steps: 100000
|
57 |
+
checkpointing_steps: 2000
|
58 |
+
checkpoints_total_limit: 2
|
59 |
+
resume_from_checkpoint: latest
|
60 |
+
learning_rate: 1.0e-4
|
61 |
+
learning_rate_base_batch_size: 256
|
62 |
+
scale_lr: True
|
63 |
+
lr_scheduler: constant # "linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"]
|
64 |
+
lr_warmup_steps: 0
|
65 |
+
gradient_accumulation_steps: 1
|
66 |
+
optimizer:
|
67 |
+
target: torch.optim.AdamW
|
68 |
+
params:
|
69 |
+
# betas: ${tuple:0.9, 0.999}
|
70 |
+
betas: [0.9, 0.95]
|
71 |
+
weight_decay: 1.0e-2
|
72 |
+
eps: 1.0e-6
|
73 |
+
max_grad_norm: 1.0
|
74 |
+
proportion_empty_prompts: 0.0
|
75 |
+
mixed_precision: bf16 # ["no", "fp16", "bf16"]
|
76 |
+
allow_tf32: True
|
77 |
+
validation_steps: 500
|
78 |
+
checkpoint_list: [100000, 200000, 300000]
|
configs/c2i/tim_xl_p1_512.yaml
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
transport:
|
3 |
+
target: tim.schedulers.transports.OT_FM
|
4 |
+
params:
|
5 |
+
P_mean: -0.4
|
6 |
+
P_std: 1.0
|
7 |
+
sigma_d: 1.0
|
8 |
+
T_max: 1.0
|
9 |
+
T_min: 0.0
|
10 |
+
enhance_target: False
|
11 |
+
w_gt: 1.0
|
12 |
+
w_cond: 0.0
|
13 |
+
w_start: 0.0
|
14 |
+
w_end: 0.0
|
15 |
+
transition_loss:
|
16 |
+
diffusion_ratio: 0.5
|
17 |
+
consistency_ratio: 0.1
|
18 |
+
derivative_type: dde
|
19 |
+
differential_epsilon: 0.005
|
20 |
+
weight_time_type: sqrt
|
21 |
+
weight_time_tangent: True
|
22 |
+
network:
|
23 |
+
target: tim.models.c2i.tim_model.TiM
|
24 |
+
params:
|
25 |
+
input_size: 16
|
26 |
+
patch_size: 1
|
27 |
+
in_channels: 32
|
28 |
+
class_dropout_prob: 0.1
|
29 |
+
num_classes: 1000
|
30 |
+
depth: 28
|
31 |
+
hidden_size: 1152
|
32 |
+
num_heads: 16
|
33 |
+
encoder_depth: 8
|
34 |
+
qk_norm: True
|
35 |
+
z_dim: 768
|
36 |
+
new_condition: t-r
|
37 |
+
use_new_embed: True
|
38 |
+
distance_aware: True
|
39 |
+
lora_hidden_size: 384
|
40 |
+
# pretrained_vae:
|
41 |
+
vae_dir: mit-han-lab/dc-ae-f32c32-sana-1.1-diffusers
|
42 |
+
# repa encoder
|
43 |
+
enc_dir: checkpoints/radio/radio-v2.5-b_half.pth.tar
|
44 |
+
proj_coeff: 1.0
|
45 |
+
# ema
|
46 |
+
use_ema: True
|
47 |
+
ema_decay: 0.9999
|
48 |
+
|
49 |
+
data:
|
50 |
+
data_type: latent
|
51 |
+
dataset:
|
52 |
+
latent_dir: datasets/imagenet1k/dc-ae-f32c32-sana-1.1-diffusers-512x512
|
53 |
+
image_dir: datasets/imagenet1k/images/train
|
54 |
+
image_size: 512
|
55 |
+
dataloader:
|
56 |
+
num_workers: 4
|
57 |
+
batch_size: 64 # Batch size (per device) for the training dataloader.
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
training:
|
62 |
+
tracker: null
|
63 |
+
max_train_steps: 750000
|
64 |
+
checkpointing_steps: 2000
|
65 |
+
checkpoints_total_limit: 2
|
66 |
+
resume_from_checkpoint: latest
|
67 |
+
learning_rate: 1.0e-4
|
68 |
+
learning_rate_base_batch_size: 256
|
69 |
+
scale_lr: True
|
70 |
+
lr_scheduler: constant # "linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"]
|
71 |
+
lr_warmup_steps: 0
|
72 |
+
gradient_accumulation_steps: 1
|
73 |
+
optimizer:
|
74 |
+
target: torch.optim.AdamW
|
75 |
+
params:
|
76 |
+
# betas: ${tuple:0.9, 0.999}
|
77 |
+
betas: [0.9, 0.95]
|
78 |
+
weight_decay: 1.0e-2
|
79 |
+
eps: 1.0e-6
|
80 |
+
max_grad_norm: 1.0
|
81 |
+
proportion_empty_prompts: 0.0
|
82 |
+
mixed_precision: bf16 # ["no", "fp16", "bf16"]
|
83 |
+
allow_tf32: True
|
84 |
+
validation_steps: 500
|
85 |
+
checkpoint_list: [100000, 250000, 500000]
|
configs/c2i/tim_xl_p1_512_mg.yaml
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
transport:
|
3 |
+
target: tim.schedulers.transports.OT_FM
|
4 |
+
params:
|
5 |
+
P_mean: -0.4
|
6 |
+
P_std: 1.0
|
7 |
+
sigma_d: 1.0
|
8 |
+
T_max: 1.0
|
9 |
+
T_min: 0.0
|
10 |
+
enhance_target: True
|
11 |
+
w_gt: 1.0
|
12 |
+
w_cond: 0.75
|
13 |
+
w_start: 0.3
|
14 |
+
w_end: 0.8
|
15 |
+
transition_loss:
|
16 |
+
diffusion_ratio: 0.5
|
17 |
+
consistency_ratio: 0.1
|
18 |
+
derivative_type: dde
|
19 |
+
differential_epsilon: 0.005
|
20 |
+
weight_time_type: sqrt
|
21 |
+
weight_time_tangent: True
|
22 |
+
network:
|
23 |
+
target: tim.models.c2i.tim_model.TiM
|
24 |
+
params:
|
25 |
+
input_size: 16
|
26 |
+
patch_size: 1
|
27 |
+
in_channels: 32
|
28 |
+
class_dropout_prob: 0.1
|
29 |
+
num_classes: 1000
|
30 |
+
depth: 28
|
31 |
+
hidden_size: 1152
|
32 |
+
num_heads: 16
|
33 |
+
encoder_depth: 8
|
34 |
+
qk_norm: True
|
35 |
+
z_dim: 768
|
36 |
+
new_condition: t-r
|
37 |
+
use_new_embed: True
|
38 |
+
distance_aware: True
|
39 |
+
lora_hidden_size: 384
|
40 |
+
# pretrained_vae:
|
41 |
+
vae_dir: mit-han-lab/dc-ae-f32c32-sana-1.1-diffusers
|
42 |
+
# repa encoder
|
43 |
+
enc_dir: checkpoints/radio/radio-v2.5-b_half.pth.tar
|
44 |
+
proj_coeff: 1.0
|
45 |
+
# ema
|
46 |
+
use_ema: True
|
47 |
+
ema_decay: 0.9999
|
48 |
+
|
49 |
+
data:
|
50 |
+
data_type: latent
|
51 |
+
dataset:
|
52 |
+
latent_dir: datasets/imagenet1k/dc-ae-f32c32-sana-1.1-diffusers-512x512
|
53 |
+
image_dir: datasets/imagenet1k/images/train
|
54 |
+
image_size: 512
|
55 |
+
dataloader:
|
56 |
+
num_workers: 4
|
57 |
+
batch_size: 64 # Batch size (per device) for the training dataloader.
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
training:
|
62 |
+
tracker: null
|
63 |
+
max_train_steps: 750000
|
64 |
+
checkpointing_steps: 2000
|
65 |
+
checkpoints_total_limit: 2
|
66 |
+
resume_from_checkpoint: latest
|
67 |
+
learning_rate: 1.0e-4
|
68 |
+
learning_rate_base_batch_size: 256
|
69 |
+
scale_lr: True
|
70 |
+
lr_scheduler: constant # "linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"]
|
71 |
+
lr_warmup_steps: 0
|
72 |
+
gradient_accumulation_steps: 1
|
73 |
+
optimizer:
|
74 |
+
target: torch.optim.AdamW
|
75 |
+
params:
|
76 |
+
# betas: ${tuple:0.9, 0.999}
|
77 |
+
betas: [0.9, 0.95]
|
78 |
+
weight_decay: 1.0e-2
|
79 |
+
eps: 1.0e-6
|
80 |
+
max_grad_norm: 1.0
|
81 |
+
proportion_empty_prompts: 0.0
|
82 |
+
mixed_precision: bf16 # ["no", "fp16", "bf16"]
|
83 |
+
allow_tf32: True
|
84 |
+
validation_steps: 500
|
85 |
+
checkpoint_list: [100000, 250000, 500000]
|
configs/c2i/tim_xl_p2_256.yaml
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
transport:
|
3 |
+
target: tim.schedulers.transports.OT_FM
|
4 |
+
params:
|
5 |
+
P_mean: -0.4
|
6 |
+
P_std: 1.0
|
7 |
+
sigma_d: 1.0
|
8 |
+
T_max: 1.0
|
9 |
+
T_min: 0.0
|
10 |
+
enhance_target: False
|
11 |
+
w_gt: 1.0
|
12 |
+
w_cond: 0.0
|
13 |
+
w_start: 0.0
|
14 |
+
w_end: 0.0
|
15 |
+
transition_loss:
|
16 |
+
diffusion_ratio: 0.5
|
17 |
+
consistency_ratio: 0.1
|
18 |
+
derivative_type: dde
|
19 |
+
differential_epsilon: 0.005
|
20 |
+
weight_time_type: sqrt
|
21 |
+
weight_time_tangent: True
|
22 |
+
network:
|
23 |
+
target: tim.models.c2i.tim_model.TiM
|
24 |
+
params:
|
25 |
+
input_size: 32
|
26 |
+
patch_size: 2
|
27 |
+
in_channels: 4
|
28 |
+
class_dropout_prob: 0.1
|
29 |
+
num_classes: 1000
|
30 |
+
depth: 28
|
31 |
+
hidden_size: 1152
|
32 |
+
num_heads: 16
|
33 |
+
encoder_depth: 8
|
34 |
+
qk_norm: True
|
35 |
+
z_dim: 768
|
36 |
+
new_condition: t-r
|
37 |
+
use_new_embed: True
|
38 |
+
distance_aware: True
|
39 |
+
lora_hidden_size: 384
|
40 |
+
# pretrained_vae:
|
41 |
+
vae_dir: stabilityai/sd-vae-ft-ema
|
42 |
+
# repa encoder
|
43 |
+
enc_dir: checkpoints/radio/radio-v2.5-b_half.pth.tar
|
44 |
+
proj_coeff: 1.0
|
45 |
+
# ema
|
46 |
+
use_ema: True
|
47 |
+
ema_decay: 0.9999
|
48 |
+
|
49 |
+
data:
|
50 |
+
data_type: latent
|
51 |
+
dataset:
|
52 |
+
latent_dir: datasets/imagenet1k/sd-vae-ft-ema-256x256
|
53 |
+
image_dir: datasets/imagenet1k/images/train
|
54 |
+
image_size: 256
|
55 |
+
dataloader:
|
56 |
+
num_workers: 4
|
57 |
+
batch_size: 64 # Batch size (per device) for the training dataloader.
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
training:
|
62 |
+
tracker: null
|
63 |
+
max_train_steps: 750000
|
64 |
+
checkpointing_steps: 2000
|
65 |
+
checkpoints_total_limit: 2
|
66 |
+
resume_from_checkpoint: latest
|
67 |
+
learning_rate: 1.0e-4
|
68 |
+
learning_rate_base_batch_size: 256
|
69 |
+
scale_lr: True
|
70 |
+
lr_scheduler: constant # "linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"]
|
71 |
+
lr_warmup_steps: 0
|
72 |
+
gradient_accumulation_steps: 1
|
73 |
+
optimizer:
|
74 |
+
target: torch.optim.AdamW
|
75 |
+
params:
|
76 |
+
# betas: ${tuple:0.9, 0.999}
|
77 |
+
betas: [0.9, 0.95]
|
78 |
+
weight_decay: 1.0e-2
|
79 |
+
eps: 1.0e-6
|
80 |
+
max_grad_norm: 1.0
|
81 |
+
proportion_empty_prompts: 0.0
|
82 |
+
mixed_precision: bf16 # ["no", "fp16", "bf16"]
|
83 |
+
allow_tf32: True
|
84 |
+
validation_steps: 500
|
85 |
+
checkpoint_list: [100000, 250000, 500000]
|
configs/c2i/tim_xl_p2_256_mg.yaml
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
transport:
|
3 |
+
target: tim.schedulers.transports.OT_FM
|
4 |
+
params:
|
5 |
+
P_mean: -0.4
|
6 |
+
P_std: 1.0
|
7 |
+
sigma_d: 1.0
|
8 |
+
T_max: 1.0
|
9 |
+
T_min: 0.0
|
10 |
+
enhance_target: True
|
11 |
+
w_gt: 1.0
|
12 |
+
w_cond: 0.75
|
13 |
+
w_start: 0.3
|
14 |
+
w_end: 0.8
|
15 |
+
transition_loss:
|
16 |
+
diffusion_ratio: 0.5
|
17 |
+
consistency_ratio: 0.1
|
18 |
+
derivative_type: dde
|
19 |
+
differential_epsilon: 0.005
|
20 |
+
weight_time_type: sqrt
|
21 |
+
weight_time_tangent: True
|
22 |
+
network:
|
23 |
+
target: tim.models.c2i.tim_model.TiM
|
24 |
+
params:
|
25 |
+
input_size: 32
|
26 |
+
patch_size: 2
|
27 |
+
in_channels: 4
|
28 |
+
class_dropout_prob: 0.1
|
29 |
+
num_classes: 1000
|
30 |
+
depth: 28
|
31 |
+
hidden_size: 1152
|
32 |
+
num_heads: 16
|
33 |
+
encoder_depth: 8
|
34 |
+
qk_norm: True
|
35 |
+
z_dim: 768
|
36 |
+
new_condition: t-r
|
37 |
+
use_new_embed: True
|
38 |
+
distance_aware: True
|
39 |
+
lora_hidden_size: 384
|
40 |
+
# pretrained_vae:
|
41 |
+
vae_dir: stabilityai/sd-vae-ft-ema
|
42 |
+
# repa encoder
|
43 |
+
enc_dir: checkpoints/radio/radio-v2.5-b_half.pth.tar
|
44 |
+
proj_coeff: 1.0
|
45 |
+
# ema
|
46 |
+
use_ema: True
|
47 |
+
ema_decay: 0.9999
|
48 |
+
|
49 |
+
data:
|
50 |
+
data_type: latent
|
51 |
+
dataset:
|
52 |
+
latent_dir: datasets/imagenet1k/sd-vae-ft-ema-256x256
|
53 |
+
image_dir: datasets/imagenet1k/images/train
|
54 |
+
image_size: 256
|
55 |
+
dataloader:
|
56 |
+
num_workers: 4
|
57 |
+
batch_size: 64 # Batch size (per device) for the training dataloader.
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
training:
|
62 |
+
tracker: null
|
63 |
+
max_train_steps: 750000
|
64 |
+
checkpointing_steps: 2000
|
65 |
+
checkpoints_total_limit: 2
|
66 |
+
resume_from_checkpoint: latest
|
67 |
+
learning_rate: 1.0e-4
|
68 |
+
learning_rate_base_batch_size: 256
|
69 |
+
scale_lr: True
|
70 |
+
lr_scheduler: constant # "linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"]
|
71 |
+
lr_warmup_steps: 0
|
72 |
+
gradient_accumulation_steps: 1
|
73 |
+
optimizer:
|
74 |
+
target: torch.optim.AdamW
|
75 |
+
params:
|
76 |
+
# betas: ${tuple:0.9, 0.999}
|
77 |
+
betas: [0.9, 0.95]
|
78 |
+
weight_decay: 1.0e-2
|
79 |
+
eps: 1.0e-6
|
80 |
+
max_grad_norm: 1.0
|
81 |
+
proportion_empty_prompts: 0.0
|
82 |
+
mixed_precision: bf16 # ["no", "fp16", "bf16"]
|
83 |
+
allow_tf32: True
|
84 |
+
validation_steps: 500
|
85 |
+
checkpoint_list: [100000, 250000, 500000]
|
configs/t2i/tim_xl_p1_t2i.yaml
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
transport:
|
3 |
+
target: tim.schedulers.transports.OT_FM
|
4 |
+
params:
|
5 |
+
P_mean: 0.0
|
6 |
+
P_std: 1.6
|
7 |
+
sigma_d: 1.0
|
8 |
+
transition_loss:
|
9 |
+
diffusion_ratio: 0.5
|
10 |
+
consistency_ratio: 0.1
|
11 |
+
derivative_type: dde
|
12 |
+
differential_epsilon: 0.005
|
13 |
+
weight_time_type: sqrt
|
14 |
+
weight_time_tangent: True
|
15 |
+
network:
|
16 |
+
target: tim.models.t2i.tim_model.TiM
|
17 |
+
params:
|
18 |
+
input_size: 16
|
19 |
+
patch_size: 1
|
20 |
+
in_channels: 32
|
21 |
+
depth: 28
|
22 |
+
hidden_size: 1152
|
23 |
+
cap_feat_dim: 1152
|
24 |
+
num_heads: 16
|
25 |
+
encoder_depth: 8
|
26 |
+
qk_norm: True
|
27 |
+
z_dim: 768
|
28 |
+
new_condition: t-r
|
29 |
+
use_new_embed: True
|
30 |
+
distance_aware: True
|
31 |
+
lora_hidden_size: 384
|
32 |
+
# pretrained_vae:
|
33 |
+
vae_dir: mit-han-lab/dc-ae-f32c32-sana-1.1-diffusers
|
34 |
+
# text encoder
|
35 |
+
text_encoder_dir: google/gemma-3-1b-it
|
36 |
+
proportion_empty_prompts: 0.1
|
37 |
+
use_last_hidden_state: True
|
38 |
+
max_seq_length: 256
|
39 |
+
# repa encoder
|
40 |
+
enc_dir: checkpoints/radio/radio-v2.5-b_half.pth.tar
|
41 |
+
proj_coeff: 1.0
|
42 |
+
# ema
|
43 |
+
use_ema: True
|
44 |
+
ema_decay: 0.9999
|
45 |
+
|
46 |
+
data:
|
47 |
+
data_type: image_ms
|
48 |
+
dataset:
|
49 |
+
root_dir: datasets/t2i_toy_dataset
|
50 |
+
packed_json: datasets/t2i_toy_dataset/bucket_sampler.json
|
51 |
+
jsonl_dir: datasets/t2i_toy_dataset/data_info.jsonl
|
52 |
+
dataloader:
|
53 |
+
num_workers: 4
|
54 |
+
batch_size: 128 # Batch size (per device) for the training dataloader.
|
55 |
+
|
56 |
+
|
57 |
+
training:
|
58 |
+
tracker: null
|
59 |
+
max_train_steps: 500000
|
60 |
+
checkpointing_steps: 1000
|
61 |
+
checkpoints_total_limit: 2
|
62 |
+
resume_from_checkpoint: latest
|
63 |
+
learning_rate: 1.0e-4
|
64 |
+
learning_rate_base_batch_size: 512
|
65 |
+
scale_lr: True
|
66 |
+
lr_scheduler: constant # "linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"]
|
67 |
+
lr_warmup_steps: 0
|
68 |
+
gradient_accumulation_steps: 1
|
69 |
+
optimizer:
|
70 |
+
target: torch.optim.AdamW
|
71 |
+
params:
|
72 |
+
# betas: ${tuple:0.9, 0.999}
|
73 |
+
betas: [0.9, 0.95]
|
74 |
+
weight_decay: 1.0e-2
|
75 |
+
eps: 1.0e-6
|
76 |
+
max_grad_norm: 1.0
|
77 |
+
proportion_empty_prompts: 0.0
|
78 |
+
mixed_precision: bf16 # ["no", "fp16", "bf16"]
|
79 |
+
allow_tf32: True
|
80 |
+
validation_steps: 500
|
81 |
+
checkpoint_list: [100000, 200000, 300000, 400000]
|
pyproject.toml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "tim"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = "Add your description here"
|
5 |
+
readme = "README.md"
|
6 |
+
requires-python = ">=3.10"
|
7 |
+
dependencies = [
|
8 |
+
"accelerate>=0.33.0",
|
9 |
+
"bitsandbytes>=0.47.0",
|
10 |
+
"diffusers==0.33.1",
|
11 |
+
"einops>=0.8.1",
|
12 |
+
"flash-attn>=2.8.3",
|
13 |
+
"gradio>=5.44.1",
|
14 |
+
"imageio==2.34.2",
|
15 |
+
"imageio-ffmpeg==0.5.1",
|
16 |
+
"moviepy==1.0.3",
|
17 |
+
"numpy==1.26.0",
|
18 |
+
"omegaconf>=2.3.0",
|
19 |
+
"pillow==9.5.0",
|
20 |
+
"safetensors>=0.6.2",
|
21 |
+
"sentencepiece>=0.2.0",
|
22 |
+
"spaces>=0.40.1",
|
23 |
+
"streamlit>=1.38.0",
|
24 |
+
"timm>=1.0.19",
|
25 |
+
"torch>=2.8.0",
|
26 |
+
"torchdiffeq>=0.2.5",
|
27 |
+
"torchvision>=0.23.0",
|
28 |
+
"transformers>=4.44.2",
|
29 |
+
"triton>=3.4.0",
|
30 |
+
"wandb>=0.21.3",
|
31 |
+
]
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=4.0.0
|
2 |
+
spaces>=0.28.0
|
3 |
+
torch>=2.1.0
|
4 |
+
torchvision
|
5 |
+
diffusers
|
6 |
+
transformers>=4.25.0
|
7 |
+
omegaconf
|
8 |
+
einops
|
9 |
+
numpy
|
10 |
+
Pillow
|
11 |
+
safetensors
|
12 |
+
tqdm
|
13 |
+
flash-attn>=2.0.0
|
14 |
+
accelerate
|
15 |
+
-e .
|
setup.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from setuptools import find_packages, setup
|
2 |
+
|
3 |
+
setup(
|
4 |
+
name="tim",
|
5 |
+
version="0.0.1",
|
6 |
+
description="",
|
7 |
+
packages=find_packages(),
|
8 |
+
install_requires=[
|
9 |
+
"torch",
|
10 |
+
"numpy",
|
11 |
+
],
|
12 |
+
)
|
tim/data/c2i_data.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import datetime
|
4 |
+
import torchvision
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from omegaconf import OmegaConf
|
9 |
+
from PIL import Image
|
10 |
+
from torch.utils.data import DataLoader, Dataset
|
11 |
+
from torchvision.datasets import ImageFolder
|
12 |
+
from torchvision import transforms
|
13 |
+
from torchvision.transforms.functional import hflip
|
14 |
+
from accelerate.logging import get_logger
|
15 |
+
from safetensors.torch import load_file
|
16 |
+
from .sampler_utils import get_train_sampler
|
17 |
+
|
18 |
+
|
19 |
+
logger = get_logger(__name__, log_level="INFO")
|
20 |
+
|
21 |
+
|
22 |
+
def center_crop_arr(pil_image, image_size):
|
23 |
+
"""
|
24 |
+
Center cropping implementation from ADM.
|
25 |
+
https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126
|
26 |
+
"""
|
27 |
+
while min(*pil_image.size) >= 2 * image_size:
|
28 |
+
pil_image = pil_image.resize(
|
29 |
+
tuple(x // 2 for x in pil_image.size), resample=Image.Resampling.BOX
|
30 |
+
)
|
31 |
+
|
32 |
+
scale = image_size / min(*pil_image.size)
|
33 |
+
pil_image = pil_image.resize(
|
34 |
+
tuple(round(x * scale) for x in pil_image.size), resample=Image.Resampling.BICUBIC
|
35 |
+
)
|
36 |
+
|
37 |
+
arr = np.array(pil_image)
|
38 |
+
crop_y = (arr.shape[0] - image_size) // 2
|
39 |
+
crop_x = (arr.shape[1] - image_size) // 2
|
40 |
+
return Image.fromarray(arr[crop_y: crop_y + image_size, crop_x: crop_x + image_size])
|
41 |
+
|
42 |
+
class ImagenetDictWrapper(Dataset):
|
43 |
+
def __init__(self, dataset):
|
44 |
+
super().__init__()
|
45 |
+
self.dataset = dataset
|
46 |
+
|
47 |
+
def __getitem__(self, i):
|
48 |
+
x, y = self.dataset[i]
|
49 |
+
return {"image": x, "label": y}
|
50 |
+
|
51 |
+
def __len__(self):
|
52 |
+
return len(self.dataset)
|
53 |
+
|
54 |
+
class ImagenetLatentDataset(Dataset):
|
55 |
+
def __init__(self, latent_dir, image_dir, image_size):
|
56 |
+
super().__init__()
|
57 |
+
self.RandomHorizontalFlipProb = 0.5
|
58 |
+
self.transform = transforms.Compose([
|
59 |
+
transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, image_size)),
|
60 |
+
transforms.Lambda(lambda pil_image: (pil_image, hflip(pil_image))),
|
61 |
+
transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])), # returns a 4D tensor
|
62 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
63 |
+
])
|
64 |
+
|
65 |
+
self.dataset = []
|
66 |
+
for class_folder in os.listdir(image_dir):
|
67 |
+
if os.path.isfile(os.path.join(image_dir, class_folder)):
|
68 |
+
continue
|
69 |
+
latent_class_folder = os.path.join(latent_dir, class_folder)
|
70 |
+
image_class_folder = os.path.join(image_dir, class_folder)
|
71 |
+
for file in os.listdir(image_class_folder):
|
72 |
+
self.dataset.append(
|
73 |
+
dict(
|
74 |
+
latent=os.path.join(latent_class_folder, file.split('.')[0]+'.safetensors'),
|
75 |
+
image=os.path.join(image_class_folder, file)
|
76 |
+
)
|
77 |
+
)
|
78 |
+
|
79 |
+
def __len__(self):
|
80 |
+
return len(self.dataset)
|
81 |
+
|
82 |
+
def __getitem__(self, idx):
|
83 |
+
data_item = dict()
|
84 |
+
data = load_file(self.dataset[idx]['latent'])
|
85 |
+
image = self.transform(Image.open(self.dataset[idx]['image']).convert("RGB"))
|
86 |
+
if torch.rand(1) < self.RandomHorizontalFlipProb:
|
87 |
+
data_item['latent'] = data['latent'][0]
|
88 |
+
data_item['image'] = image[0]
|
89 |
+
else:
|
90 |
+
data_item['latent'] = data['latent'][1]
|
91 |
+
data_item['image'] = image[1]
|
92 |
+
data_item['label'] = data['label']
|
93 |
+
return data_item
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
class C2ILoader():
|
98 |
+
def __init__(self, data_config):
|
99 |
+
super().__init__()
|
100 |
+
|
101 |
+
self.batch_size = data_config.dataloader.batch_size
|
102 |
+
self.num_workers = data_config.dataloader.num_workers
|
103 |
+
|
104 |
+
self.data_type = data_config.data_type
|
105 |
+
|
106 |
+
if data_config.data_type == 'image':
|
107 |
+
self.train_dataset = ImagenetDictWrapper(**OmegaConf.to_container(data_config.dataset))
|
108 |
+
elif data_config.data_type == 'latent':
|
109 |
+
self.train_dataset = ImagenetLatentDataset(**OmegaConf.to_container(data_config.dataset))
|
110 |
+
else:
|
111 |
+
raise NotImplementedError
|
112 |
+
|
113 |
+
|
114 |
+
self.test_dataset = None
|
115 |
+
self.val_dataset = None
|
116 |
+
|
117 |
+
def train_len(self):
|
118 |
+
return len(self.train_dataset)
|
119 |
+
|
120 |
+
def train_dataloader(self, rank, world_size, global_batch_size, max_steps, resume_steps, seed):
|
121 |
+
|
122 |
+
sampler = get_train_sampler(
|
123 |
+
self.train_dataset, rank, world_size, global_batch_size, max_steps, resume_steps, seed
|
124 |
+
)
|
125 |
+
return DataLoader(
|
126 |
+
self.train_dataset,
|
127 |
+
batch_size=self.batch_size,
|
128 |
+
sampler=sampler,
|
129 |
+
num_workers=self.num_workers,
|
130 |
+
pin_memory=True,
|
131 |
+
drop_last=True,
|
132 |
+
prefetch_factor=2,
|
133 |
+
)
|
134 |
+
|
135 |
+
def test_dataloader(self):
|
136 |
+
return None
|
137 |
+
|
138 |
+
def val_dataloader(self):
|
139 |
+
return DataLoader(
|
140 |
+
self.train_dataset,
|
141 |
+
batch_size=self.batch_size,
|
142 |
+
shuffle=self.shuffle,
|
143 |
+
num_workers=self.num_workers,
|
144 |
+
pin_memory=True,
|
145 |
+
drop_last=True
|
146 |
+
)
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
|
tim/data/sampler_utils.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import json
|
3 |
+
|
4 |
+
# from https://github.com/Alpha-VLLM/LLaMA2-Accessory/blob/main/Large-DiT-ImageNet/train.py#L60
|
5 |
+
def get_train_sampler(dataset, rank, world_size, global_batch_size, max_steps,
|
6 |
+
resume_step, seed):
|
7 |
+
sample_indices = torch.empty([max_steps * global_batch_size // world_size],
|
8 |
+
dtype=torch.long)
|
9 |
+
epoch_id, fill_ptr, offs = 0, 0, 0
|
10 |
+
while fill_ptr < sample_indices.size(0):
|
11 |
+
g = torch.Generator()
|
12 |
+
g.manual_seed(seed + epoch_id)
|
13 |
+
epoch_sample_indices = torch.randperm(len(dataset), generator=g)
|
14 |
+
epoch_id += 1
|
15 |
+
epoch_sample_indices = epoch_sample_indices[
|
16 |
+
(rank + offs) % world_size::world_size
|
17 |
+
]
|
18 |
+
offs = (offs + world_size - len(dataset) % world_size) % world_size
|
19 |
+
epoch_sample_indices = epoch_sample_indices[
|
20 |
+
:sample_indices.size(0) - fill_ptr
|
21 |
+
]
|
22 |
+
sample_indices[fill_ptr: fill_ptr + epoch_sample_indices.size(0)] = \
|
23 |
+
epoch_sample_indices
|
24 |
+
fill_ptr += epoch_sample_indices.size(0)
|
25 |
+
return sample_indices[resume_step * global_batch_size // world_size:].tolist()
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
def get_packed_batch_sampler(
|
31 |
+
dataset, rank, world_size, max_steps, resume_step, seed
|
32 |
+
):
|
33 |
+
sample_indices = [None for _ in range(max_steps)]
|
34 |
+
epoch_id, fill_ptr, offs = 0, 0, 0
|
35 |
+
while fill_ptr < len(sample_indices):
|
36 |
+
g = torch.Generator()
|
37 |
+
g.manual_seed(seed + epoch_id)
|
38 |
+
epoch_sample_indices = torch.randperm(len(dataset), generator=g)
|
39 |
+
epoch_id += 1
|
40 |
+
epoch_sample_indices = epoch_sample_indices[
|
41 |
+
(rank + offs) % world_size::world_size
|
42 |
+
]
|
43 |
+
offs = (offs + world_size - len(dataset) % world_size) % world_size
|
44 |
+
epoch_sample_indices = epoch_sample_indices[
|
45 |
+
:len(sample_indices) - fill_ptr
|
46 |
+
]
|
47 |
+
sample_indices[fill_ptr: fill_ptr + epoch_sample_indices.size(0)] = [
|
48 |
+
dataset[i] for i in epoch_sample_indices
|
49 |
+
]
|
50 |
+
fill_ptr += epoch_sample_indices.size(0)
|
51 |
+
return sample_indices[resume_step:]
|
52 |
+
|
tim/data/t2i_data.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import csv
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import random
|
6 |
+
import ast
|
7 |
+
import numpy as np
|
8 |
+
from omegaconf import OmegaConf
|
9 |
+
from torchvision import transforms
|
10 |
+
from torch.utils.data import DataLoader, Dataset
|
11 |
+
from PIL import Image
|
12 |
+
from tqdm import tqdm
|
13 |
+
from safetensors.torch import save_file, load_file
|
14 |
+
from .sampler_utils import get_train_sampler, get_packed_batch_sampler
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
def resize_arr(pil_image, height, width):
|
19 |
+
pil_image = pil_image.resize((width, height), resample=Image.Resampling.BICUBIC)
|
20 |
+
|
21 |
+
return pil_image
|
22 |
+
|
23 |
+
|
24 |
+
class T2IDatasetMS(Dataset):
|
25 |
+
def __init__(self, root_dir, packed_json, jsonl_dir) -> None:
|
26 |
+
super().__init__()
|
27 |
+
self.root_dir = root_dir
|
28 |
+
self.dataset = []
|
29 |
+
with open(packed_json, 'r') as fp:
|
30 |
+
self.packed_dataset = json.load(fp)
|
31 |
+
|
32 |
+
with open(jsonl_dir, 'r') as fp:
|
33 |
+
self.dataset = [json.loads(line) for line in fp]
|
34 |
+
|
35 |
+
|
36 |
+
def __len__(self):
|
37 |
+
return len(self.dataset)
|
38 |
+
|
39 |
+
def get_one_data(self, data_meta):
|
40 |
+
data_item = dict()
|
41 |
+
image_file = os.path.join(self.root_dir, data_meta['image_file'])
|
42 |
+
|
43 |
+
image = Image.open(image_file).convert("RGB")
|
44 |
+
|
45 |
+
bucket = data_meta['bucket']
|
46 |
+
resolutions = bucket.split('-')[-1].split('x')
|
47 |
+
height, width = int(int(resolutions[0])/32)*32, int(int(resolutions[1])/32)*32
|
48 |
+
transform = transforms.Compose([
|
49 |
+
transforms.Lambda(lambda pil_image: resize_arr(pil_image, height, width)),
|
50 |
+
transforms.ToTensor(),
|
51 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True),
|
52 |
+
])
|
53 |
+
image = transform(image)
|
54 |
+
|
55 |
+
data_item['image'] = image
|
56 |
+
data_item['caption'] = random.choice(data_meta['captions']).encode('unicode-escape').decode('utf-8')
|
57 |
+
|
58 |
+
return data_item
|
59 |
+
|
60 |
+
def __getitem__(self, index):
|
61 |
+
data_meta = self.dataset[index]
|
62 |
+
# data_item = self.get_one_data(data_meta)
|
63 |
+
try:
|
64 |
+
data_item = self.get_one_data(data_meta)
|
65 |
+
except:
|
66 |
+
print(f"Warning: {data_meta['image_file']} does not exist", flush=True)
|
67 |
+
data_item = None
|
68 |
+
|
69 |
+
return data_item
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
def bucket_collate_fn(batch):
|
74 |
+
caption = []
|
75 |
+
image = []
|
76 |
+
for data in batch:
|
77 |
+
if data == None:
|
78 |
+
continue
|
79 |
+
caption.append(data['caption'])
|
80 |
+
image.append(data['image'])
|
81 |
+
image = torch.stack(image)
|
82 |
+
return dict(image=image, caption=caption)
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
class T2ILoader():
|
88 |
+
def __init__(self, data_config):
|
89 |
+
super().__init__()
|
90 |
+
|
91 |
+
self.batch_size = data_config.dataloader.batch_size
|
92 |
+
self.num_workers = data_config.dataloader.num_workers
|
93 |
+
|
94 |
+
self.data_type = data_config.data_type
|
95 |
+
|
96 |
+
if self.data_type == 'image_ms':
|
97 |
+
self.train_dataset = T2IDatasetMS(**OmegaConf.to_container(data_config.dataset))
|
98 |
+
else:
|
99 |
+
raise
|
100 |
+
self.test_dataset = None
|
101 |
+
self.val_dataset = None
|
102 |
+
|
103 |
+
def train_len(self):
|
104 |
+
return len(self.train_dataset)
|
105 |
+
|
106 |
+
def train_dataloader(self, rank, world_size, global_batch_size, max_steps, resume_steps, seed):
|
107 |
+
batch_sampler = get_packed_batch_sampler(
|
108 |
+
self.train_dataset.packed_dataset, rank, world_size, max_steps, resume_steps, seed
|
109 |
+
)
|
110 |
+
return DataLoader(
|
111 |
+
self.train_dataset,
|
112 |
+
batch_sampler=batch_sampler,
|
113 |
+
collate_fn=bucket_collate_fn,
|
114 |
+
num_workers=self.num_workers,
|
115 |
+
pin_memory=True,
|
116 |
+
)
|
117 |
+
|
118 |
+
def test_dataloader(self):
|
119 |
+
return None
|
120 |
+
|
121 |
+
def val_dataloader(self):
|
122 |
+
return None
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
|
tim/models/c2i/tim_model.py
ADDED
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This source code is licensed under the license found in the
|
2 |
+
# LICENSE file in the root directory of this source tree.
|
3 |
+
# --------------------------------------------------------
|
4 |
+
# References:
|
5 |
+
# GLIDE: https://github.com/openai/glide-text2im
|
6 |
+
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
|
7 |
+
# --------------------------------------------------------
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import numpy as np
|
13 |
+
import math
|
14 |
+
from timm.layers.mlp import SwiGLU, Mlp
|
15 |
+
from timm.models.vision_transformer import PatchEmbed, Attention
|
16 |
+
from tim.models.utils.funcs import build_mlp, modulate, get_parameter_dtype
|
17 |
+
from tim.models.utils.rope import VisionRotaryEmbedding, rotate_half
|
18 |
+
from flash_attn import flash_attn_func
|
19 |
+
|
20 |
+
|
21 |
+
#################################################################################
|
22 |
+
# Embedding Layers for Timesteps and Class Labels #
|
23 |
+
#################################################################################
|
24 |
+
class TimestepEmbedder(nn.Module):
|
25 |
+
"""
|
26 |
+
Embeds scalar timesteps into vector representations.
|
27 |
+
"""
|
28 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
29 |
+
super().__init__()
|
30 |
+
self.mlp = nn.Sequential(
|
31 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
32 |
+
nn.SiLU(),
|
33 |
+
nn.Linear(hidden_size, hidden_size, bias=True),
|
34 |
+
)
|
35 |
+
self.frequency_embedding_size = frequency_embedding_size
|
36 |
+
|
37 |
+
@staticmethod
|
38 |
+
def positional_embedding(t, dim, max_period=10000):
|
39 |
+
"""
|
40 |
+
Create sinusoidal timestep embeddings.
|
41 |
+
:param t: a 1-D Tensor of N indices, one per batch element.
|
42 |
+
These may be fractional.
|
43 |
+
:param dim: the dimension of the output.
|
44 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
45 |
+
:return: an (N, D) Tensor of positional embeddings.
|
46 |
+
"""
|
47 |
+
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
48 |
+
half = dim // 2
|
49 |
+
freqs = torch.exp(
|
50 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
51 |
+
).to(device=t.device)
|
52 |
+
args = t[:, None].float() * freqs[None]
|
53 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
54 |
+
if dim % 2:
|
55 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
56 |
+
return embedding
|
57 |
+
|
58 |
+
def forward(self, t):
|
59 |
+
self.timestep_embedding = self.positional_embedding
|
60 |
+
t_freq = self.timestep_embedding(t, dim=self.frequency_embedding_size).to(t.dtype)
|
61 |
+
t_emb = self.mlp(t_freq)
|
62 |
+
return t_emb
|
63 |
+
|
64 |
+
|
65 |
+
class LabelEmbedder(nn.Module):
|
66 |
+
"""
|
67 |
+
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
|
68 |
+
"""
|
69 |
+
def __init__(self, num_classes, hidden_size, dropout_prob):
|
70 |
+
super().__init__()
|
71 |
+
use_cfg_embedding = dropout_prob > 0
|
72 |
+
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
|
73 |
+
self.num_classes = num_classes
|
74 |
+
self.dropout_prob = dropout_prob
|
75 |
+
|
76 |
+
|
77 |
+
def forward(self, labels):
|
78 |
+
embeddings = self.embedding_table(labels)
|
79 |
+
return embeddings
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
#################################################################################
|
85 |
+
# Attention Block #
|
86 |
+
#################################################################################
|
87 |
+
|
88 |
+
class Attention(nn.Module):
|
89 |
+
def __init__(
|
90 |
+
self,
|
91 |
+
dim: int,
|
92 |
+
num_heads: int = 8,
|
93 |
+
qkv_bias: bool = False,
|
94 |
+
qk_norm: bool = False,
|
95 |
+
attn_drop: float = 0.,
|
96 |
+
proj_drop: float = 0.,
|
97 |
+
norm_layer: nn.Module = nn.LayerNorm,
|
98 |
+
distance_aware: bool = False,
|
99 |
+
) -> None:
|
100 |
+
super().__init__()
|
101 |
+
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
|
102 |
+
self.num_heads = num_heads
|
103 |
+
self.head_dim = dim // num_heads
|
104 |
+
self.scale = self.head_dim ** -0.5
|
105 |
+
|
106 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
107 |
+
self.distance_aware = distance_aware
|
108 |
+
if distance_aware:
|
109 |
+
self.qkv_d = nn.Linear(dim, dim * 3, bias=False)
|
110 |
+
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
111 |
+
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
112 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
113 |
+
self.proj = nn.Linear(dim, dim)
|
114 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
115 |
+
|
116 |
+
def forward(self, x: torch.Tensor, freqs_cos, freqs_sin, attn_type='fused_attn', delta_t=None) -> torch.Tensor:
|
117 |
+
B, N, C = x.shape
|
118 |
+
if self.distance_aware:
|
119 |
+
qkv = self.qkv(x) + self.qkv_d(delta_t)
|
120 |
+
else:
|
121 |
+
qkv = self.qkv(x)
|
122 |
+
if attn_type == 'flash_attn': # q, k, v: (B, N, n_head, d_head)
|
123 |
+
qkv = qkv.reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 1, 3, 4)
|
124 |
+
else: # q, k, v: (B, n_head, N, d_head)
|
125 |
+
qkv = qkv.reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
126 |
+
ori_dtype = qkv.dtype
|
127 |
+
q, k, v = qkv.unbind(0)
|
128 |
+
q, k = self.q_norm(q), self.k_norm(k)
|
129 |
+
|
130 |
+
q = q * freqs_cos + rotate_half(q) * freqs_sin
|
131 |
+
k = k * freqs_cos + rotate_half(k) * freqs_sin
|
132 |
+
q, k = q.to(ori_dtype), k.to(ori_dtype)
|
133 |
+
|
134 |
+
if attn_type == 'flash_attn':
|
135 |
+
x = flash_attn_func(
|
136 |
+
q, k, v,
|
137 |
+
dropout_p=self.attn_drop.p if self.training else 0.,
|
138 |
+
)
|
139 |
+
x = x.reshape(B, N, C)
|
140 |
+
elif attn_type == 'fused_attn':
|
141 |
+
x = F.scaled_dot_product_attention(
|
142 |
+
q, k, v,
|
143 |
+
dropout_p=self.attn_drop.p if self.training else 0.,
|
144 |
+
)
|
145 |
+
x = x.transpose(1, 2).reshape(B, N, C)
|
146 |
+
else:
|
147 |
+
q = q * self.scale
|
148 |
+
attn = q @ k.transpose(-2, -1)
|
149 |
+
attn = attn.softmax(dim=-1)
|
150 |
+
attn = self.attn_drop(attn)
|
151 |
+
x = attn @ v
|
152 |
+
x = x.transpose(1, 2).reshape(B, N, C)
|
153 |
+
|
154 |
+
x = self.proj(x)
|
155 |
+
x = self.proj_drop(x)
|
156 |
+
return x
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
|
163 |
+
#################################################################################
|
164 |
+
# Core TiM Model #
|
165 |
+
#################################################################################
|
166 |
+
|
167 |
+
class TiMBlock(nn.Module):
|
168 |
+
"""
|
169 |
+
A TiM block with adaptive layer norm zero (adaLN-Zero) conditioning.
|
170 |
+
"""
|
171 |
+
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs):
|
172 |
+
super().__init__()
|
173 |
+
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
174 |
+
distance_aware = block_kwargs.get('distance_aware', False)
|
175 |
+
self.attn = Attention(
|
176 |
+
hidden_size, num_heads=num_heads, qkv_bias=True, qk_norm=block_kwargs["qk_norm"],
|
177 |
+
distance_aware=distance_aware
|
178 |
+
)
|
179 |
+
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
180 |
+
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
181 |
+
self.mlp = SwiGLU(
|
182 |
+
in_features=hidden_size, hidden_features=(mlp_hidden_dim*2)//3, bias=True
|
183 |
+
)
|
184 |
+
if block_kwargs.get('lora_hidden_size', None) != None:
|
185 |
+
lora_hidden_size = block_kwargs['lora_hidden_size']
|
186 |
+
else:
|
187 |
+
lora_hidden_size = (hidden_size//4)*3
|
188 |
+
self.adaLN_modulation = SwiGLU(
|
189 |
+
in_features=hidden_size, hidden_features=lora_hidden_size, out_features=6*hidden_size, bias=True
|
190 |
+
)
|
191 |
+
|
192 |
+
|
193 |
+
|
194 |
+
def forward(self, x, c, freqs_cos, freqs_sin, attn_type, delta_t=None):
|
195 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
196 |
+
self.adaLN_modulation(c).chunk(6, dim=-1)
|
197 |
+
)
|
198 |
+
x = x + gate_msa * self.attn(modulate(self.norm1(x), shift_msa, scale_msa), freqs_cos, freqs_sin, attn_type, delta_t)
|
199 |
+
x = x + gate_mlp * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
|
200 |
+
|
201 |
+
return x
|
202 |
+
|
203 |
+
|
204 |
+
class FinalLayer(nn.Module):
|
205 |
+
"""
|
206 |
+
The final layer of TiM.
|
207 |
+
"""
|
208 |
+
def __init__(self, hidden_size, patch_size, out_channels):
|
209 |
+
super().__init__()
|
210 |
+
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
211 |
+
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
|
212 |
+
self.adaLN_modulation = SwiGLU(
|
213 |
+
in_features=hidden_size, hidden_features=hidden_size//2, out_features=2*hidden_size, bias=True
|
214 |
+
)
|
215 |
+
|
216 |
+
|
217 |
+
def forward(self, x, c):
|
218 |
+
shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1)
|
219 |
+
x = modulate(self.norm_final(x), shift, scale)
|
220 |
+
x = self.linear(x)
|
221 |
+
|
222 |
+
return x
|
223 |
+
|
224 |
+
|
225 |
+
class TiM(nn.Module):
|
226 |
+
def __init__(
|
227 |
+
self,
|
228 |
+
input_size=32,
|
229 |
+
patch_size=2,
|
230 |
+
in_channels=4,
|
231 |
+
hidden_size=1152,
|
232 |
+
encoder_depth=8,
|
233 |
+
depth=28,
|
234 |
+
num_heads=16,
|
235 |
+
mlp_ratio=4.0,
|
236 |
+
class_dropout_prob=0.1,
|
237 |
+
num_classes=1000,
|
238 |
+
z_dim=768,
|
239 |
+
projector_dim=2048,
|
240 |
+
use_checkpoint: bool = False,
|
241 |
+
new_condition: str = 't-r',
|
242 |
+
use_new_embed: bool = False,
|
243 |
+
**block_kwargs # qk_norm
|
244 |
+
):
|
245 |
+
super().__init__()
|
246 |
+
self.in_channels = in_channels
|
247 |
+
self.out_channels = in_channels
|
248 |
+
self.patch_size = patch_size
|
249 |
+
self.num_heads = num_heads
|
250 |
+
self.num_classes = num_classes
|
251 |
+
self.encoder_depth = encoder_depth
|
252 |
+
self.use_checkpoint = use_checkpoint
|
253 |
+
self.new_condition = new_condition
|
254 |
+
self.use_new_embed = use_new_embed
|
255 |
+
|
256 |
+
self.x_embedder = PatchEmbed(
|
257 |
+
input_size, patch_size, in_channels, hidden_size, bias=True, strict_img_size=False
|
258 |
+
)
|
259 |
+
self.t_embedder = TimestepEmbedder(hidden_size) # timestep embedding type
|
260 |
+
if use_new_embed:
|
261 |
+
self.delta_embedder = TimestepEmbedder(hidden_size)
|
262 |
+
self.y_embedder = LabelEmbedder(num_classes, hidden_size, class_dropout_prob)
|
263 |
+
# Will use fixed sin-cos embedding:
|
264 |
+
self.rope = VisionRotaryEmbedding(head_dim=hidden_size//num_heads)
|
265 |
+
|
266 |
+
self.blocks = nn.ModuleList([
|
267 |
+
TiMBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, **block_kwargs) for _ in range(depth)
|
268 |
+
])
|
269 |
+
self.projector = build_mlp(hidden_size, projector_dim, z_dim)
|
270 |
+
self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels)
|
271 |
+
self.initialize_weights()
|
272 |
+
|
273 |
+
def initialize_weights(self):
|
274 |
+
# Initialize transformer layers:
|
275 |
+
def _basic_init(module):
|
276 |
+
if isinstance(module, nn.Linear):
|
277 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
278 |
+
if module.bias is not None:
|
279 |
+
nn.init.constant_(module.bias, 0)
|
280 |
+
self.apply(_basic_init)
|
281 |
+
|
282 |
+
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
|
283 |
+
w = self.x_embedder.proj.weight.data
|
284 |
+
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
|
285 |
+
nn.init.constant_(self.x_embedder.proj.bias, 0)
|
286 |
+
|
287 |
+
# Initialize label embedding table:
|
288 |
+
nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02)
|
289 |
+
|
290 |
+
# Initialize timestep embedding MLP:
|
291 |
+
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
|
292 |
+
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
|
293 |
+
|
294 |
+
# Zero-out adaLN modulation layers in TiM blocks:
|
295 |
+
for block in self.blocks:
|
296 |
+
nn.init.constant_(block.adaLN_modulation.fc2.weight, 0)
|
297 |
+
nn.init.constant_(block.adaLN_modulation.fc2.bias, 0)
|
298 |
+
|
299 |
+
# Zero-out output layers:
|
300 |
+
nn.init.constant_(self.final_layer.adaLN_modulation.fc2.weight, 0)
|
301 |
+
nn.init.constant_(self.final_layer.adaLN_modulation.fc2.bias, 0)
|
302 |
+
|
303 |
+
nn.init.constant_(self.final_layer.linear.weight, 0)
|
304 |
+
nn.init.constant_(self.final_layer.linear.bias, 0)
|
305 |
+
|
306 |
+
def unpatchify(self, x, H, W):
|
307 |
+
"""
|
308 |
+
x: (N, T, patch_size**2 * C)
|
309 |
+
imgs: (N, H, W, C)
|
310 |
+
"""
|
311 |
+
c = self.out_channels
|
312 |
+
p = self.patch_size
|
313 |
+
h, w = int(H/p), int(W/p)
|
314 |
+
|
315 |
+
|
316 |
+
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
|
317 |
+
x = torch.einsum('nhwpqc->nchpwq', x)
|
318 |
+
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
|
319 |
+
return imgs
|
320 |
+
|
321 |
+
def get_rope(self, h, w, attn_type):
|
322 |
+
grid_h = torch.arange(h)
|
323 |
+
grid_w = torch.arange(w)
|
324 |
+
grid = torch.meshgrid(grid_h, grid_w, indexing='xy')
|
325 |
+
grid = torch.stack(grid, dim=0).reshape(2, -1).unsqueeze(0)
|
326 |
+
freqs_cos, freqs_sin = self.rope.get_cached_2d_rope_from_grid(grid)
|
327 |
+
if attn_type == 'flash_attn': # (1, N, 1, d_head)
|
328 |
+
return freqs_cos.unsqueeze(2), freqs_sin.unsqueeze(2)
|
329 |
+
else: # (1, 1, N, d_head)
|
330 |
+
return freqs_cos.unsqueeze(1), freqs_sin.unsqueeze(1)
|
331 |
+
|
332 |
+
|
333 |
+
def forward(self, x, t, r, y, attn_type='flash_attn', return_zs=False, jvp=False):
|
334 |
+
"""
|
335 |
+
Forward pass of TiM.
|
336 |
+
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
|
337 |
+
t: (N,) tensor of diffusion timesteps
|
338 |
+
y: (N,) tensor of class labels
|
339 |
+
"""
|
340 |
+
B, C, H, W = x.shape
|
341 |
+
x = self.x_embedder(x) # (N, T, D), where T = H * W / patch_size ** 2
|
342 |
+
|
343 |
+
# timestep and class embedding
|
344 |
+
t_embed = self.t_embedder(t).unsqueeze(1) # (N, 1, D)
|
345 |
+
delta_embed = self.get_delta_embed(t, r).unsqueeze(1) # (N, 1, D)
|
346 |
+
y = self.y_embedder(y).unsqueeze(1) # (N, 1, D)
|
347 |
+
c = t_embed + delta_embed + y # (N, 1, D)
|
348 |
+
freqs_cos, freqs_sin = self.get_rope(
|
349 |
+
int(H/self.patch_size), int(W/self.patch_size), attn_type
|
350 |
+
)
|
351 |
+
|
352 |
+
for i, block in enumerate(self.blocks):
|
353 |
+
if (not self.use_checkpoint) or jvp:
|
354 |
+
x = block(x, c, freqs_cos, freqs_sin, attn_type, delta_embed) # (N, T, D)
|
355 |
+
else:
|
356 |
+
x = torch.utils.checkpoint.checkpoint(
|
357 |
+
self.ckpt_wrapper(block), x, c, freqs_cos, freqs_sin, attn_type, delta_embed
|
358 |
+
)
|
359 |
+
if (i + 1) == self.encoder_depth:
|
360 |
+
h_proj = self.projector(x)
|
361 |
+
|
362 |
+
x = self.final_layer(x, c) # (N, T, patch_size ** 2 * out_channels)
|
363 |
+
x = self.unpatchify(x, H, W) # (N, out_channels, H, W)
|
364 |
+
|
365 |
+
if return_zs:
|
366 |
+
return x, h_proj
|
367 |
+
else:
|
368 |
+
return x
|
369 |
+
|
370 |
+
def get_delta_embed(self, t, r):
|
371 |
+
if self.use_new_embed:
|
372 |
+
delta_embedder = self.delta_embedder
|
373 |
+
else:
|
374 |
+
delta_embedder = self.t_embedder
|
375 |
+
if self.new_condition == 't-r':
|
376 |
+
delta_embed = delta_embedder(t-r)
|
377 |
+
elif self.new_condition == 'r':
|
378 |
+
delta_embed = delta_embedder(r)
|
379 |
+
elif self.new_condition == 't,r':
|
380 |
+
delta_embed = self.t_embedder(t) + delta_embedder(r)
|
381 |
+
elif self.new_condition == 't,t-r':
|
382 |
+
delta_embed = self.t_embedder(t) + delta_embedder(t-r)
|
383 |
+
elif self.new_condition == 'r,t-r':
|
384 |
+
delta_embed = self.t_embedder(r) + delta_embedder(t-r)
|
385 |
+
elif self.new_condition == 't,r,t-r':
|
386 |
+
delta_embed = self.t_embedder(t) + self.t_embedder(r) + delta_embedder(t-r)
|
387 |
+
else:
|
388 |
+
raise NotImplementedError
|
389 |
+
return delta_embed
|
390 |
+
|
391 |
+
def ckpt_wrapper(self, module):
|
392 |
+
def ckpt_forward(*inputs):
|
393 |
+
outputs = module(*inputs)
|
394 |
+
return outputs
|
395 |
+
return ckpt_forward
|
396 |
+
|
397 |
+
|
398 |
+
@property
|
399 |
+
def dtype(self) -> torch.dtype:
|
400 |
+
"""
|
401 |
+
`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
|
402 |
+
"""
|
403 |
+
return get_parameter_dtype(self)
|
404 |
+
|
405 |
+
|
406 |
+
|
tim/models/nvidia_radio/hubconf.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
dependencies = ["torch", "timm", "einops"]
|
10 |
+
|
11 |
+
import os
|
12 |
+
from typing import Dict, Any, Optional, Union, List
|
13 |
+
import warnings
|
14 |
+
|
15 |
+
import torch
|
16 |
+
from torch.hub import load_state_dict_from_url
|
17 |
+
|
18 |
+
from timm.models import clean_state_dict
|
19 |
+
|
20 |
+
from .radio.adaptor_registry import adaptor_registry
|
21 |
+
from .radio.common import DEFAULT_VERSION, RadioResource, RESOURCE_MAP
|
22 |
+
from .radio.enable_damp import configure_damp_from_args
|
23 |
+
from .radio.enable_spectral_reparam import disable_spectral_reparam, configure_spectral_reparam_from_args
|
24 |
+
from .radio.feature_normalizer import FeatureNormalizer, IntermediateFeatureNormalizer
|
25 |
+
from .radio.radio_model import RADIOModel, create_model_from_args
|
26 |
+
from .radio.input_conditioner import get_default_conditioner
|
27 |
+
from .radio.vitdet import apply_vitdet_arch, VitDetArgs
|
28 |
+
|
29 |
+
|
30 |
+
def radio_model(
|
31 |
+
version: str = "",
|
32 |
+
progress: bool = True,
|
33 |
+
adaptor_names: Union[str, List[str]] = None,
|
34 |
+
vitdet_window_size: Optional[int] = None,
|
35 |
+
return_checkpoint: bool = False,
|
36 |
+
support_packing: bool=False,
|
37 |
+
**kwargs,
|
38 |
+
) -> RADIOModel:
|
39 |
+
if not version:
|
40 |
+
version = DEFAULT_VERSION
|
41 |
+
|
42 |
+
if os.path.isfile(version):
|
43 |
+
chk = torch.load(version, map_location="cpu", weights_only=False)
|
44 |
+
resource = RadioResource(version, patch_size=None, max_resolution=None, preferred_resolution=None)
|
45 |
+
else:
|
46 |
+
resource = RESOURCE_MAP[version]
|
47 |
+
chk = load_state_dict_from_url(
|
48 |
+
resource.url, progress=progress, map_location="cpu", weights_only=False,
|
49 |
+
)
|
50 |
+
|
51 |
+
if "state_dict_ema" in chk:
|
52 |
+
state_dict = chk["state_dict_ema"]
|
53 |
+
chk['args'].spectral_reparam = False
|
54 |
+
else:
|
55 |
+
state_dict = chk["state_dict"]
|
56 |
+
|
57 |
+
args = chk["args"]
|
58 |
+
args.support_packing = support_packing
|
59 |
+
mod = create_model_from_args(args)
|
60 |
+
|
61 |
+
mod_state_dict = get_prefix_state_dict(state_dict, "base_model.")
|
62 |
+
|
63 |
+
if args.spectral_reparam:
|
64 |
+
configure_spectral_reparam_from_args(mod, args, state_dict_guidance=mod_state_dict)
|
65 |
+
|
66 |
+
if getattr(args, 'damp', None):
|
67 |
+
configure_damp_from_args(mod, args)
|
68 |
+
|
69 |
+
state_dict = clean_state_dict(state_dict)
|
70 |
+
|
71 |
+
key_warn = mod.load_state_dict(mod_state_dict, strict=False)
|
72 |
+
if key_warn.missing_keys:
|
73 |
+
warnings.warn(f'Missing keys in state dict: {key_warn.missing_keys}')
|
74 |
+
if key_warn.unexpected_keys:
|
75 |
+
warnings.warn(f'Unexpected keys in state dict: {key_warn.unexpected_keys}')
|
76 |
+
|
77 |
+
if chk['args'].spectral_reparam:
|
78 |
+
# Spectral reparametrization uses PyTorch's "parametrizations" API. The idea behind
|
79 |
+
# the method is that instead of there being a `weight` tensor for certain Linear layers
|
80 |
+
# in the model, we make it a dynamically computed function. During training, this
|
81 |
+
# helps stabilize the model. However, for downstream use cases, it shouldn't be necessary.
|
82 |
+
# Disabling it in this context means that instead of having `w' = f(w)`, we just compute `w' = f(w)`
|
83 |
+
# once, during this function call, and replace the parametrization with the realized weights.
|
84 |
+
# This makes the model run faster, and also use less memory.
|
85 |
+
disable_spectral_reparam(mod)
|
86 |
+
chk['args'].spectral_reparam = False
|
87 |
+
|
88 |
+
conditioner = get_default_conditioner()
|
89 |
+
conditioner.load_state_dict(get_prefix_state_dict(state_dict, "input_conditioner."))
|
90 |
+
|
91 |
+
dtype = getattr(chk['args'], 'dtype', torch.float32)
|
92 |
+
mod.to(dtype=dtype)
|
93 |
+
conditioner.dtype = dtype
|
94 |
+
|
95 |
+
cls_token_per_teacher = getattr(chk['args'], 'cls_token_per_teacher', True)
|
96 |
+
if cls_token_per_teacher:
|
97 |
+
name_to_idx_map = dict()
|
98 |
+
for i, t in enumerate(chk['args'].teachers):
|
99 |
+
if t.get('use_summary', True):
|
100 |
+
name = t['name']
|
101 |
+
if name not in name_to_idx_map:
|
102 |
+
name_to_idx_map[name] = i
|
103 |
+
summary_idxs = torch.tensor(sorted(name_to_idx_map.values()), dtype=torch.int64)
|
104 |
+
else:
|
105 |
+
summary_idxs = torch.tensor([0], dtype=torch.int64)
|
106 |
+
|
107 |
+
if adaptor_names is None:
|
108 |
+
adaptor_names = []
|
109 |
+
elif isinstance(adaptor_names, str):
|
110 |
+
adaptor_names = [adaptor_names]
|
111 |
+
|
112 |
+
teachers = chk["args"].teachers
|
113 |
+
adaptors = dict()
|
114 |
+
for adaptor_name in adaptor_names:
|
115 |
+
for tidx, tconf in enumerate(teachers):
|
116 |
+
if tconf["name"] == adaptor_name:
|
117 |
+
break
|
118 |
+
else:
|
119 |
+
raise ValueError(f'Unable to find the specified adaptor name. Known names: {list(t["name"] for t in teachers)}')
|
120 |
+
|
121 |
+
ttype = tconf["type"]
|
122 |
+
|
123 |
+
pf_idx_head = f'_heads.{tidx}'
|
124 |
+
pf_name_head = f'_heads.{adaptor_name}'
|
125 |
+
pf_idx_feat = f'_feature_projections.{tidx}'
|
126 |
+
pf_name_feat = f'_feature_projections.{adaptor_name}'
|
127 |
+
|
128 |
+
adaptor_state = dict()
|
129 |
+
for k, v in state_dict.items():
|
130 |
+
if k.startswith(pf_idx_head):
|
131 |
+
adaptor_state['summary' + k[len(pf_idx_head):]] = v
|
132 |
+
elif k.startswith(pf_name_head):
|
133 |
+
adaptor_state['summary' + k[len(pf_name_head):]] = v
|
134 |
+
elif k.startswith(pf_idx_feat):
|
135 |
+
adaptor_state['feature' + k[len(pf_idx_feat):]] = v
|
136 |
+
elif k.startswith(pf_name_feat):
|
137 |
+
adaptor_state['feature' + k[len(pf_name_feat):]] = v
|
138 |
+
|
139 |
+
adaptor = adaptor_registry.create_adaptor(ttype, chk["args"], tconf, adaptor_state)
|
140 |
+
adaptor.head_idx = tidx if cls_token_per_teacher else 0
|
141 |
+
adaptors[adaptor_name] = adaptor
|
142 |
+
|
143 |
+
feat_norm_sd = get_prefix_state_dict(state_dict, '_feature_normalizer.')
|
144 |
+
feature_normalizer = None
|
145 |
+
if feat_norm_sd:
|
146 |
+
feature_normalizer = FeatureNormalizer(feat_norm_sd['mean'].shape[0], dtype=dtype)
|
147 |
+
feature_normalizer.load_state_dict(feat_norm_sd)
|
148 |
+
|
149 |
+
inter_feat_norm_sd = get_prefix_state_dict(state_dict, '_intermediate_feature_normalizer.')
|
150 |
+
inter_feature_normalizer = None
|
151 |
+
if inter_feat_norm_sd:
|
152 |
+
inter_feature_normalizer = IntermediateFeatureNormalizer(
|
153 |
+
*inter_feat_norm_sd['means'].shape[:2],
|
154 |
+
rot_per_layer=inter_feat_norm_sd['rotation'].ndim == 3,
|
155 |
+
dtype=dtype
|
156 |
+
)
|
157 |
+
inter_feature_normalizer.load_state_dict(inter_feat_norm_sd)
|
158 |
+
|
159 |
+
radio = RADIOModel(
|
160 |
+
mod,
|
161 |
+
conditioner,
|
162 |
+
summary_idxs=summary_idxs,
|
163 |
+
patch_size=resource.patch_size,
|
164 |
+
max_resolution=resource.max_resolution,
|
165 |
+
window_size=vitdet_window_size,
|
166 |
+
preferred_resolution=resource.preferred_resolution,
|
167 |
+
adaptors=adaptors,
|
168 |
+
feature_normalizer=feature_normalizer,
|
169 |
+
inter_feature_normalizer=inter_feature_normalizer,
|
170 |
+
)
|
171 |
+
|
172 |
+
if vitdet_window_size is not None:
|
173 |
+
apply_vitdet_arch(
|
174 |
+
mod,
|
175 |
+
VitDetArgs(
|
176 |
+
vitdet_window_size,
|
177 |
+
radio.num_summary_tokens,
|
178 |
+
num_windowed=resource.vitdet_num_windowed,
|
179 |
+
num_global=resource.vitdet_num_global,
|
180 |
+
),
|
181 |
+
)
|
182 |
+
|
183 |
+
if return_checkpoint:
|
184 |
+
return radio, chk
|
185 |
+
return radio
|
186 |
+
|
187 |
+
|
188 |
+
def get_prefix_state_dict(state_dict: Dict[str, Any], prefix: str):
|
189 |
+
mod_state_dict = {
|
190 |
+
k[len(prefix) :]: v for k, v in state_dict.items() if k.startswith(prefix)
|
191 |
+
}
|
192 |
+
return mod_state_dict
|
tim/models/nvidia_radio/radio/__init__.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
# Register the adaptors
|
10 |
+
from .adaptor_registry import adaptor_registry
|
11 |
+
from . import open_clip_adaptor
|
12 |
+
from .adaptor_base import AdaptorInput, RadioOutput, AdaptorBase
|
13 |
+
|
14 |
+
# Enable support for other model types via the timm register_model mechanism
|
15 |
+
from . import extra_timm_models
|
16 |
+
from . import extra_models
|
17 |
+
from . import vision_transformer_xpos
|
tim/models/nvidia_radio/radio/adaptor_base.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
from argparse import Namespace
|
9 |
+
from typing import NamedTuple, Optional
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from torch import nn
|
13 |
+
import torch.nn.functional as F
|
14 |
+
|
15 |
+
|
16 |
+
class AdaptorInput(NamedTuple):
|
17 |
+
images: torch.Tensor
|
18 |
+
summary: torch.Tensor
|
19 |
+
features: torch.Tensor
|
20 |
+
feature_fmt: str
|
21 |
+
patch_size: int
|
22 |
+
|
23 |
+
|
24 |
+
class RadioOutput(NamedTuple):
|
25 |
+
summary: torch.Tensor
|
26 |
+
features: torch.Tensor
|
27 |
+
|
28 |
+
def to(self, *args, **kwargs):
|
29 |
+
return RadioOutput(
|
30 |
+
self.summary.to(*args, **kwargs) if self.summary is not None else None,
|
31 |
+
self.features.to(*args, **kwargs) if self.features is not None else None,
|
32 |
+
)
|
33 |
+
|
34 |
+
|
35 |
+
class AdaptorBase(nn.Module):
|
36 |
+
def forward(self, input: AdaptorInput) -> RadioOutput:
|
37 |
+
raise NotImplementedError("Subclasses must implement this!")
|
tim/models/nvidia_radio/radio/adaptor_generic.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
from argparse import Namespace
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from torch import nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
from .adaptor_base import AdaptorBase, AdaptorInput, RadioOutput
|
15 |
+
from .adaptor_mlp import create_mlp_from_state, create_mlp_from_config
|
16 |
+
|
17 |
+
|
18 |
+
class GenericAdaptor(AdaptorBase):
|
19 |
+
def __init__(self, main_config: Namespace, adaptor_config, state, mlp_config=None):
|
20 |
+
super().__init__()
|
21 |
+
|
22 |
+
extra_args = dict()
|
23 |
+
ups = None
|
24 |
+
ups_rank = None
|
25 |
+
if adaptor_config is not None:
|
26 |
+
ups = adaptor_config.get('fd_upsample_factor', None)
|
27 |
+
ups_rank = adaptor_config.get('fd_upsample_rank', None)
|
28 |
+
elif mlp_config is not None:
|
29 |
+
ups = mlp_config["feature"].get('upsample_factor', None)
|
30 |
+
ups_rank = mlp_config["feature"].get('upsample_rank', None)
|
31 |
+
if ups is not None:
|
32 |
+
extra_args['upsample_factor'] = ups
|
33 |
+
extra_args['upsample_rank'] = ups_rank
|
34 |
+
|
35 |
+
if state is not None:
|
36 |
+
spectral_heads = getattr(main_config, 'spectral_heads', False)
|
37 |
+
self.head_mlp = create_mlp_from_state(main_config.mlp_version, state, 'summary.', spectral_weights=spectral_heads)
|
38 |
+
self.feat_mlp = create_mlp_from_state(main_config.mlp_version, state, 'feature.', spectral_weights=spectral_heads, **extra_args)
|
39 |
+
else:
|
40 |
+
assert mlp_config is not None, "Config must not be None if state is None"
|
41 |
+
|
42 |
+
self.head_mlp = create_mlp_from_config(
|
43 |
+
main_config.mlp_version,
|
44 |
+
mlp_config["summary"]["input_dim"],
|
45 |
+
mlp_config["summary"]["hidden_dim"],
|
46 |
+
mlp_config["summary"]["output_dim"],
|
47 |
+
mlp_config["summary"]["num_inner"],
|
48 |
+
)
|
49 |
+
self.feat_mlp = create_mlp_from_config(
|
50 |
+
main_config.mlp_version,
|
51 |
+
mlp_config["feature"]["input_dim"],
|
52 |
+
mlp_config["feature"]["hidden_dim"],
|
53 |
+
mlp_config["feature"]["output_dim"],
|
54 |
+
mlp_config["feature"]["num_inner"],
|
55 |
+
**extra_args
|
56 |
+
)
|
57 |
+
|
58 |
+
def forward(self, input: AdaptorInput) -> RadioOutput:
|
59 |
+
# Convert input'd type to the type of the first parameter of the adaptor.
|
60 |
+
first_param = next(self.parameters())
|
61 |
+
summary = self.head_mlp(input.summary.to(dtype=first_param.dtype)).to(dtype=input.summary.dtype)
|
62 |
+
feat = self.feat_mlp(input.features.to(dtype=first_param.dtype), images=input.images, patch_size=input.patch_size).to(dtype=input.features.dtype)
|
63 |
+
|
64 |
+
if input.feature_fmt == 'NCHW':
|
65 |
+
feat = (feat.reshape(feat.shape[0], input.images.shape[-2] // input.patch_size * self.feat_mlp.upsample_factor, input.images.shape[-1] // input.patch_size * self.feat_mlp.upsample_factor, feat.shape[2])
|
66 |
+
.permute(0, 3, 1, 2)
|
67 |
+
)
|
68 |
+
|
69 |
+
return RadioOutput(summary, feat)
|
tim/models/nvidia_radio/radio/adaptor_mlp.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
import math
|
9 |
+
from typing import Dict, Optional
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from torch import nn
|
13 |
+
|
14 |
+
from einops import rearrange
|
15 |
+
from timm.models.vision_transformer import Block
|
16 |
+
|
17 |
+
from .enable_spectral_reparam import disable_spectral_reparam, enable_spectral_reparam
|
18 |
+
|
19 |
+
|
20 |
+
class MLP(nn.Module):
|
21 |
+
def __init__(self, input_size: int, hidden_size: int, output_size: int,
|
22 |
+
num_inner: int = 0, device: torch.device = None, **kwargs):
|
23 |
+
super(MLP, self).__init__()
|
24 |
+
self.fc1 = nn.Linear(input_size, hidden_size, device=device)
|
25 |
+
self.norm = nn.LayerNorm(hidden_size, device=device)
|
26 |
+
self.relu = nn.ReLU()
|
27 |
+
|
28 |
+
inner = []
|
29 |
+
for _ in range(num_inner):
|
30 |
+
inner.extend([
|
31 |
+
nn.Linear(hidden_size, hidden_size, device=device),
|
32 |
+
nn.LayerNorm(hidden_size, device=device),
|
33 |
+
nn.ReLU(),
|
34 |
+
])
|
35 |
+
if inner:
|
36 |
+
self.inner = nn.Sequential(*inner)
|
37 |
+
else:
|
38 |
+
self.inner = nn.Identity()
|
39 |
+
|
40 |
+
self.fc2 = nn.Linear(hidden_size, output_size, device=device)
|
41 |
+
|
42 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
43 |
+
x = self.fc1(x)
|
44 |
+
x = self.norm(x)
|
45 |
+
x = self.relu(x)
|
46 |
+
x = self.inner(x)
|
47 |
+
x = self.fc2(x)
|
48 |
+
return x
|
49 |
+
|
50 |
+
|
51 |
+
class MLP2(nn.Module):
|
52 |
+
def __init__(self, input_size: int, hidden_size: int, output_size: int,
|
53 |
+
num_inner: int = 0,
|
54 |
+
pre_norm: bool = False, device: torch.device = None,
|
55 |
+
upsample_factor: int = 1,
|
56 |
+
upsample_rank: int = None,
|
57 |
+
from_config: bool = False,
|
58 |
+
**kwargs):
|
59 |
+
super().__init__()
|
60 |
+
|
61 |
+
self.pre_norm = nn.Sequential(
|
62 |
+
nn.LayerNorm(input_size),
|
63 |
+
nn.GELU(),
|
64 |
+
) if pre_norm else nn.Identity()
|
65 |
+
|
66 |
+
self.upsample_factor = upsample_factor
|
67 |
+
sq_ups = upsample_factor ** 2
|
68 |
+
|
69 |
+
self._real_output_dim = output_size // sq_ups
|
70 |
+
|
71 |
+
# hidden_size *= upsample_factor
|
72 |
+
# output_size *= (upsample_factor ** 2)
|
73 |
+
|
74 |
+
self.fc1 = nn.Linear(input_size, hidden_size, device=device)
|
75 |
+
|
76 |
+
blocks = []
|
77 |
+
for _ in range(num_inner):
|
78 |
+
blocks.append(nn.Sequential(
|
79 |
+
nn.LayerNorm(hidden_size, device=device),
|
80 |
+
nn.GELU(),
|
81 |
+
nn.Linear(hidden_size, hidden_size, device=device),
|
82 |
+
))
|
83 |
+
self.blocks = nn.ModuleList(blocks)
|
84 |
+
|
85 |
+
self.final = nn.Sequential(
|
86 |
+
nn.LayerNorm(hidden_size, device=device),
|
87 |
+
nn.GELU(),
|
88 |
+
nn.Linear(hidden_size, output_size, device=device),
|
89 |
+
)
|
90 |
+
|
91 |
+
def forward(self, x: torch.Tensor, images: Optional[torch.Tensor] = None, patch_size: Optional[int] = None) -> torch.Tensor:
|
92 |
+
x = self.pre_norm(x)
|
93 |
+
x = self.fc1(x)
|
94 |
+
for block in self.blocks:
|
95 |
+
x = x + block(x)
|
96 |
+
x = self.final(x)
|
97 |
+
|
98 |
+
if self.upsample_factor > 1:
|
99 |
+
if images is None:
|
100 |
+
raise ValueError(f'`images` cannot be `None` when the head\'s `upsample_factor > 1`!')
|
101 |
+
if patch_size is None:
|
102 |
+
raise ValueError(f'`patch_size` cannot be `None` when the head\'s `upsample_factor > 1`!')
|
103 |
+
h, w = tuple(d // patch_size for d in images.shape[-2:])
|
104 |
+
x = rearrange(x, 'b (h w) (u1 u2 c) -> b (h u1 w u2) c',
|
105 |
+
h=h, w=w, u1=self.upsample_factor, u2=self.upsample_factor,
|
106 |
+
c=self._real_output_dim)
|
107 |
+
|
108 |
+
return x
|
109 |
+
|
110 |
+
|
111 |
+
MLP_FACTORY = {
|
112 |
+
'v1': MLP,
|
113 |
+
'v2': MLP2,
|
114 |
+
}
|
115 |
+
|
116 |
+
|
117 |
+
def strip_prefix(state: Dict[str, torch.Tensor], prefix: str):
|
118 |
+
state = {
|
119 |
+
k[len(prefix):]: v
|
120 |
+
for k, v in state.items()
|
121 |
+
if k.startswith(prefix)
|
122 |
+
}
|
123 |
+
return state
|
124 |
+
|
125 |
+
|
126 |
+
def get_mlp_info_from_state(version: str, state: Dict[str, torch.Tensor], prefix: str = '', spectral_weights: bool = False):
|
127 |
+
state = strip_prefix(state, prefix)
|
128 |
+
|
129 |
+
weight_suffix = 'weight' if not spectral_weights else 'parametrizations.weight.original'
|
130 |
+
|
131 |
+
if version == 'v1':
|
132 |
+
hidden_dim, input_dim = state[f'fc1.{weight_suffix}'].shape
|
133 |
+
output_dim = state[f'fc2.{weight_suffix}'].shape[0]
|
134 |
+
|
135 |
+
for num_inner in range(1000):
|
136 |
+
k = f'inner.{num_inner}.0.weight'
|
137 |
+
if k not in state:
|
138 |
+
break
|
139 |
+
elif version == 'v2':
|
140 |
+
hidden_dim, input_dim = state[f'fc1.{weight_suffix}'].shape
|
141 |
+
output_dim = state[f'final.2.{weight_suffix}'].shape[0]
|
142 |
+
|
143 |
+
for num_inner in range(1000):
|
144 |
+
k = f'blocks.{num_inner}.0.weight'
|
145 |
+
if k not in state:
|
146 |
+
break
|
147 |
+
else:
|
148 |
+
raise ValueError(f'Unsupported MLP version: {version}')
|
149 |
+
|
150 |
+
return input_dim, hidden_dim, output_dim, num_inner
|
151 |
+
|
152 |
+
|
153 |
+
def create_mlp_from_config(version: str, input_dim: int, hidden_dim: int, output_dim: int, num_inner: int, **kwargs):
|
154 |
+
ret: nn.Module = MLP_FACTORY[version](input_dim, hidden_dim, output_dim, num_inner, from_config=True, **kwargs)
|
155 |
+
|
156 |
+
return ret
|
157 |
+
|
158 |
+
|
159 |
+
def create_mlp_from_state(version: str, state: Dict[str, torch.Tensor], prefix: str = '', spectral_weights: bool = False, **kwargs):
|
160 |
+
state = strip_prefix(state, prefix)
|
161 |
+
|
162 |
+
input_dim, hidden_dim, output_dim, num_inner = get_mlp_info_from_state(version, state, spectral_weights=spectral_weights)
|
163 |
+
|
164 |
+
ret: nn.Module = create_mlp_from_config(version, input_dim, hidden_dim, output_dim, num_inner, **kwargs)
|
165 |
+
|
166 |
+
if spectral_weights:
|
167 |
+
enable_spectral_reparam(ret, init_norm_to_current=False, state_dict_guidance=state)
|
168 |
+
|
169 |
+
ret.load_state_dict(state)
|
170 |
+
|
171 |
+
if spectral_weights:
|
172 |
+
disable_spectral_reparam(ret)
|
173 |
+
|
174 |
+
return ret
|
tim/models/nvidia_radio/radio/adaptor_registry.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
from argparse import Namespace
|
9 |
+
from typing import Dict, Any
|
10 |
+
|
11 |
+
import torch
|
12 |
+
|
13 |
+
from .adaptor_generic import GenericAdaptor, AdaptorBase
|
14 |
+
|
15 |
+
dict_t = Dict[str, Any]
|
16 |
+
state_t = Dict[str, torch.Tensor]
|
17 |
+
|
18 |
+
|
19 |
+
class AdaptorRegistry:
|
20 |
+
def __init__(self):
|
21 |
+
self._registry = {}
|
22 |
+
|
23 |
+
def register_adaptor(self, name):
|
24 |
+
def decorator(factory_function):
|
25 |
+
if name in self._registry:
|
26 |
+
raise ValueError(f"Model '{name}' already registered")
|
27 |
+
self._registry[name] = factory_function
|
28 |
+
return factory_function
|
29 |
+
return decorator
|
30 |
+
|
31 |
+
def create_adaptor(self, name, main_config: Namespace, adaptor_config: dict_t, state: state_t) -> AdaptorBase:
|
32 |
+
if name not in self._registry:
|
33 |
+
return GenericAdaptor(main_config, adaptor_config, state)
|
34 |
+
return self._registry[name](main_config, adaptor_config, state)
|
35 |
+
|
36 |
+
# Creating an instance of the registry
|
37 |
+
adaptor_registry = AdaptorRegistry()
|
tim/models/nvidia_radio/radio/block.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
2 |
+
"""
|
3 |
+
Block modules
|
4 |
+
"""
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from timm.models.layers import DropPath
|
9 |
+
|
10 |
+
from .conv import Conv
|
11 |
+
# from .transformer import TransformerBlock
|
12 |
+
|
13 |
+
__all__ = ('C2f', 'Bottleneck',)
|
14 |
+
|
15 |
+
class C2f(nn.Module):
|
16 |
+
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
|
17 |
+
|
18 |
+
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, drop_path=None): # ch_in, ch_out, number, shortcut, groups, expansion
|
19 |
+
super().__init__()
|
20 |
+
if drop_path is None:
|
21 |
+
drop_path = [0.0] * n
|
22 |
+
|
23 |
+
self.c = int(c2 * e) # hidden channels
|
24 |
+
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
25 |
+
self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
|
26 |
+
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0, drop_path=drop_path[i]) for i in range(n))
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
"""Forward pass through C2f layer."""
|
30 |
+
y = list(self.cv1(x).chunk(2, 1))
|
31 |
+
y.extend(m(y[-1]) for m in self.m)
|
32 |
+
return self.cv2(torch.cat(y, 1))
|
33 |
+
|
34 |
+
def forward_split(self, x):
|
35 |
+
"""Forward pass using split() instead of chunk()."""
|
36 |
+
y = list(self.cv1(x).split((self.c, self.c), 1))
|
37 |
+
y.extend(m(y[-1]) for m in self.m)
|
38 |
+
return self.cv2(torch.cat(y, 1))
|
39 |
+
|
40 |
+
|
41 |
+
class Bottleneck(nn.Module):
|
42 |
+
"""Standard bottleneck."""
|
43 |
+
|
44 |
+
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5, drop_path=0.0): # ch_in, ch_out, shortcut, groups, kernels, expand
|
45 |
+
super().__init__()
|
46 |
+
c_ = int(c2 * e) # hidden channels
|
47 |
+
self.cv1 = Conv(c1, c_, k[0], 1)
|
48 |
+
self.cv2 = Conv(c_, c2, k[1], 1, g=g)
|
49 |
+
self.add = shortcut and c1 == c2
|
50 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
"""'forward()' applies the YOLOv5 FPN to input data."""
|
54 |
+
return x + self.drop_path1(self.cv2(self.cv1(x))) if self.add else self.cv2(self.cv1(x))
|
tim/models/nvidia_radio/radio/cls_token.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
from typing import Optional
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from torch import nn
|
12 |
+
|
13 |
+
|
14 |
+
class ClsToken(nn.Module):
|
15 |
+
def __init__(self, ndim: int,
|
16 |
+
num_tokens: int = 1,
|
17 |
+
enabled: bool = True,
|
18 |
+
register_multiple: Optional[int] = None,
|
19 |
+
num_registers: Optional[int] = None,
|
20 |
+
):
|
21 |
+
super().__init__()
|
22 |
+
|
23 |
+
self.ndim = ndim
|
24 |
+
self.enabled = enabled
|
25 |
+
self.num_registers = 0
|
26 |
+
self.num_tokens = num_tokens
|
27 |
+
if enabled:
|
28 |
+
if num_registers:
|
29 |
+
self.num_registers = num_registers
|
30 |
+
elif register_multiple:
|
31 |
+
self.num_registers = register_multiple - (num_tokens % register_multiple)
|
32 |
+
|
33 |
+
scale = ndim ** -0.5
|
34 |
+
self.token = nn.Parameter(torch.randn(num_tokens + self.num_registers, ndim) * scale)
|
35 |
+
else:
|
36 |
+
self.token = None
|
37 |
+
|
38 |
+
self.num_patches = self.num_tokens + self.num_registers
|
39 |
+
|
40 |
+
def disable(self):
|
41 |
+
self.token = None
|
42 |
+
self.enabled = False
|
43 |
+
|
44 |
+
def forward(self, x: torch.Tensor):
|
45 |
+
if self.token is None:
|
46 |
+
return x
|
47 |
+
|
48 |
+
token = self.token.unsqueeze(0).expand(x.shape[0], -1, -1)
|
49 |
+
x = torch.cat([
|
50 |
+
token,
|
51 |
+
x,
|
52 |
+
], dim=1)
|
53 |
+
|
54 |
+
return x
|
55 |
+
|
56 |
+
def no_weight_decay(self):
|
57 |
+
return [
|
58 |
+
'token',
|
59 |
+
]
|
tim/models/nvidia_radio/radio/common.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
from dataclasses import dataclass
|
10 |
+
from typing import Optional
|
11 |
+
|
12 |
+
from .radio_model import Resolution
|
13 |
+
|
14 |
+
|
15 |
+
@dataclass
|
16 |
+
class RadioResource:
|
17 |
+
url: str
|
18 |
+
patch_size: int
|
19 |
+
max_resolution: int
|
20 |
+
preferred_resolution: Resolution
|
21 |
+
vitdet_num_windowed: Optional[int] = None
|
22 |
+
vitdet_num_global: Optional[int] = None
|
23 |
+
|
24 |
+
|
25 |
+
RESOURCE_MAP = {
|
26 |
+
# RADIOv2.5
|
27 |
+
"radio_v2.5-b": RadioResource(
|
28 |
+
"https://huggingface.co/nvidia/RADIO/resolve/main/radio-v2.5-b_half.pth.tar?download=true",
|
29 |
+
patch_size=16,
|
30 |
+
max_resolution=2048,
|
31 |
+
preferred_resolution=(768, 768),
|
32 |
+
vitdet_num_global=4,
|
33 |
+
),
|
34 |
+
"radio_v2.5-l": RadioResource(
|
35 |
+
"https://huggingface.co/nvidia/RADIO/resolve/main/radio-v2.5-l_half.pth.tar?download=true",
|
36 |
+
patch_size=16,
|
37 |
+
max_resolution=2048,
|
38 |
+
preferred_resolution=(768, 768),
|
39 |
+
vitdet_num_global=4,
|
40 |
+
),
|
41 |
+
"radio_v2.5-h": RadioResource(
|
42 |
+
"https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.5-h.pth.tar?download=true",
|
43 |
+
patch_size=16,
|
44 |
+
max_resolution=2048,
|
45 |
+
preferred_resolution=(768, 768),
|
46 |
+
vitdet_num_global=4,
|
47 |
+
),
|
48 |
+
"radio_v2.5-h-norm": RadioResource(
|
49 |
+
"https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.5-h-norm.pth.tar?download=true",
|
50 |
+
patch_size=16,
|
51 |
+
max_resolution=2048,
|
52 |
+
preferred_resolution=(768, 768),
|
53 |
+
vitdet_num_global=4,
|
54 |
+
),
|
55 |
+
"radio_v2.5-g": RadioResource(
|
56 |
+
"https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.5-g.pth.tar?download=true",
|
57 |
+
patch_size=14,
|
58 |
+
max_resolution=1792,
|
59 |
+
preferred_resolution=(896, 896),
|
60 |
+
vitdet_num_global=8,
|
61 |
+
),
|
62 |
+
# RADIO
|
63 |
+
"radio_v2.1": RadioResource(
|
64 |
+
"https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.1_bf16.pth.tar?download=true",
|
65 |
+
patch_size=16,
|
66 |
+
max_resolution=2048,
|
67 |
+
preferred_resolution=Resolution(432, 432),
|
68 |
+
vitdet_num_windowed=5,
|
69 |
+
),
|
70 |
+
"radio_v2": RadioResource(
|
71 |
+
"https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.pth.tar?download=true",
|
72 |
+
patch_size=16,
|
73 |
+
max_resolution=2048,
|
74 |
+
preferred_resolution=Resolution(432, 432),
|
75 |
+
vitdet_num_windowed=5,
|
76 |
+
),
|
77 |
+
"radio_v1": RadioResource(
|
78 |
+
"https://huggingface.co/nvidia/RADIO/resolve/main/radio_v1.pth.tar?download=true",
|
79 |
+
patch_size=14,
|
80 |
+
max_resolution=1050,
|
81 |
+
preferred_resolution=Resolution(378, 378),
|
82 |
+
),
|
83 |
+
# E-RADIO
|
84 |
+
"e-radio_v2": RadioResource(
|
85 |
+
"https://huggingface.co/nvidia/RADIO/resolve/main/eradio_v2.pth.tar?download=true",
|
86 |
+
patch_size=16,
|
87 |
+
max_resolution=2048,
|
88 |
+
preferred_resolution=Resolution(512, 512),
|
89 |
+
),
|
90 |
+
# C-RADIO
|
91 |
+
"c-radio_v2.5-g": RadioResource(
|
92 |
+
"https://huggingface.co/nvidia/C-RADIOv2-g/resolve/main/c-radio_v2-g_half.pth.tar",
|
93 |
+
patch_size=16,
|
94 |
+
max_resolution=2048,
|
95 |
+
preferred_resolution=(768, 768),
|
96 |
+
vitdet_num_global=8,
|
97 |
+
),
|
98 |
+
"c-radio_v3-l": RadioResource(
|
99 |
+
# NOTE: Currently, this model cannot be loaded via TorchHub. Instead, use the transformers API at https://huggingface.co/nvidia/C-RADIOv3-L
|
100 |
+
# and accept the license terms.
|
101 |
+
"https://huggingface.co/nvidia/C-RADIOv3-L/resolve/main/c-radio-v3_l_half.pth.tar?download=true",
|
102 |
+
patch_size=16,
|
103 |
+
max_resolution=2048,
|
104 |
+
preferred_resolution=Resolution(512, 512),
|
105 |
+
),
|
106 |
+
}
|
107 |
+
|
108 |
+
DEFAULT_VERSION = "radio_v2.5-h"
|
tim/models/nvidia_radio/radio/conv.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
2 |
+
"""
|
3 |
+
Convolution modules
|
4 |
+
"""
|
5 |
+
|
6 |
+
import math
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
|
12 |
+
__all__ = ('Conv', 'LightConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus', 'GhostConv',
|
13 |
+
'ChannelAttention', 'SpatialAttention', 'CBAM', 'Concat', 'RepConv')
|
14 |
+
|
15 |
+
|
16 |
+
def autopad(k, p=None, d=1): # kernel, padding, dilation
|
17 |
+
"""Pad to 'same' shape outputs."""
|
18 |
+
if d > 1:
|
19 |
+
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
|
20 |
+
if p is None:
|
21 |
+
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
22 |
+
return p
|
23 |
+
|
24 |
+
# Pavlo's implementation with switch to deploy
|
25 |
+
class Conv(nn.Module):
|
26 |
+
default_act = nn.SiLU() # default activation
|
27 |
+
|
28 |
+
def __init__(self, a, b, kernel_size=1, stride=1, padding=None, g=1, dilation=1, bn_weight_init=1, bias=False, act=True):
|
29 |
+
super().__init__()
|
30 |
+
|
31 |
+
self.conv = torch.nn.Conv2d(a, b, kernel_size, stride, autopad(kernel_size, padding, dilation), dilation, g, bias=False)
|
32 |
+
if 1:
|
33 |
+
self.bn = torch.nn.BatchNorm2d(b)
|
34 |
+
torch.nn.init.constant_(self.bn.weight, bn_weight_init)
|
35 |
+
torch.nn.init.constant_(self.bn.bias, 0)
|
36 |
+
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
37 |
+
|
38 |
+
|
39 |
+
def forward(self,x):
|
40 |
+
x = self.conv(x)
|
41 |
+
x = self.bn(x)
|
42 |
+
x = self.act(x)
|
43 |
+
return x
|
44 |
+
|
45 |
+
@torch.no_grad()
|
46 |
+
def switch_to_deploy(self):
|
47 |
+
if not isinstance(self.bn, nn.Identity):
|
48 |
+
# return 1
|
49 |
+
c, bn = self.conv, self.bn
|
50 |
+
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
|
51 |
+
w = c.weight * w[:, None, None, None]
|
52 |
+
b = bn.bias - bn.running_mean * bn.weight / \
|
53 |
+
(bn.running_var + bn.eps)**0.5
|
54 |
+
# m = torch.nn.Conv2d(w.size(1) * c.groups,
|
55 |
+
# w.size(0),
|
56 |
+
# w.shape[2:],
|
57 |
+
# stride=c.stride,
|
58 |
+
# padding=c.padding,
|
59 |
+
# dilation=c.dilation,
|
60 |
+
# groups=c.groups)
|
61 |
+
self.conv.weight.data.copy_(w)
|
62 |
+
self.conv.bias = nn.Parameter(b)
|
63 |
+
# self.conv.bias.data.copy_(b)
|
64 |
+
# self.conv = m.to(c.weight.device)
|
65 |
+
self.bn = nn.Identity()
|
tim/models/nvidia_radio/radio/dinov2_arch.py
ADDED
@@ -0,0 +1,1016 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
# References:
|
7 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
8 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
|
9 |
+
|
10 |
+
# Nvidia
|
11 |
+
# NOTE: We re-define this model architecture primarily so that we don't have to worry about version compatibility breaking,
|
12 |
+
# but also because Huggingface does a string replace of `gamma` to something else when loading the model state,
|
13 |
+
# and this breaks loading of this model.
|
14 |
+
|
15 |
+
from enum import Enum
|
16 |
+
from functools import partial
|
17 |
+
import logging
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import sys
|
21 |
+
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union
|
22 |
+
import warnings
|
23 |
+
|
24 |
+
import torch
|
25 |
+
from torch import nn
|
26 |
+
from torch.nn import functional as F
|
27 |
+
from torch.nn.init import trunc_normal_
|
28 |
+
|
29 |
+
_torch_has_sdpa = hasattr(F, 'scaled_dot_product_attention')
|
30 |
+
|
31 |
+
|
32 |
+
XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None
|
33 |
+
try:
|
34 |
+
if XFORMERS_ENABLED:
|
35 |
+
from xformers.ops import fmha, scaled_index_add, index_select_cat, SwiGLU, memory_efficient_attention, unbind
|
36 |
+
|
37 |
+
XFORMERS_AVAILABLE = True
|
38 |
+
else:
|
39 |
+
raise ImportError
|
40 |
+
except ImportError:
|
41 |
+
XFORMERS_AVAILABLE = False
|
42 |
+
|
43 |
+
|
44 |
+
def make_2tuple(x):
|
45 |
+
if isinstance(x, tuple):
|
46 |
+
assert len(x) == 2
|
47 |
+
return x
|
48 |
+
|
49 |
+
assert isinstance(x, int)
|
50 |
+
return (x, x)
|
51 |
+
|
52 |
+
|
53 |
+
class PatchEmbed(nn.Module):
|
54 |
+
"""
|
55 |
+
2D image to patch embedding: (B,C,H,W) -> (B,N,D)
|
56 |
+
|
57 |
+
Args:
|
58 |
+
img_size: Image size.
|
59 |
+
patch_size: Patch token size.
|
60 |
+
in_chans: Number of input image channels.
|
61 |
+
embed_dim: Number of linear projection output channels.
|
62 |
+
norm_layer: Normalization layer.
|
63 |
+
"""
|
64 |
+
|
65 |
+
def __init__(
|
66 |
+
self,
|
67 |
+
img_size: Union[int, Tuple[int, int]] = 224,
|
68 |
+
patch_size: Union[int, Tuple[int, int]] = 16,
|
69 |
+
in_chans: int = 3,
|
70 |
+
embed_dim: int = 768,
|
71 |
+
norm_layer: Optional[Callable] = None,
|
72 |
+
flatten_embedding: bool = True,
|
73 |
+
) -> None:
|
74 |
+
super().__init__()
|
75 |
+
|
76 |
+
image_HW = make_2tuple(img_size)
|
77 |
+
patch_HW = make_2tuple(patch_size)
|
78 |
+
patch_grid_size = (
|
79 |
+
image_HW[0] // patch_HW[0],
|
80 |
+
image_HW[1] // patch_HW[1],
|
81 |
+
)
|
82 |
+
|
83 |
+
self.img_size = image_HW
|
84 |
+
self.patch_size = patch_HW
|
85 |
+
self.patches_resolution = patch_grid_size
|
86 |
+
self.num_patches = patch_grid_size[0] * patch_grid_size[1]
|
87 |
+
|
88 |
+
self.in_chans = in_chans
|
89 |
+
self.embed_dim = embed_dim
|
90 |
+
|
91 |
+
self.flatten_embedding = flatten_embedding
|
92 |
+
|
93 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW)
|
94 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
95 |
+
|
96 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
97 |
+
_, _, H, W = x.shape
|
98 |
+
patch_H, patch_W = self.patch_size
|
99 |
+
|
100 |
+
assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}"
|
101 |
+
assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}"
|
102 |
+
|
103 |
+
x = self.proj(x) # B C H W
|
104 |
+
H, W = x.size(2), x.size(3)
|
105 |
+
x = x.flatten(2).transpose(1, 2) # B HW C
|
106 |
+
x = self.norm(x)
|
107 |
+
if not self.flatten_embedding:
|
108 |
+
x = x.reshape(-1, H, W, self.embed_dim) # B H W C
|
109 |
+
return x
|
110 |
+
|
111 |
+
def flops(self) -> float:
|
112 |
+
Ho, Wo = self.patches_resolution
|
113 |
+
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
|
114 |
+
if self.norm is not None:
|
115 |
+
flops += Ho * Wo * self.embed_dim
|
116 |
+
return flops
|
117 |
+
|
118 |
+
|
119 |
+
class Attention(nn.Module):
|
120 |
+
def __init__(
|
121 |
+
self,
|
122 |
+
dim: int,
|
123 |
+
num_heads: int = 8,
|
124 |
+
qkv_bias: bool = False,
|
125 |
+
proj_bias: bool = True,
|
126 |
+
attn_drop: float = 0.0,
|
127 |
+
proj_drop: float = 0.0,
|
128 |
+
) -> None:
|
129 |
+
super().__init__()
|
130 |
+
self.num_heads = num_heads
|
131 |
+
head_dim = dim // num_heads
|
132 |
+
self.scale = head_dim**-0.5
|
133 |
+
|
134 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
135 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
136 |
+
self.proj = nn.Linear(dim, dim, bias=proj_bias)
|
137 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
138 |
+
|
139 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
140 |
+
B, N, C = x.shape
|
141 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
142 |
+
|
143 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
144 |
+
if _torch_has_sdpa:
|
145 |
+
x = F.scaled_dot_product_attention(
|
146 |
+
q, k, v,
|
147 |
+
is_causal=False,
|
148 |
+
dropout_p=self.attn_drop.p if self.training else 0.,
|
149 |
+
scale=self.scale,
|
150 |
+
)
|
151 |
+
else:
|
152 |
+
q = q * self.scale
|
153 |
+
attn = q @ k.transpose(-2, -1)
|
154 |
+
|
155 |
+
attn = attn.softmax(dim=-1)
|
156 |
+
attn = self.attn_drop(attn)
|
157 |
+
x = attn @ v
|
158 |
+
|
159 |
+
x = x.transpose(1, 2).reshape(B, N, C)
|
160 |
+
x = self.proj(x)
|
161 |
+
x = self.proj_drop(x)
|
162 |
+
return x
|
163 |
+
|
164 |
+
|
165 |
+
class MemEffAttention(Attention):
|
166 |
+
def forward(self, x: torch.Tensor, attn_bias=None) -> torch.Tensor:
|
167 |
+
if not XFORMERS_AVAILABLE:
|
168 |
+
if attn_bias is not None:
|
169 |
+
raise AssertionError("xFormers is required for using nested tensors")
|
170 |
+
return super().forward(x)
|
171 |
+
|
172 |
+
B, N, C = x.shape
|
173 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
174 |
+
|
175 |
+
q, k, v = unbind(qkv, 2)
|
176 |
+
|
177 |
+
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
|
178 |
+
x = x.reshape([B, N, C])
|
179 |
+
|
180 |
+
x = self.proj(x)
|
181 |
+
x = self.proj_drop(x)
|
182 |
+
return x
|
183 |
+
|
184 |
+
|
185 |
+
class Mlp(nn.Module):
|
186 |
+
def __init__(
|
187 |
+
self,
|
188 |
+
in_features: int,
|
189 |
+
hidden_features: Optional[int] = None,
|
190 |
+
out_features: Optional[int] = None,
|
191 |
+
act_layer: Callable[..., nn.Module] = nn.GELU,
|
192 |
+
drop: float = 0.0,
|
193 |
+
bias: bool = True,
|
194 |
+
) -> None:
|
195 |
+
super().__init__()
|
196 |
+
out_features = out_features or in_features
|
197 |
+
hidden_features = hidden_features or in_features
|
198 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
|
199 |
+
self.act = act_layer()
|
200 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
|
201 |
+
self.drop = nn.Dropout(drop)
|
202 |
+
|
203 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
204 |
+
x = self.fc1(x)
|
205 |
+
x = self.act(x)
|
206 |
+
x = self.drop(x)
|
207 |
+
x = self.fc2(x)
|
208 |
+
x = self.drop(x)
|
209 |
+
return x
|
210 |
+
|
211 |
+
|
212 |
+
class SwiGLUFFN(nn.Module):
|
213 |
+
def __init__(
|
214 |
+
self,
|
215 |
+
in_features: int,
|
216 |
+
hidden_features: Optional[int] = None,
|
217 |
+
out_features: Optional[int] = None,
|
218 |
+
act_layer: Callable[..., nn.Module] = None,
|
219 |
+
drop: float = 0.0,
|
220 |
+
bias: bool = True,
|
221 |
+
) -> None:
|
222 |
+
super().__init__()
|
223 |
+
out_features = out_features or in_features
|
224 |
+
hidden_features = hidden_features or in_features
|
225 |
+
self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias)
|
226 |
+
self.w3 = nn.Linear(hidden_features, out_features, bias=bias)
|
227 |
+
|
228 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
229 |
+
x12 = self.w12(x)
|
230 |
+
x1, x2 = x12.chunk(2, dim=-1)
|
231 |
+
hidden = F.silu(x1) * x2
|
232 |
+
return self.w3(hidden)
|
233 |
+
|
234 |
+
|
235 |
+
if not XFORMERS_AVAILABLE:
|
236 |
+
SwiGLU = SwiGLUFFN
|
237 |
+
|
238 |
+
|
239 |
+
class SwiGLUFFNFused(SwiGLU):
|
240 |
+
def __init__(
|
241 |
+
self,
|
242 |
+
in_features: int,
|
243 |
+
hidden_features: Optional[int] = None,
|
244 |
+
out_features: Optional[int] = None,
|
245 |
+
act_layer: Callable[..., nn.Module] = None,
|
246 |
+
drop: float = 0.0,
|
247 |
+
bias: bool = True,
|
248 |
+
) -> None:
|
249 |
+
out_features = out_features or in_features
|
250 |
+
hidden_features = hidden_features or in_features
|
251 |
+
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
|
252 |
+
super().__init__(
|
253 |
+
in_features=in_features,
|
254 |
+
hidden_features=hidden_features,
|
255 |
+
out_features=out_features,
|
256 |
+
bias=bias,
|
257 |
+
)
|
258 |
+
|
259 |
+
|
260 |
+
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
|
261 |
+
if drop_prob == 0.0 or not training:
|
262 |
+
return x
|
263 |
+
keep_prob = 1 - drop_prob
|
264 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
265 |
+
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
266 |
+
if keep_prob > 0.0:
|
267 |
+
random_tensor.div_(keep_prob)
|
268 |
+
output = x * random_tensor
|
269 |
+
return output
|
270 |
+
|
271 |
+
|
272 |
+
class DropPath(nn.Module):
|
273 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
274 |
+
|
275 |
+
def __init__(self, drop_prob=None):
|
276 |
+
super(DropPath, self).__init__()
|
277 |
+
self.drop_prob = drop_prob
|
278 |
+
|
279 |
+
def forward(self, x):
|
280 |
+
return drop_path(x, self.drop_prob, self.training)
|
281 |
+
|
282 |
+
|
283 |
+
class LayerScale(nn.Module):
|
284 |
+
def __init__(
|
285 |
+
self,
|
286 |
+
dim: int,
|
287 |
+
init_values: Union[float, torch.Tensor] = 1e-5,
|
288 |
+
inplace: bool = False,
|
289 |
+
) -> None:
|
290 |
+
super().__init__()
|
291 |
+
self.inplace = inplace
|
292 |
+
self.grandma = nn.Parameter(init_values * torch.ones(dim))
|
293 |
+
|
294 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
295 |
+
return x.mul_(self.grandma) if self.inplace else x * self.grandma
|
296 |
+
|
297 |
+
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
|
298 |
+
# Huggingface is absurd and it will rename strings that contain `gamma`, which means that the normal DINO implementation
|
299 |
+
# of LayerScale won't work with HFHub. So we rename the variable to 'grandma', and support loading checkpoints in either
|
300 |
+
# format
|
301 |
+
key_a = f'{prefix}gamma'
|
302 |
+
key_b = f'{prefix}grandma'
|
303 |
+
if key_a in state_dict:
|
304 |
+
gamma = state_dict[key_a]
|
305 |
+
elif key_b in state_dict:
|
306 |
+
gamma = state_dict[key_b]
|
307 |
+
else:
|
308 |
+
if strict:
|
309 |
+
raise KeyError(f"Couldn't find the key {key_a} nor {key_b} in the state dict!")
|
310 |
+
else:
|
311 |
+
missing_keys.append(key_a)
|
312 |
+
missing_keys.append(key_b)
|
313 |
+
unexpected_keys.extend(state_dict.keys())
|
314 |
+
gamma = None
|
315 |
+
|
316 |
+
if gamma is not None:
|
317 |
+
self.grandma.data.copy_(gamma)
|
318 |
+
|
319 |
+
# return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|
320 |
+
|
321 |
+
|
322 |
+
class Block(nn.Module):
|
323 |
+
def __init__(
|
324 |
+
self,
|
325 |
+
dim: int,
|
326 |
+
num_heads: int,
|
327 |
+
mlp_ratio: float = 4.0,
|
328 |
+
qkv_bias: bool = False,
|
329 |
+
proj_bias: bool = True,
|
330 |
+
ffn_bias: bool = True,
|
331 |
+
drop: float = 0.0,
|
332 |
+
attn_drop: float = 0.0,
|
333 |
+
init_values=None,
|
334 |
+
drop_path: float = 0.0,
|
335 |
+
act_layer: Callable[..., nn.Module] = nn.GELU,
|
336 |
+
norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
|
337 |
+
attn_class: Callable[..., nn.Module] = Attention,
|
338 |
+
ffn_layer: Callable[..., nn.Module] = Mlp,
|
339 |
+
) -> None:
|
340 |
+
super().__init__()
|
341 |
+
# print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}")
|
342 |
+
self.norm1 = norm_layer(dim)
|
343 |
+
self.attn = attn_class(
|
344 |
+
dim,
|
345 |
+
num_heads=num_heads,
|
346 |
+
qkv_bias=qkv_bias,
|
347 |
+
proj_bias=proj_bias,
|
348 |
+
attn_drop=attn_drop,
|
349 |
+
proj_drop=drop,
|
350 |
+
)
|
351 |
+
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
352 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
353 |
+
|
354 |
+
self.norm2 = norm_layer(dim)
|
355 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
356 |
+
self.mlp = ffn_layer(
|
357 |
+
in_features=dim,
|
358 |
+
hidden_features=mlp_hidden_dim,
|
359 |
+
act_layer=act_layer,
|
360 |
+
drop=drop,
|
361 |
+
bias=ffn_bias,
|
362 |
+
)
|
363 |
+
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
364 |
+
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
365 |
+
|
366 |
+
self.sample_drop_ratio = drop_path
|
367 |
+
|
368 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
369 |
+
def attn_residual_func(x: torch.Tensor) -> torch.Tensor:
|
370 |
+
return self.ls1(self.attn(self.norm1(x)))
|
371 |
+
|
372 |
+
def ffn_residual_func(x: torch.Tensor) -> torch.Tensor:
|
373 |
+
return self.ls2(self.mlp(self.norm2(x)))
|
374 |
+
|
375 |
+
if self.training and self.sample_drop_ratio > 0.1:
|
376 |
+
# the overhead is compensated only for a drop path rate larger than 0.1
|
377 |
+
x = drop_add_residual_stochastic_depth(
|
378 |
+
x,
|
379 |
+
residual_func=attn_residual_func,
|
380 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
381 |
+
)
|
382 |
+
x = drop_add_residual_stochastic_depth(
|
383 |
+
x,
|
384 |
+
residual_func=ffn_residual_func,
|
385 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
386 |
+
)
|
387 |
+
elif self.training and self.sample_drop_ratio > 0.0:
|
388 |
+
x = x + self.drop_path1(attn_residual_func(x))
|
389 |
+
x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2
|
390 |
+
else:
|
391 |
+
x = x + attn_residual_func(x)
|
392 |
+
x = x + ffn_residual_func(x)
|
393 |
+
return x
|
394 |
+
|
395 |
+
|
396 |
+
class NestedTensorBlock(Block):
|
397 |
+
def forward_nested(self, x_list: List[torch.Tensor]) -> List[torch.Tensor]:
|
398 |
+
"""
|
399 |
+
x_list contains a list of tensors to nest together and run
|
400 |
+
"""
|
401 |
+
assert isinstance(self.attn, MemEffAttention)
|
402 |
+
|
403 |
+
if self.training and self.sample_drop_ratio > 0.0:
|
404 |
+
|
405 |
+
def attn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor:
|
406 |
+
return self.attn(self.norm1(x), attn_bias=attn_bias)
|
407 |
+
|
408 |
+
def ffn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor:
|
409 |
+
return self.mlp(self.norm2(x))
|
410 |
+
|
411 |
+
x_list = drop_add_residual_stochastic_depth_list(
|
412 |
+
x_list,
|
413 |
+
residual_func=attn_residual_func,
|
414 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
415 |
+
scaling_vector=self.ls1.grandma if isinstance(self.ls1, LayerScale) else None,
|
416 |
+
)
|
417 |
+
x_list = drop_add_residual_stochastic_depth_list(
|
418 |
+
x_list,
|
419 |
+
residual_func=ffn_residual_func,
|
420 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
421 |
+
scaling_vector=self.ls2.grandma if isinstance(self.ls1, LayerScale) else None,
|
422 |
+
)
|
423 |
+
return x_list
|
424 |
+
else:
|
425 |
+
|
426 |
+
def attn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor:
|
427 |
+
return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias))
|
428 |
+
|
429 |
+
def ffn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor:
|
430 |
+
return self.ls2(self.mlp(self.norm2(x)))
|
431 |
+
|
432 |
+
attn_bias, x = get_attn_bias_and_cat(x_list)
|
433 |
+
x = x + attn_residual_func(x, attn_bias=attn_bias)
|
434 |
+
x = x + ffn_residual_func(x)
|
435 |
+
return attn_bias.split(x)
|
436 |
+
|
437 |
+
def forward(self, x_or_x_list):
|
438 |
+
if isinstance(x_or_x_list, torch.Tensor):
|
439 |
+
return super().forward(x_or_x_list)
|
440 |
+
elif isinstance(x_or_x_list, list):
|
441 |
+
if not XFORMERS_AVAILABLE:
|
442 |
+
raise AssertionError("xFormers is required for using nested tensors")
|
443 |
+
return self.forward_nested(x_or_x_list)
|
444 |
+
else:
|
445 |
+
raise AssertionError
|
446 |
+
|
447 |
+
|
448 |
+
def drop_add_residual_stochastic_depth(
|
449 |
+
x: torch.Tensor,
|
450 |
+
residual_func: Callable[[torch.Tensor], torch.Tensor],
|
451 |
+
sample_drop_ratio: float = 0.0,
|
452 |
+
) -> torch.Tensor:
|
453 |
+
# 1) extract subset using permutation
|
454 |
+
b, n, d = x.shape
|
455 |
+
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
|
456 |
+
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
|
457 |
+
x_subset = x[brange]
|
458 |
+
|
459 |
+
# 2) apply residual_func to get residual
|
460 |
+
residual = residual_func(x_subset)
|
461 |
+
|
462 |
+
x_flat = x.flatten(1)
|
463 |
+
residual = residual.flatten(1)
|
464 |
+
|
465 |
+
residual_scale_factor = b / sample_subset_size
|
466 |
+
|
467 |
+
# 3) add the residual
|
468 |
+
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
|
469 |
+
return x_plus_residual.view_as(x)
|
470 |
+
|
471 |
+
|
472 |
+
def get_branges_scales(x, sample_drop_ratio=0.0):
|
473 |
+
b, n, d = x.shape
|
474 |
+
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
|
475 |
+
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
|
476 |
+
residual_scale_factor = b / sample_subset_size
|
477 |
+
return brange, residual_scale_factor
|
478 |
+
|
479 |
+
|
480 |
+
def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None):
|
481 |
+
if scaling_vector is None:
|
482 |
+
x_flat = x.flatten(1)
|
483 |
+
residual = residual.flatten(1)
|
484 |
+
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
|
485 |
+
else:
|
486 |
+
x_plus_residual = scaled_index_add(
|
487 |
+
x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor
|
488 |
+
)
|
489 |
+
return x_plus_residual
|
490 |
+
|
491 |
+
|
492 |
+
attn_bias_cache: Dict[Tuple, Any] = {}
|
493 |
+
|
494 |
+
|
495 |
+
def get_attn_bias_and_cat(x_list, branges=None):
|
496 |
+
"""
|
497 |
+
this will perform the index select, cat the tensors, and provide the attn_bias from cache
|
498 |
+
"""
|
499 |
+
batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list]
|
500 |
+
all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list))
|
501 |
+
if all_shapes not in attn_bias_cache.keys():
|
502 |
+
seqlens = []
|
503 |
+
for b, x in zip(batch_sizes, x_list):
|
504 |
+
for _ in range(b):
|
505 |
+
seqlens.append(x.shape[1])
|
506 |
+
attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens)
|
507 |
+
attn_bias._batch_sizes = batch_sizes
|
508 |
+
attn_bias_cache[all_shapes] = attn_bias
|
509 |
+
|
510 |
+
if branges is not None:
|
511 |
+
cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1])
|
512 |
+
else:
|
513 |
+
tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list)
|
514 |
+
cat_tensors = torch.cat(tensors_bs1, dim=1)
|
515 |
+
|
516 |
+
return attn_bias_cache[all_shapes], cat_tensors
|
517 |
+
|
518 |
+
|
519 |
+
def drop_add_residual_stochastic_depth_list(
|
520 |
+
x_list: List[torch.Tensor],
|
521 |
+
residual_func: Callable[[torch.Tensor, Any], torch.Tensor],
|
522 |
+
sample_drop_ratio: float = 0.0,
|
523 |
+
scaling_vector=None,
|
524 |
+
) -> torch.Tensor:
|
525 |
+
# 1) generate random set of indices for dropping samples in the batch
|
526 |
+
branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list]
|
527 |
+
branges = [s[0] for s in branges_scales]
|
528 |
+
residual_scale_factors = [s[1] for s in branges_scales]
|
529 |
+
|
530 |
+
# 2) get attention bias and index+concat the tensors
|
531 |
+
attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges)
|
532 |
+
|
533 |
+
# 3) apply residual_func to get residual, and split the result
|
534 |
+
residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) # type: ignore
|
535 |
+
|
536 |
+
outputs = []
|
537 |
+
for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors):
|
538 |
+
outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x))
|
539 |
+
return outputs
|
540 |
+
|
541 |
+
|
542 |
+
def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module:
|
543 |
+
if not depth_first and include_root:
|
544 |
+
fn(module=module, name=name)
|
545 |
+
for child_name, child_module in module.named_children():
|
546 |
+
child_name = ".".join((name, child_name)) if name else child_name
|
547 |
+
named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True)
|
548 |
+
if depth_first and include_root:
|
549 |
+
fn(module=module, name=name)
|
550 |
+
return module
|
551 |
+
|
552 |
+
|
553 |
+
class BlockChunk(nn.ModuleList):
|
554 |
+
def forward(self, x):
|
555 |
+
for b in self:
|
556 |
+
x = b(x)
|
557 |
+
return x
|
558 |
+
|
559 |
+
|
560 |
+
class DinoVisionTransformer(nn.Module):
|
561 |
+
def __init__(
|
562 |
+
self,
|
563 |
+
img_size=224,
|
564 |
+
patch_size=16,
|
565 |
+
in_chans=3,
|
566 |
+
embed_dim=768,
|
567 |
+
depth=12,
|
568 |
+
num_heads=12,
|
569 |
+
mlp_ratio=4.0,
|
570 |
+
qkv_bias=True,
|
571 |
+
ffn_bias=True,
|
572 |
+
proj_bias=True,
|
573 |
+
drop_path_rate=0.0,
|
574 |
+
drop_path_uniform=False,
|
575 |
+
init_values=None, # for layerscale: None or 0 => no layerscale
|
576 |
+
embed_layer=PatchEmbed,
|
577 |
+
act_layer=nn.GELU,
|
578 |
+
block_fn=Block,
|
579 |
+
ffn_layer="mlp",
|
580 |
+
block_chunks=1,
|
581 |
+
num_register_tokens=0,
|
582 |
+
interpolate_antialias=False,
|
583 |
+
interpolate_offset=0.1,
|
584 |
+
):
|
585 |
+
"""
|
586 |
+
Args:
|
587 |
+
img_size (int, tuple): input image size
|
588 |
+
patch_size (int, tuple): patch size
|
589 |
+
in_chans (int): number of input channels
|
590 |
+
embed_dim (int): embedding dimension
|
591 |
+
depth (int): depth of transformer
|
592 |
+
num_heads (int): number of attention heads
|
593 |
+
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
594 |
+
qkv_bias (bool): enable bias for qkv if True
|
595 |
+
proj_bias (bool): enable bias for proj in attn if True
|
596 |
+
ffn_bias (bool): enable bias for ffn if True
|
597 |
+
drop_path_rate (float): stochastic depth rate
|
598 |
+
drop_path_uniform (bool): apply uniform drop rate across blocks
|
599 |
+
weight_init (str): weight init scheme
|
600 |
+
init_values (float): layer-scale init values
|
601 |
+
embed_layer (nn.Module): patch embedding layer
|
602 |
+
act_layer (nn.Module): MLP activation layer
|
603 |
+
block_fn (nn.Module): transformer block class
|
604 |
+
ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity"
|
605 |
+
block_chunks: (int) split block sequence into block_chunks units for FSDP wrap
|
606 |
+
num_register_tokens: (int) number of extra cls tokens (so-called "registers")
|
607 |
+
interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings
|
608 |
+
interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings
|
609 |
+
"""
|
610 |
+
super().__init__()
|
611 |
+
norm_layer = partial(nn.LayerNorm, eps=1e-6)
|
612 |
+
|
613 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
614 |
+
self.num_tokens = 1
|
615 |
+
self.n_blocks = depth
|
616 |
+
self.num_heads = num_heads
|
617 |
+
self.patch_size = patch_size
|
618 |
+
self.num_register_tokens = num_register_tokens
|
619 |
+
self.interpolate_antialias = interpolate_antialias
|
620 |
+
self.interpolate_offset = interpolate_offset
|
621 |
+
|
622 |
+
self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
623 |
+
num_patches = self.patch_embed.num_patches
|
624 |
+
|
625 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
626 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
|
627 |
+
assert num_register_tokens >= 0
|
628 |
+
self.register_tokens = (
|
629 |
+
nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None
|
630 |
+
)
|
631 |
+
|
632 |
+
if drop_path_uniform is True:
|
633 |
+
dpr = [drop_path_rate] * depth
|
634 |
+
else:
|
635 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
636 |
+
|
637 |
+
if ffn_layer == "mlp":
|
638 |
+
ffn_layer = Mlp
|
639 |
+
elif ffn_layer == "swiglufused" or ffn_layer == "swiglu":
|
640 |
+
ffn_layer = SwiGLUFFNFused
|
641 |
+
elif ffn_layer == "identity":
|
642 |
+
def f(*args, **kwargs):
|
643 |
+
return nn.Identity()
|
644 |
+
|
645 |
+
ffn_layer = f
|
646 |
+
else:
|
647 |
+
raise NotImplementedError
|
648 |
+
|
649 |
+
blocks_list = [
|
650 |
+
block_fn(
|
651 |
+
dim=embed_dim,
|
652 |
+
num_heads=num_heads,
|
653 |
+
mlp_ratio=mlp_ratio,
|
654 |
+
qkv_bias=qkv_bias,
|
655 |
+
proj_bias=proj_bias,
|
656 |
+
ffn_bias=ffn_bias,
|
657 |
+
drop_path=dpr[i],
|
658 |
+
norm_layer=norm_layer,
|
659 |
+
act_layer=act_layer,
|
660 |
+
ffn_layer=ffn_layer,
|
661 |
+
init_values=init_values,
|
662 |
+
)
|
663 |
+
for i in range(depth)
|
664 |
+
]
|
665 |
+
if block_chunks > 0:
|
666 |
+
self.chunked_blocks = True
|
667 |
+
chunked_blocks = []
|
668 |
+
chunksize = depth // block_chunks
|
669 |
+
for i in range(0, depth, chunksize):
|
670 |
+
# this is to keep the block index consistent if we chunk the block list
|
671 |
+
chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize])
|
672 |
+
self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks])
|
673 |
+
else:
|
674 |
+
self.chunked_blocks = False
|
675 |
+
self.blocks = nn.ModuleList(blocks_list)
|
676 |
+
|
677 |
+
self.norm = norm_layer(embed_dim)
|
678 |
+
self.head = nn.Identity()
|
679 |
+
|
680 |
+
self.mask_token = nn.Parameter(torch.zeros(1, embed_dim))
|
681 |
+
|
682 |
+
def interpolate_pos_encoding(self, x, w, h):
|
683 |
+
previous_dtype = x.dtype
|
684 |
+
npatch = x.shape[1] - 1
|
685 |
+
N = self.pos_embed.shape[1] - 1
|
686 |
+
if npatch == N and w == h:
|
687 |
+
return self.pos_embed
|
688 |
+
pos_embed = self.pos_embed.float()
|
689 |
+
class_pos_embed = pos_embed[:, 0]
|
690 |
+
patch_pos_embed = pos_embed[:, 1:]
|
691 |
+
dim = x.shape[-1]
|
692 |
+
w0 = w // self.patch_size
|
693 |
+
h0 = h // self.patch_size
|
694 |
+
M = int(math.sqrt(N)) # Recover the number of patches in each dimension
|
695 |
+
assert N == M * M
|
696 |
+
kwargs = {}
|
697 |
+
if self.interpolate_offset:
|
698 |
+
# Historical kludge: add a small number to avoid floating point error in the interpolation, see https://github.com/facebookresearch/dino/issues/8
|
699 |
+
# Note: still needed for backward-compatibility, the underlying operators are using both output size and scale factors
|
700 |
+
sx = float(w0 + self.interpolate_offset) / M
|
701 |
+
sy = float(h0 + self.interpolate_offset) / M
|
702 |
+
kwargs["scale_factor"] = (sx, sy)
|
703 |
+
else:
|
704 |
+
# Simply specify an output size instead of a scale factor
|
705 |
+
kwargs["size"] = (w0, h0)
|
706 |
+
patch_pos_embed = nn.functional.interpolate(
|
707 |
+
patch_pos_embed.reshape(1, M, M, dim).permute(0, 3, 1, 2),
|
708 |
+
mode="bicubic",
|
709 |
+
antialias=self.interpolate_antialias,
|
710 |
+
**kwargs,
|
711 |
+
)
|
712 |
+
assert (w0, h0) == patch_pos_embed.shape[-2:]
|
713 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
714 |
+
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype)
|
715 |
+
|
716 |
+
def prepare_tokens_with_masks(self, x, masks=None):
|
717 |
+
B, nc, w, h = x.shape
|
718 |
+
x = self.patch_embed(x)
|
719 |
+
if masks is not None:
|
720 |
+
x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x)
|
721 |
+
|
722 |
+
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
|
723 |
+
x = x + self.interpolate_pos_encoding(x, w, h)
|
724 |
+
|
725 |
+
if self.register_tokens is not None:
|
726 |
+
x = torch.cat(
|
727 |
+
(
|
728 |
+
x[:, :1],
|
729 |
+
self.register_tokens.expand(x.shape[0], -1, -1),
|
730 |
+
x[:, 1:],
|
731 |
+
),
|
732 |
+
dim=1,
|
733 |
+
)
|
734 |
+
|
735 |
+
return x
|
736 |
+
|
737 |
+
def forward_features_list(self, x_list, masks_list):
|
738 |
+
x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)]
|
739 |
+
for blk in self.blocks:
|
740 |
+
x = blk(x)
|
741 |
+
|
742 |
+
all_x = x
|
743 |
+
output = []
|
744 |
+
for x, masks in zip(all_x, masks_list):
|
745 |
+
x_norm = self.norm(x)
|
746 |
+
output.append(
|
747 |
+
{
|
748 |
+
"x_norm_clstoken": x_norm[:, 0],
|
749 |
+
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
|
750 |
+
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
|
751 |
+
"x_prenorm": x,
|
752 |
+
"masks": masks,
|
753 |
+
}
|
754 |
+
)
|
755 |
+
return output
|
756 |
+
|
757 |
+
def forward_features(self, x, masks=None):
|
758 |
+
if isinstance(x, list):
|
759 |
+
return self.forward_features_list(x, masks)
|
760 |
+
|
761 |
+
x = self.prepare_tokens_with_masks(x, masks)
|
762 |
+
|
763 |
+
for blk in self.blocks:
|
764 |
+
x = blk(x)
|
765 |
+
|
766 |
+
x_norm = self.norm(x)
|
767 |
+
return {
|
768 |
+
"x_norm_clstoken": x_norm[:, 0],
|
769 |
+
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
|
770 |
+
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
|
771 |
+
"x_prenorm": x,
|
772 |
+
"masks": masks,
|
773 |
+
}
|
774 |
+
|
775 |
+
def _get_intermediate_layers_not_chunked(self, x, n=1):
|
776 |
+
x = self.prepare_tokens_with_masks(x)
|
777 |
+
# If n is an int, take the n last blocks. If it's a list, take them
|
778 |
+
output, total_block_len = [], len(self.blocks)
|
779 |
+
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
|
780 |
+
for i, blk in enumerate(self.blocks):
|
781 |
+
x = blk(x)
|
782 |
+
if i in blocks_to_take:
|
783 |
+
output.append(x)
|
784 |
+
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
|
785 |
+
return output
|
786 |
+
|
787 |
+
def _get_intermediate_layers_chunked(self, x, n=1):
|
788 |
+
x = self.prepare_tokens_with_masks(x)
|
789 |
+
output, i, total_block_len = [], 0, len(self.blocks[-1])
|
790 |
+
# If n is an int, take the n last blocks. If it's a list, take them
|
791 |
+
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
|
792 |
+
for block_chunk in self.blocks:
|
793 |
+
for blk in block_chunk[i:]: # Passing the nn.Identity()
|
794 |
+
x = blk(x)
|
795 |
+
if i in blocks_to_take:
|
796 |
+
output.append(x)
|
797 |
+
i += 1
|
798 |
+
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
|
799 |
+
return output
|
800 |
+
|
801 |
+
def get_intermediate_layers(
|
802 |
+
self,
|
803 |
+
x: torch.Tensor,
|
804 |
+
n: Union[int, Sequence] = 1, # Layers or n last layers to take
|
805 |
+
reshape: bool = False,
|
806 |
+
return_class_token: bool = False,
|
807 |
+
norm=True,
|
808 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
|
809 |
+
if self.chunked_blocks:
|
810 |
+
outputs = self._get_intermediate_layers_chunked(x, n)
|
811 |
+
else:
|
812 |
+
outputs = self._get_intermediate_layers_not_chunked(x, n)
|
813 |
+
if norm:
|
814 |
+
outputs = [self.norm(out) for out in outputs]
|
815 |
+
class_tokens = [out[:, 0] for out in outputs]
|
816 |
+
outputs = [out[:, 1 + self.num_register_tokens :] for out in outputs]
|
817 |
+
if reshape:
|
818 |
+
B, _, w, h = x.shape
|
819 |
+
outputs = [
|
820 |
+
out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous()
|
821 |
+
for out in outputs
|
822 |
+
]
|
823 |
+
if return_class_token:
|
824 |
+
return tuple(zip(outputs, class_tokens))
|
825 |
+
return tuple(outputs)
|
826 |
+
|
827 |
+
def forward(self, *args, is_training=False, **kwargs):
|
828 |
+
ret = self.forward_features(*args, **kwargs)
|
829 |
+
if is_training:
|
830 |
+
return ret
|
831 |
+
else:
|
832 |
+
return self.head(ret["x_norm_clstoken"])
|
833 |
+
|
834 |
+
|
835 |
+
def vit_small(patch_size=16, num_register_tokens=0, **kwargs):
|
836 |
+
model = DinoVisionTransformer(
|
837 |
+
patch_size=patch_size,
|
838 |
+
embed_dim=384,
|
839 |
+
depth=12,
|
840 |
+
num_heads=6,
|
841 |
+
mlp_ratio=4,
|
842 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
843 |
+
num_register_tokens=num_register_tokens,
|
844 |
+
**kwargs,
|
845 |
+
)
|
846 |
+
return model
|
847 |
+
|
848 |
+
|
849 |
+
def vit_base(patch_size=16, num_register_tokens=0, **kwargs):
|
850 |
+
model = DinoVisionTransformer(
|
851 |
+
patch_size=patch_size,
|
852 |
+
embed_dim=768,
|
853 |
+
depth=12,
|
854 |
+
num_heads=12,
|
855 |
+
mlp_ratio=4,
|
856 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
857 |
+
num_register_tokens=num_register_tokens,
|
858 |
+
**kwargs,
|
859 |
+
)
|
860 |
+
return model
|
861 |
+
|
862 |
+
|
863 |
+
def vit_large(patch_size=16, num_register_tokens=0, **kwargs):
|
864 |
+
model = DinoVisionTransformer(
|
865 |
+
patch_size=patch_size,
|
866 |
+
embed_dim=1024,
|
867 |
+
depth=24,
|
868 |
+
num_heads=16,
|
869 |
+
mlp_ratio=4,
|
870 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
871 |
+
num_register_tokens=num_register_tokens,
|
872 |
+
**kwargs,
|
873 |
+
)
|
874 |
+
return model
|
875 |
+
|
876 |
+
|
877 |
+
def vit_giant2(patch_size=16, num_register_tokens=0, **kwargs):
|
878 |
+
"""
|
879 |
+
Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
|
880 |
+
"""
|
881 |
+
model = DinoVisionTransformer(
|
882 |
+
patch_size=patch_size,
|
883 |
+
embed_dim=1536,
|
884 |
+
depth=40,
|
885 |
+
num_heads=24,
|
886 |
+
mlp_ratio=4,
|
887 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
888 |
+
num_register_tokens=num_register_tokens,
|
889 |
+
**kwargs,
|
890 |
+
)
|
891 |
+
return model
|
892 |
+
|
893 |
+
|
894 |
+
class Weights(Enum):
|
895 |
+
LVD142M = "LVD142M"
|
896 |
+
|
897 |
+
|
898 |
+
def _make_dinov2_model(
|
899 |
+
*,
|
900 |
+
arch_name: str = "vit_large",
|
901 |
+
img_size: int = 518,
|
902 |
+
patch_size: int = 14,
|
903 |
+
init_values: float = 1.0,
|
904 |
+
ffn_layer: str = "mlp",
|
905 |
+
block_chunks: int = 0,
|
906 |
+
num_register_tokens: int = 0,
|
907 |
+
interpolate_antialias: bool = False,
|
908 |
+
interpolate_offset: float = 0.1,
|
909 |
+
weights: Union[Weights, str] = Weights.LVD142M,
|
910 |
+
**kwargs,
|
911 |
+
):
|
912 |
+
if isinstance(weights, str):
|
913 |
+
try:
|
914 |
+
weights = Weights[weights]
|
915 |
+
except KeyError:
|
916 |
+
raise AssertionError(f"Unsupported weights: {weights}")
|
917 |
+
|
918 |
+
vit_kwargs = dict(
|
919 |
+
img_size=img_size,
|
920 |
+
patch_size=patch_size,
|
921 |
+
init_values=init_values,
|
922 |
+
ffn_layer=ffn_layer,
|
923 |
+
block_chunks=block_chunks,
|
924 |
+
num_register_tokens=num_register_tokens,
|
925 |
+
interpolate_antialias=interpolate_antialias,
|
926 |
+
interpolate_offset=interpolate_offset,
|
927 |
+
)
|
928 |
+
vit_kwargs.update(**kwargs)
|
929 |
+
model = sys.modules[__name__].__dict__[arch_name](**vit_kwargs)
|
930 |
+
|
931 |
+
return model
|
932 |
+
|
933 |
+
|
934 |
+
def dinov2_vits14(**kwargs):
|
935 |
+
"""
|
936 |
+
DINOv2 ViT-S/14 model (optionally) pretrained on the LVD-142M dataset.
|
937 |
+
"""
|
938 |
+
return _make_dinov2_model(arch_name="vit_small", **kwargs)
|
939 |
+
|
940 |
+
|
941 |
+
def dinov2_vitb14(**kwargs):
|
942 |
+
"""
|
943 |
+
DINOv2 ViT-B/14 model (optionally) pretrained on the LVD-142M dataset.
|
944 |
+
"""
|
945 |
+
return _make_dinov2_model(arch_name="vit_base", **kwargs)
|
946 |
+
|
947 |
+
|
948 |
+
def dinov2_vitl14(**kwargs):
|
949 |
+
"""
|
950 |
+
DINOv2 ViT-L/14 model (optionally) pretrained on the LVD-142M dataset.
|
951 |
+
"""
|
952 |
+
return _make_dinov2_model(arch_name="vit_large", **kwargs)
|
953 |
+
|
954 |
+
|
955 |
+
def dinov2_vitg14(**kwargs):
|
956 |
+
"""
|
957 |
+
DINOv2 ViT-g/14 model (optionally) pretrained on the LVD-142M dataset.
|
958 |
+
"""
|
959 |
+
return _make_dinov2_model(
|
960 |
+
arch_name="vit_giant2",
|
961 |
+
ffn_layer="swiglufused",
|
962 |
+
**kwargs,
|
963 |
+
)
|
964 |
+
|
965 |
+
|
966 |
+
def dinov2_vits14_reg(**kwargs):
|
967 |
+
"""
|
968 |
+
DINOv2 ViT-S/14 model with registers (optionally) pretrained on the LVD-142M dataset.
|
969 |
+
"""
|
970 |
+
return _make_dinov2_model(
|
971 |
+
arch_name="vit_small",
|
972 |
+
num_register_tokens=4,
|
973 |
+
interpolate_antialias=True,
|
974 |
+
interpolate_offset=0.0,
|
975 |
+
**kwargs,
|
976 |
+
)
|
977 |
+
|
978 |
+
|
979 |
+
def dinov2_vitb14_reg(**kwargs):
|
980 |
+
"""
|
981 |
+
DINOv2 ViT-B/14 model with registers (optionally) pretrained on the LVD-142M dataset.
|
982 |
+
"""
|
983 |
+
return _make_dinov2_model(
|
984 |
+
arch_name="vit_base",
|
985 |
+
num_register_tokens=4,
|
986 |
+
interpolate_antialias=True,
|
987 |
+
interpolate_offset=0.0,
|
988 |
+
**kwargs,
|
989 |
+
)
|
990 |
+
|
991 |
+
|
992 |
+
def dinov2_vitl14_reg(**kwargs):
|
993 |
+
"""
|
994 |
+
DINOv2 ViT-L/14 model with registers (optionally) pretrained on the LVD-142M dataset.
|
995 |
+
"""
|
996 |
+
return _make_dinov2_model(
|
997 |
+
arch_name="vit_large",
|
998 |
+
num_register_tokens=4,
|
999 |
+
interpolate_antialias=True,
|
1000 |
+
interpolate_offset=0.0,
|
1001 |
+
**kwargs,
|
1002 |
+
)
|
1003 |
+
|
1004 |
+
|
1005 |
+
def dinov2_vitg14_reg(**kwargs):
|
1006 |
+
"""
|
1007 |
+
DINOv2 ViT-g/14 model with registers (optionally) pretrained on the LVD-142M dataset.
|
1008 |
+
"""
|
1009 |
+
return _make_dinov2_model(
|
1010 |
+
arch_name="vit_giant2",
|
1011 |
+
ffn_layer="swiglufused",
|
1012 |
+
num_register_tokens=4,
|
1013 |
+
interpolate_antialias=True,
|
1014 |
+
interpolate_offset=0.0,
|
1015 |
+
**kwargs,
|
1016 |
+
)
|
tim/models/nvidia_radio/radio/dual_hybrid_vit.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from logging import getLogger
|
2 |
+
from typing import Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
from timm.models import register_model
|
9 |
+
from timm.models import vision_transformer as tvit
|
10 |
+
from timm.models import convnext as tconv
|
11 |
+
|
12 |
+
from einops import rearrange
|
13 |
+
|
14 |
+
from . import extra_timm_models as et
|
15 |
+
|
16 |
+
|
17 |
+
class Fuser(nn.Module):
|
18 |
+
def __init__(self, src_dim: int, tgt_dim: int, gated: bool = True):
|
19 |
+
super().__init__()
|
20 |
+
self.gated = gated
|
21 |
+
|
22 |
+
mid_dim = max(src_dim, tgt_dim) * 2
|
23 |
+
|
24 |
+
self.fwd = nn.Sequential(
|
25 |
+
nn.Conv2d(src_dim, mid_dim, kernel_size=3, stride=1, padding=1),
|
26 |
+
nn.GELU(),
|
27 |
+
nn.Conv2d(mid_dim, tgt_dim * (2 if gated else 1), kernel_size=3, stride=1, padding=1),
|
28 |
+
)
|
29 |
+
|
30 |
+
def forward(self, src: torch.Tensor, tgt: torch.Tensor) -> torch.Tensor:
|
31 |
+
if src.ndim == 3:
|
32 |
+
shape = tgt.shape[-2:]
|
33 |
+
else:
|
34 |
+
shape = src.shape[-2:]
|
35 |
+
|
36 |
+
nd = shape[0] * shape[1]
|
37 |
+
|
38 |
+
if src.ndim == 3:
|
39 |
+
src = src[:, -nd:].reshape(src.shape[0], src.shape[2], *shape)
|
40 |
+
|
41 |
+
if tgt.ndim == 3:
|
42 |
+
tgt_pre = tgt[:, :-nd]
|
43 |
+
tgt = tgt[:, -nd:].reshape(tgt.shape[0], tgt.shape[2], *shape)
|
44 |
+
else:
|
45 |
+
tgt_pre = None
|
46 |
+
|
47 |
+
pred = self.fwd(src)
|
48 |
+
|
49 |
+
if self.gated:
|
50 |
+
g, pred = torch.chunk(pred, 2, dim=1)
|
51 |
+
|
52 |
+
g = F.sigmoid(g)
|
53 |
+
|
54 |
+
pred = g * pred
|
55 |
+
|
56 |
+
tgt = tgt + pred
|
57 |
+
|
58 |
+
if tgt_pre is not None:
|
59 |
+
tgt = rearrange(tgt, 'b c h w -> b (h w) c')
|
60 |
+
tgt = torch.cat([tgt_pre, tgt], dim=1)
|
61 |
+
|
62 |
+
return tgt
|
63 |
+
|
64 |
+
|
65 |
+
class AttnDownsample(nn.Module):
|
66 |
+
def __init__(self, dim: int, window_size: int, num_heads: int = 16):
|
67 |
+
super().__init__()
|
68 |
+
self.q = nn.Parameter(torch.randn(1, num_heads, 1, dim // num_heads) * 0.01)
|
69 |
+
self.kv = nn.Linear(dim, dim * 2)
|
70 |
+
self.proj = nn.Linear(dim, dim)
|
71 |
+
self.window_size = window_size
|
72 |
+
self.num_heads = num_heads
|
73 |
+
self.head_dim = dim // num_heads
|
74 |
+
self.scale = self.head_dim ** -0.5
|
75 |
+
|
76 |
+
def forward(self, x: torch.Tensor, twod_shape: Tuple[int, int]) -> torch.Tensor:
|
77 |
+
ntok = twod_shape[0] * twod_shape[1]
|
78 |
+
x_pre = x[:, :-ntok]
|
79 |
+
|
80 |
+
B = x.shape[0]
|
81 |
+
ds_hw = tuple(s // self.window_size for s in twod_shape)
|
82 |
+
|
83 |
+
x_spat = rearrange(
|
84 |
+
x[:, -ntok:],
|
85 |
+
'b (h d1 w d2) c -> (b h w) (d1 d2) c',
|
86 |
+
h=ds_hw[0], w=ds_hw[1],
|
87 |
+
d1=self.window_size, d2=self.window_size,
|
88 |
+
)
|
89 |
+
|
90 |
+
B, N, C = x_spat.shape
|
91 |
+
|
92 |
+
k, v = self.kv(x_spat).reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
93 |
+
|
94 |
+
q = (self.q * self.scale).expand(B, -1, -1, -1)
|
95 |
+
attn = q @ k.transpose(-2, -1)
|
96 |
+
attn = F.softmax(attn, dim=-1)
|
97 |
+
x = attn @ v
|
98 |
+
|
99 |
+
x = x.transpose(1, 2).reshape(B, C)
|
100 |
+
x = self.proj(x)
|
101 |
+
|
102 |
+
x = rearrange(x, '(b h w) c -> b (h w) c', b=x_pre.shape[0], h=ds_hw[0], w=ds_hw[1])
|
103 |
+
|
104 |
+
x = torch.cat([x_pre, x], dim=1)
|
105 |
+
return x
|
106 |
+
|
107 |
+
|
108 |
+
class HybridModel(nn.Module):
|
109 |
+
def __init__(self, vit: tvit.VisionTransformer, conv: tconv.ConvNeXt, pretrained: bool = False,
|
110 |
+
concatenate: bool = False, **kwargs):
|
111 |
+
super().__init__()
|
112 |
+
self.conv = conv
|
113 |
+
self.vit = vit
|
114 |
+
self.concatenate = concatenate
|
115 |
+
|
116 |
+
conv.stages = nn.ModuleList(conv.stages)
|
117 |
+
vit.blocks = nn.ModuleList(vit.blocks)
|
118 |
+
|
119 |
+
self._half_vit_idx = len(vit.blocks) // 2 + 1
|
120 |
+
|
121 |
+
self._half_conv_idx = None
|
122 |
+
x = torch.empty(1, 3, 256, 256)
|
123 |
+
x = self.conv.stem(x)
|
124 |
+
for i in range(len(conv.stages)):
|
125 |
+
x = conv.stages[i](x)
|
126 |
+
if self._half_conv_idx is None and x.shape[-2:] == (16, 16):
|
127 |
+
self._half_conv_idx = i + 1
|
128 |
+
half_conv_dim = x.shape[1]
|
129 |
+
final_conv_dim = x.shape[1]
|
130 |
+
|
131 |
+
self.vit_to_conv_fusion = Fuser(vit.embed_dim, half_conv_dim)
|
132 |
+
self.conv_to_vit_fusion = Fuser(half_conv_dim, vit.embed_dim)
|
133 |
+
self.vit_ds = AttnDownsample(vit.embed_dim, window_size=2)
|
134 |
+
|
135 |
+
embed_dim = vit.embed_dim + (final_conv_dim if concatenate else 0)
|
136 |
+
if not concatenate:
|
137 |
+
self.final_fuse = Fuser(final_conv_dim, vit.embed_dim, gated=False)
|
138 |
+
self.final_block = tvit.Block(embed_dim, num_heads=16)
|
139 |
+
|
140 |
+
self.embed_dim = embed_dim
|
141 |
+
|
142 |
+
@property
|
143 |
+
def patch_size(self):
|
144 |
+
return 32
|
145 |
+
|
146 |
+
@property
|
147 |
+
def no_fsdp_wrap_types(self):
|
148 |
+
return {tvit.VisionTransformer, tconv.ConvNeXt}
|
149 |
+
|
150 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
151 |
+
return self.forward_features(x)
|
152 |
+
|
153 |
+
def forward_features(self, x: torch.Tensor) -> torch.Tensor:
|
154 |
+
y_vit = self.vit.patch_generator(x)
|
155 |
+
|
156 |
+
for i in range(self._half_vit_idx):
|
157 |
+
y_vit = self.vit.blocks[i](y_vit)
|
158 |
+
|
159 |
+
y_conv = self.conv.stem(x)
|
160 |
+
for i in range(self._half_conv_idx):
|
161 |
+
y_conv = self.conv.stages[i](y_conv)
|
162 |
+
|
163 |
+
y_vit, y_conv = self.conv_to_vit_fusion(y_conv, y_vit), self.vit_to_conv_fusion(y_vit, y_conv)
|
164 |
+
|
165 |
+
y_vit = self.vit_ds(y_vit, y_conv.shape[-2:])
|
166 |
+
|
167 |
+
for i in range(self._half_vit_idx, len(self.vit.blocks)):
|
168 |
+
y_vit = self.vit.blocks[i](y_vit)
|
169 |
+
|
170 |
+
for i in range(self._half_conv_idx, len(self.conv.stages)):
|
171 |
+
y_conv = self.conv.stages[i](y_conv)
|
172 |
+
|
173 |
+
if self.concatenate:
|
174 |
+
y_conv = rearrange(y_conv, 'b c h w -> b (h w) c')
|
175 |
+
# Average pool across the board, and replicate for each cls/register token
|
176 |
+
conv_summary = y_conv.mean(dim=1, keepdim=True).expand(-1, self.vit.patch_generator.num_cls_patches, -1)
|
177 |
+
y_conv = torch.cat([conv_summary, y_conv], dim=1)
|
178 |
+
y = torch.cat([y_vit, y_conv], dim=2)
|
179 |
+
else:
|
180 |
+
y = self.final_fuse(y_conv, y_vit)
|
181 |
+
y = self.final_block(y)
|
182 |
+
|
183 |
+
summary = y[:, :self.vit.patch_generator.num_cls_tokens]
|
184 |
+
features = y[:, self.vit.patch_generator.num_cls_patches:]
|
185 |
+
|
186 |
+
return summary, features
|
187 |
+
|
188 |
+
|
189 |
+
@register_model
|
190 |
+
def hybrid_base(pretrained=False, concatenate: bool = False, weight_init: str = 'skip', **kwargs):
|
191 |
+
cfg = dict(num_classes=0, **kwargs)
|
192 |
+
conv = tconv.convnextv2_base(pretrained=pretrained, **cfg)
|
193 |
+
vit = tvit.vit_base_patch16_224(pretrained=pretrained, weight_init=weight_init, **cfg)
|
194 |
+
|
195 |
+
return HybridModel(vit, conv, pretrained, concatenate=concatenate)
|
196 |
+
|
197 |
+
|
198 |
+
@register_model
|
199 |
+
def hybrid_large(pretrained=False, concatenate: bool = False, weight_init: str = 'skip', **kwargs):
|
200 |
+
cfg = dict(num_classes=0, **kwargs)
|
201 |
+
conv = tconv.convnextv2_large(pretrained=pretrained, **cfg)
|
202 |
+
vit = tvit.vit_large_patch16_224(pretrained=pretrained, weight_init=weight_init, **cfg)
|
203 |
+
|
204 |
+
return HybridModel(vit, conv, pretrained, concatenate=concatenate)
|
205 |
+
|
206 |
+
|
207 |
+
@register_model
|
208 |
+
def hybrid_huge(pretrained=False, concatenate: bool = False, weight_init: str = 'skip', **kwargs):
|
209 |
+
cfg = dict(num_classes=0, **kwargs)
|
210 |
+
conv = tconv.convnextv2_huge(pretrained=pretrained, **cfg)
|
211 |
+
vit = et.vit_huge_patch16_224(pretrained=pretrained, weight_init=weight_init, **cfg)
|
212 |
+
|
213 |
+
return HybridModel(vit, conv, pretrained, concatenate=concatenate)
|
tim/models/nvidia_radio/radio/enable_cpe_support.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
from typing import List, Optional, Set, Tuple, Union
|
10 |
+
from types import MethodType
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from torch import nn
|
14 |
+
|
15 |
+
from timm.models import VisionTransformer, checkpoint_seq
|
16 |
+
from timm.models.vision_transformer import Attention, Block
|
17 |
+
|
18 |
+
from .feature_normalizer import IntermediateFeatureNormalizerBase, NullIntermediateFeatureNormalizer
|
19 |
+
|
20 |
+
from .extra_models import DinoWrapper
|
21 |
+
from .vit_patch_generator import ViTPatchGenerator
|
22 |
+
from .forward_intermediates import forward_intermediates
|
23 |
+
from .dual_hybrid_vit import HybridModel
|
24 |
+
from flash_attn import flash_attn_varlen_func
|
25 |
+
|
26 |
+
|
27 |
+
def _attn_forward_pack(self: Attention, x: torch.Tensor, cu_seqlens: torch.Tensor) -> torch.Tensor:
|
28 |
+
N, C = x.shape
|
29 |
+
qkv = self.qkv(x).reshape(N, 3, self.num_heads, self.head_dim).permute(1, 0, 2, 3)
|
30 |
+
q, k, v = qkv.unbind(0)
|
31 |
+
q, k = self.q_norm(q), self.k_norm(k)
|
32 |
+
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
|
33 |
+
|
34 |
+
x = flash_attn_varlen_func(
|
35 |
+
q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen
|
36 |
+
).reshape(N, -1)
|
37 |
+
|
38 |
+
x = self.proj(x)
|
39 |
+
x = self.proj_drop(x)
|
40 |
+
return x
|
41 |
+
|
42 |
+
def _block_forward_pack(self: Block, x: torch.Tensor, cu_seqlens: torch.Tensor) -> torch.Tensor:
|
43 |
+
x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x), cu_seqlens)))
|
44 |
+
x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
|
45 |
+
return x
|
46 |
+
|
47 |
+
def _forward_cpe_pack(self: VisionTransformer, images: List[torch.Tensor]) -> torch.Tensor:
|
48 |
+
device = images[0].device
|
49 |
+
x = []
|
50 |
+
seqlens = []
|
51 |
+
for image in images:
|
52 |
+
# image: [1, c, H, W] -> x: [n_cls+h*w, D], h=H/p and w=W/p
|
53 |
+
_image = self.patch_generator(image).squeeze(0)
|
54 |
+
x.append(_image)
|
55 |
+
seqlens.append(_image.shape[0])
|
56 |
+
|
57 |
+
x = torch.cat(x, dim=0)
|
58 |
+
seqlens = torch.tensor(seqlens, device=device, dtype=torch.int)
|
59 |
+
|
60 |
+
cu_seqlens = torch.cat([
|
61 |
+
torch.tensor([0], device=device, dtype=torch.int32),
|
62 |
+
torch.cumsum(seqlens, dim=0, dtype=torch.int32)
|
63 |
+
])
|
64 |
+
if getattr(self, 'grad_checkpointing', False) and not torch.jit.is_scripting():
|
65 |
+
for block in self.blocks:
|
66 |
+
x = checkpoint_seq(block, x, cu_seqlens)
|
67 |
+
else:
|
68 |
+
for block in self.blocks:
|
69 |
+
x = block(x, cu_seqlens)
|
70 |
+
x = self.norm(x)
|
71 |
+
return x, cu_seqlens
|
72 |
+
|
73 |
+
def _forward_cpe(self: VisionTransformer, x: torch.Tensor) -> torch.Tensor:
|
74 |
+
x = self.patch_generator(x)
|
75 |
+
if getattr(self, 'grad_checkpointing', False) and not torch.jit.is_scripting():
|
76 |
+
x = checkpoint_seq(self.blocks, x)
|
77 |
+
else:
|
78 |
+
x = self.blocks(x)
|
79 |
+
x = self.norm(x)
|
80 |
+
return x
|
81 |
+
|
82 |
+
|
83 |
+
def _take_indices(
|
84 |
+
num_blocks: int,
|
85 |
+
n: Optional[Union[int, List[int], Tuple[int]]],
|
86 |
+
) -> Tuple[Set[int], int]:
|
87 |
+
if isinstance(n, int):
|
88 |
+
assert n >= 0
|
89 |
+
take_indices = {x for x in range(num_blocks - n, num_blocks)}
|
90 |
+
else:
|
91 |
+
take_indices = {num_blocks + idx if idx < 0 else idx for idx in n}
|
92 |
+
return take_indices, max(take_indices)
|
93 |
+
|
94 |
+
|
95 |
+
def _forward_intermediates_cpe(
|
96 |
+
self,
|
97 |
+
x: torch.Tensor,
|
98 |
+
norm: bool = False,
|
99 |
+
**kwargs,
|
100 |
+
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
101 |
+
return forward_intermediates(
|
102 |
+
self,
|
103 |
+
patch_extractor=self.patch_generator,
|
104 |
+
num_summary_tokens=self.patch_generator.num_skip,
|
105 |
+
num_cls_tokens=self.patch_generator.num_cls_tokens,
|
106 |
+
norm=self.norm if norm else lambda y: y,
|
107 |
+
x=x,
|
108 |
+
**kwargs,
|
109 |
+
)
|
110 |
+
|
111 |
+
|
112 |
+
def _forward_cpe_dinov2(self: DinoWrapper, x: torch.Tensor) -> torch.Tensor:
|
113 |
+
y = _forward_cpe(self.inner, x)
|
114 |
+
|
115 |
+
return y[:, 0], y[:, self.num_summary_tokens:]
|
116 |
+
|
117 |
+
|
118 |
+
def _forward_intermediates_cpe_dinov2(self: DinoWrapper, *args, **kwargs):
|
119 |
+
return _forward_intermediates_cpe(self.inner, *args, **kwargs)
|
120 |
+
|
121 |
+
|
122 |
+
def _enable_cpe_for_timm_vit(model: VisionTransformer,
|
123 |
+
max_img_size: Union[int, Tuple[int, int]] = 1024,
|
124 |
+
num_cls_tokens: int = 1,
|
125 |
+
pos_dropout: float = 0.1,
|
126 |
+
register_multiple: int = Optional[None],
|
127 |
+
num_registers: int = Optional[None],
|
128 |
+
support_packing: bool = False,
|
129 |
+
):
|
130 |
+
if not isinstance(model, VisionTransformer):
|
131 |
+
raise ValueError("CPE only support for VisionTransformer models!")
|
132 |
+
|
133 |
+
patch_size = model.patch_embed.patch_size[0]
|
134 |
+
embed_dim = model.embed_dim
|
135 |
+
input_dims = model.patch_embed.img_size
|
136 |
+
normalize_patches = not isinstance(model.patch_embed.norm, nn.Identity)
|
137 |
+
cls_token = model.cls_token is not None
|
138 |
+
|
139 |
+
max_img_size = int(round(max_img_size / patch_size) * patch_size)
|
140 |
+
|
141 |
+
patch_generator = ViTPatchGenerator(
|
142 |
+
patch_size=patch_size,
|
143 |
+
embed_dim=embed_dim,
|
144 |
+
input_dims=input_dims,
|
145 |
+
normalize_patches=normalize_patches,
|
146 |
+
cls_token=cls_token,
|
147 |
+
max_input_dims=max_img_size,
|
148 |
+
pos_dropout=pos_dropout,
|
149 |
+
num_cls_tokens=num_cls_tokens,
|
150 |
+
register_multiple=register_multiple,
|
151 |
+
num_registers=num_registers,
|
152 |
+
)
|
153 |
+
|
154 |
+
model.patch_generator = patch_generator
|
155 |
+
model.patch_embed = None
|
156 |
+
model.cls_token = None
|
157 |
+
model.pos_embed = None
|
158 |
+
model.pos_drop = None
|
159 |
+
model.patch_size = patch_size
|
160 |
+
model.num_cls_tokens = num_cls_tokens
|
161 |
+
model.num_registers = patch_generator.num_registers
|
162 |
+
|
163 |
+
model.forward_features = MethodType(_forward_cpe, model)
|
164 |
+
model.forward_intermediates = MethodType(_forward_intermediates_cpe, model)
|
165 |
+
if support_packing:
|
166 |
+
model.forward_features = MethodType(_forward_cpe_pack, model)
|
167 |
+
for block in model.blocks:
|
168 |
+
block.forward = MethodType(_block_forward_pack, block)
|
169 |
+
block.attn.forward = MethodType(_attn_forward_pack, block.attn)
|
170 |
+
|
171 |
+
|
172 |
+
def _enable_cpe_for_dv2_reg_vit(model: DinoWrapper,
|
173 |
+
max_img_size: Union[int, Tuple[int, int]] = 1024,
|
174 |
+
num_cls_tokens: int = 1,
|
175 |
+
pos_dropout: float = 0.1,
|
176 |
+
register_multiple: int = Optional[None],
|
177 |
+
num_registers: int = Optional[None],
|
178 |
+
):
|
179 |
+
patch_size = model.patch_size
|
180 |
+
embed_dim = model.embed_dim
|
181 |
+
input_dims = model.inner.patch_embed.patches_resolution
|
182 |
+
normalize_patches = not isinstance(model.inner.patch_embed.norm, nn.Identity)
|
183 |
+
cls_token = True
|
184 |
+
|
185 |
+
max_img_size = int(round(max_img_size / patch_size) * patch_size)
|
186 |
+
|
187 |
+
patch_generator = ViTPatchGenerator(
|
188 |
+
patch_size=patch_size,
|
189 |
+
embed_dim=embed_dim,
|
190 |
+
input_dims=input_dims,
|
191 |
+
normalize_patches=normalize_patches,
|
192 |
+
cls_token=cls_token,
|
193 |
+
max_input_dims=max_img_size,
|
194 |
+
pos_dropout=pos_dropout,
|
195 |
+
num_cls_tokens=num_cls_tokens,
|
196 |
+
register_multiple=register_multiple,
|
197 |
+
num_registers=num_registers,
|
198 |
+
patch_bias=True,
|
199 |
+
)
|
200 |
+
|
201 |
+
inner = model.inner
|
202 |
+
inner.patch_generator = patch_generator
|
203 |
+
inner.patch_embed = None
|
204 |
+
inner.cls_token = None
|
205 |
+
inner.pos_embed = None
|
206 |
+
inner.register_tokens = None
|
207 |
+
inner.patch_size = patch_size
|
208 |
+
|
209 |
+
model.forward_features = MethodType(_forward_cpe_dinov2, model)
|
210 |
+
model.forward_intermediates = MethodType(_forward_intermediates_cpe_dinov2, model)
|
211 |
+
|
212 |
+
|
213 |
+
def enable_cpe(model: nn.Module,
|
214 |
+
*args,
|
215 |
+
**kwargs,
|
216 |
+
):
|
217 |
+
if isinstance(model, VisionTransformer):
|
218 |
+
_enable_cpe_for_timm_vit(model, *args, **kwargs)
|
219 |
+
elif isinstance(model, DinoWrapper):
|
220 |
+
_enable_cpe_for_dv2_reg_vit(model, *args, **kwargs)
|
221 |
+
elif isinstance(model, HybridModel):
|
222 |
+
_enable_cpe_for_timm_vit(model.vit, *args, **kwargs)
|
223 |
+
else:
|
224 |
+
raise ValueError(f'CPE not supported for this model type: {type(model)}')
|
tim/models/nvidia_radio/radio/enable_damp.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
from logging import getLogger
|
10 |
+
import math
|
11 |
+
import os
|
12 |
+
from typing import Dict, List, Optional, Union, Tuple
|
13 |
+
from types import MethodType
|
14 |
+
|
15 |
+
import torch
|
16 |
+
from torch import nn
|
17 |
+
from torch.nn import functional as F
|
18 |
+
from torch.nn.utils import parametrize
|
19 |
+
|
20 |
+
|
21 |
+
# For now, don't do anything
|
22 |
+
class DAMP(nn.Identity):
|
23 |
+
def __init__(self, std: float):
|
24 |
+
super().__init__()
|
25 |
+
self.std = std
|
26 |
+
|
27 |
+
|
28 |
+
def enable_damp(model: nn.Module, std: float):
|
29 |
+
if isinstance(model, (list, tuple)):
|
30 |
+
for m in model:
|
31 |
+
enable_damp(m, std)
|
32 |
+
return
|
33 |
+
|
34 |
+
for name, module in model.named_modules():
|
35 |
+
if isinstance(module, nn.Linear):
|
36 |
+
parametrize.register_parametrization(module, 'weight', DAMP(std))
|
37 |
+
|
38 |
+
|
39 |
+
def configure_damp_from_args(model: nn.Module, args):
|
40 |
+
damp = getattr(args, 'damp', None)
|
41 |
+
if damp:
|
42 |
+
enable_damp(model, damp)
|
tim/models/nvidia_radio/radio/enable_spectral_reparam.py
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
from logging import getLogger
|
10 |
+
import math
|
11 |
+
import os
|
12 |
+
from typing import Dict, List, Optional, Union, Tuple
|
13 |
+
from types import MethodType
|
14 |
+
|
15 |
+
import torch
|
16 |
+
from torch import nn
|
17 |
+
from torch.nn import functional as F
|
18 |
+
from torch.nn.utils import parametrize
|
19 |
+
from torch.nn.utils.parametrizations import _SpectralNorm
|
20 |
+
|
21 |
+
from timm.models.vision_transformer import Attention, Mlp
|
22 |
+
|
23 |
+
_EPS = 1e-5
|
24 |
+
|
25 |
+
|
26 |
+
class _SNReweight(_SpectralNorm):
|
27 |
+
def __init__(self, weight: torch.Tensor, *args, init_norm_to_current: bool = False, alpha: float = 0.05, version: int = 2, **kwargs):
|
28 |
+
super().__init__(weight, *args, **kwargs)
|
29 |
+
|
30 |
+
self.alpha = alpha
|
31 |
+
self.version = version
|
32 |
+
self.register_buffer('_sn_version', torch.tensor(version))
|
33 |
+
|
34 |
+
if init_norm_to_current:
|
35 |
+
# This will set the numerator to match the denominator, which should preserve the original values
|
36 |
+
init_scale = self._get_sigma(weight, n_power_iterations=20).item()
|
37 |
+
else:
|
38 |
+
init_scale = 1.0
|
39 |
+
|
40 |
+
if version == 1:
|
41 |
+
init_value = init_scale
|
42 |
+
elif version == 2:
|
43 |
+
t = init_scale - alpha
|
44 |
+
if t < _EPS:
|
45 |
+
getLogger("spectral_reparam").warn(f'The initialized spectral norm {init_scale} is too small to be represented. Setting to {_EPS} instead.')
|
46 |
+
t = _EPS
|
47 |
+
|
48 |
+
init_value = math.log(math.exp(t) - 1)
|
49 |
+
else:
|
50 |
+
raise ValueError(f'Unsupported version: {version}')
|
51 |
+
|
52 |
+
# Make 2D so that weight decay gets applied
|
53 |
+
self.scale = nn.Parameter(torch.tensor([[init_value]], dtype=torch.float32, device=weight.device))
|
54 |
+
|
55 |
+
# Re-implementing this because we need to make division by sigma safe
|
56 |
+
def _get_sigma(self, weight: torch.Tensor, n_power_iterations: int = None) -> torch.Tensor:
|
57 |
+
if not n_power_iterations:
|
58 |
+
n_power_iterations = self.n_power_iterations
|
59 |
+
if weight.ndim == 1:
|
60 |
+
# Faster and more exact path, no need to approximate anything
|
61 |
+
sigma = weight.norm()
|
62 |
+
else:
|
63 |
+
weight_mat = self._reshape_weight_to_matrix(weight)
|
64 |
+
if self.training:
|
65 |
+
self._power_method(weight_mat, n_power_iterations)
|
66 |
+
# See above on why we need to clone
|
67 |
+
u = self._u.clone(memory_format=torch.contiguous_format)
|
68 |
+
v = self._v.clone(memory_format=torch.contiguous_format)
|
69 |
+
# The proper way of computing this should be through F.bilinear, but
|
70 |
+
# it seems to have some efficiency issues:
|
71 |
+
# https://github.com/pytorch/pytorch/issues/58093
|
72 |
+
sigma = torch.dot(u, torch.mv(weight_mat, v))
|
73 |
+
|
74 |
+
return sigma + self.eps
|
75 |
+
|
76 |
+
def forward(self, weight: torch.Tensor, *args, **kwargs):
|
77 |
+
dtype = weight.dtype
|
78 |
+
sigma = self._get_sigma(weight, *args, **kwargs)
|
79 |
+
|
80 |
+
if self.version == 1:
|
81 |
+
scale = self.scale
|
82 |
+
elif self.version == 2:
|
83 |
+
scale = F.softplus(self.scale) + self.alpha
|
84 |
+
else:
|
85 |
+
raise ValueError(f'Unsupported version: {self.version}')
|
86 |
+
|
87 |
+
scale = scale.float() / sigma.float()
|
88 |
+
|
89 |
+
y = weight * scale
|
90 |
+
|
91 |
+
if dtype in (torch.float16, torch.bfloat16):
|
92 |
+
y = y.to(dtype)
|
93 |
+
return y
|
94 |
+
|
95 |
+
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
|
96 |
+
version_key = f'{prefix}_sn_version'
|
97 |
+
if version_key not in state_dict:
|
98 |
+
self.version = 1
|
99 |
+
state_dict[version_key] = torch.tensor(1)
|
100 |
+
return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|
101 |
+
|
102 |
+
|
103 |
+
class _ChunkedSNReweight(nn.Module):
|
104 |
+
def __init__(self, weight: torch.Tensor, num_chunks: int, *args, init_norm_to_current: bool = False, **kwargs):
|
105 |
+
super().__init__()
|
106 |
+
|
107 |
+
self.num_chunks = num_chunks
|
108 |
+
parts = weight.split(weight.shape[0] // num_chunks, dim=0)
|
109 |
+
|
110 |
+
self.parts = nn.ModuleList([
|
111 |
+
_SNReweight(p, *args, init_norm_to_current=init_norm_to_current, **kwargs)
|
112 |
+
for p in parts
|
113 |
+
])
|
114 |
+
|
115 |
+
def forward(self, weight: torch.Tensor, *args, **kwargs):
|
116 |
+
parts = weight.split(weight.shape[0] // self.num_chunks, dim=0)
|
117 |
+
|
118 |
+
parts = [
|
119 |
+
fn(p)
|
120 |
+
for fn, p in zip(self.parts, parts)
|
121 |
+
]
|
122 |
+
|
123 |
+
return torch.cat(parts, dim=0)
|
124 |
+
|
125 |
+
|
126 |
+
class _AttnSNReweight(_ChunkedSNReweight):
|
127 |
+
def __init__(self, weight: torch.Tensor, *args, init_norm_to_current: bool = False, renorm_values: bool = False, **kwargs):
|
128 |
+
super().__init__(weight, 3, *args, init_norm_to_current=init_norm_to_current, **kwargs)
|
129 |
+
|
130 |
+
if not renorm_values:
|
131 |
+
self.parts[2] = nn.Identity()
|
132 |
+
|
133 |
+
|
134 |
+
def enable_spectral_reparam(model: Union[nn.Module, List[nn.Module]],
|
135 |
+
n_power_iterations: int = 1,
|
136 |
+
eps: float = 1e-6,
|
137 |
+
init_norm_to_current: bool = False,
|
138 |
+
renorm_values: bool = True,
|
139 |
+
renorm_mlp: bool = True,
|
140 |
+
state_dict_guidance: Optional[Dict[str, torch.Tensor]] = None):
|
141 |
+
if isinstance(model, (list, tuple)):
|
142 |
+
for i, sub in enumerate(model):
|
143 |
+
sub_sd = state_dict_guidance[i] if isinstance(state_dict_guidance, (list, tuple)) else state_dict_guidance
|
144 |
+
enable_spectral_reparam(sub, n_power_iterations=n_power_iterations, eps=eps,
|
145 |
+
init_norm_to_current=init_norm_to_current, renorm_values=renorm_values,
|
146 |
+
renorm_mlp=renorm_mlp, state_dict_guidance=sub_sd)
|
147 |
+
return
|
148 |
+
|
149 |
+
print('Enabling spectral reparametrization')
|
150 |
+
args = dict(n_power_iterations=n_power_iterations, dim=0, eps=eps, init_norm_to_current=init_norm_to_current)
|
151 |
+
visited_prefixes = set()
|
152 |
+
|
153 |
+
def is_guidance_parametrized(name: str):
|
154 |
+
if state_dict_guidance is None:
|
155 |
+
return True
|
156 |
+
|
157 |
+
p_name = f'{name}.parametrizations'
|
158 |
+
is_prm = any(k for k in state_dict_guidance if k.startswith(p_name) and k.endswith('_sn_version'))
|
159 |
+
return is_prm
|
160 |
+
|
161 |
+
def parametrize_linear(linear: nn.Linear):
|
162 |
+
parametrize.register_parametrization(
|
163 |
+
linear,
|
164 |
+
'weight',
|
165 |
+
_SNReweight(linear.weight, **args)
|
166 |
+
)
|
167 |
+
|
168 |
+
for name, mod in model.named_modules():
|
169 |
+
pref = '.'.join(name.split('.')[:-1])
|
170 |
+
if pref in visited_prefixes:
|
171 |
+
continue
|
172 |
+
|
173 |
+
if isinstance(mod, Attention) or name.endswith('.attn'):
|
174 |
+
if is_guidance_parametrized(f'{name}.qkv'):
|
175 |
+
parametrize.register_parametrization(
|
176 |
+
mod.qkv,
|
177 |
+
'weight',
|
178 |
+
_AttnSNReweight(mod.qkv.weight, renorm_values=renorm_values, **args),
|
179 |
+
)
|
180 |
+
if hasattr(mod, 'proj') and is_guidance_parametrized(f'{name}.proj'):
|
181 |
+
parametrize_linear(mod.proj)
|
182 |
+
visited_prefixes.add(name)
|
183 |
+
elif name.endswith('mlp') and renorm_mlp and hasattr(mod, 'w12'):
|
184 |
+
if is_guidance_parametrized(f'{name}.w12'):
|
185 |
+
parametrize.register_parametrization(
|
186 |
+
mod.w12,
|
187 |
+
'weight',
|
188 |
+
_ChunkedSNReweight(mod.w12.weight, num_chunks=2, **args),
|
189 |
+
)
|
190 |
+
if is_guidance_parametrized(f'{name}.w3'):
|
191 |
+
parametrize_linear(mod.w3)
|
192 |
+
visited_prefixes.add(name)
|
193 |
+
elif isinstance(mod, nn.Linear) and 'patch_generator' not in name and is_guidance_parametrized(name):
|
194 |
+
parametrize_linear(mod)
|
195 |
+
|
196 |
+
|
197 |
+
def configure_spectral_reparam_from_args(model: nn.Module, args, state_dict_guidance: Optional[Dict[str, torch.Tensor]] = None):
|
198 |
+
spectral_reparam = getattr(args, 'spectral_reparam', False)
|
199 |
+
if isinstance(spectral_reparam, bool) and spectral_reparam:
|
200 |
+
enable_spectral_reparam(model, init_norm_to_current=True, state_dict_guidance=state_dict_guidance)
|
201 |
+
elif isinstance(spectral_reparam, dict):
|
202 |
+
enable_spectral_reparam(
|
203 |
+
model,
|
204 |
+
n_power_iterations=spectral_reparam.get('n_power_iterations', 1),
|
205 |
+
eps=spectral_reparam.get('eps', 1e-12),
|
206 |
+
init_norm_to_current=True,
|
207 |
+
state_dict_guidance=state_dict_guidance,
|
208 |
+
)
|
209 |
+
|
210 |
+
|
211 |
+
def disable_spectral_reparam(model: nn.Module):
|
212 |
+
print('Disabling spectral reparametrization')
|
213 |
+
for name, mod in model.named_modules():
|
214 |
+
if parametrize.is_parametrized(mod):
|
215 |
+
parametrize.remove_parametrizations(mod, 'weight')
|
216 |
+
pass
|
217 |
+
|
218 |
+
|
219 |
+
|
220 |
+
if __name__ == '__main__':
|
221 |
+
import argparse
|
222 |
+
from . import radio_model as create_model
|
223 |
+
|
224 |
+
parser = argparse.ArgumentParser(description='Remove parametrization from state dict')
|
225 |
+
parser.add_argument('--checkpoint', type=str, required=True, help='The checkpoint to load')
|
226 |
+
parser.add_argument('--output', type=str, default='', help='Where to store the checkpoint')
|
227 |
+
parser.add_argument('--release', default=False, action='store_true', help='Prune extraneous checkpoint fields')
|
228 |
+
parser.add_argument('--strict', default=False, action='store_true', help='Strictly load the state dict')
|
229 |
+
|
230 |
+
args = parser.parse_args()
|
231 |
+
|
232 |
+
if not args.output:
|
233 |
+
chk_dir, chk_name = os.path.split(args.checkpoint)
|
234 |
+
args.output = os.path.join(chk_dir, f'clean_{chk_name}')
|
235 |
+
print(f'Set output to "{args.output}"')
|
236 |
+
|
237 |
+
chk = torch.load(args.checkpoint, map_location='cpu', mmap=True)
|
238 |
+
|
239 |
+
model = create_model.create_model_from_args(chk['args'])
|
240 |
+
|
241 |
+
key = 'base_model.'
|
242 |
+
mod_state = dict()
|
243 |
+
extra_state = dict()
|
244 |
+
for k, v in chk['state_dict'].items():
|
245 |
+
if k.startswith(key):
|
246 |
+
mod_state[k[len(key):]] = v
|
247 |
+
else:
|
248 |
+
extra_state[k] = v
|
249 |
+
|
250 |
+
chk_load_info = model.load_state_dict(mod_state, strict=args.strict)
|
251 |
+
if chk_load_info.unexpected_keys or chk_load_info.missing_keys:
|
252 |
+
print(chk_load_info)
|
253 |
+
|
254 |
+
if chk['args'].spectral_reparam:
|
255 |
+
disable_spectral_reparam(model)
|
256 |
+
|
257 |
+
if hasattr(chk['args'], 'dtype'):
|
258 |
+
model.to(dtype=chk['args'].dtype)
|
259 |
+
|
260 |
+
mod_state = model.state_dict()
|
261 |
+
final_state = dict()
|
262 |
+
final_state.update({f'{key}{k}': v for k, v in mod_state.items()})
|
263 |
+
final_state.update(extra_state)
|
264 |
+
|
265 |
+
chk['state_dict'] = final_state
|
266 |
+
chk['args'].spectral_reparam = False
|
267 |
+
|
268 |
+
if args.release:
|
269 |
+
chk = {
|
270 |
+
'arch': chk['arch'],
|
271 |
+
'epoch': chk['epoch'],
|
272 |
+
'state_dict': chk['state_dict'],
|
273 |
+
'args': chk['args'],
|
274 |
+
}
|
275 |
+
|
276 |
+
torch.save(chk, args.output)
|
277 |
+
pass
|
tim/models/nvidia_radio/radio/eradio_model.py
ADDED
@@ -0,0 +1,1392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
6 |
+
# and proprietary rights in and to this software, related documentation
|
7 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
8 |
+
# distribution of this software and related documentation without an express
|
9 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
10 |
+
|
11 |
+
# E-RADIO model from
|
12 |
+
# Mike Ranzinger, Greg Heinrich, Jan Kautz, and Pavlo Molchanov. "AM-RADIO: Agglomerative Model--Reduce All Domains Into One." arXiv preprint arXiv:2312.06709 (2023).
|
13 |
+
|
14 |
+
# based on FasterViT, Swin Transformer, YOLOv8
|
15 |
+
|
16 |
+
# FasterViT:
|
17 |
+
# Ali Hatamizadeh, Greg Heinrich, Hongxu Yin, Andrew Tao, Jose M. Alvarez, Jan Kautz, and Pavlo Molchanov. "FasterViT: Fast Vision Transformers with Hierarchical Attention." arXiv preprint arXiv:2306.06189 (2023).
|
18 |
+
|
19 |
+
import timm
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
from timm.models.registry import register_model
|
23 |
+
|
24 |
+
from timm.models.layers import trunc_normal_, DropPath, LayerNorm2d
|
25 |
+
import numpy as np
|
26 |
+
import torch.nn.functional as F
|
27 |
+
import math
|
28 |
+
import warnings
|
29 |
+
|
30 |
+
#######################
|
31 |
+
## Codebase from YOLOv8
|
32 |
+
## BEGINNING
|
33 |
+
#######################
|
34 |
+
|
35 |
+
class C2f(nn.Module):
|
36 |
+
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
|
37 |
+
"""From YOLOv8 codebase"""
|
38 |
+
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, drop_path=None): # ch_in, ch_out, number, shortcut, groups, expansion
|
39 |
+
super().__init__()
|
40 |
+
if drop_path is None:
|
41 |
+
drop_path = [0.0] * n
|
42 |
+
|
43 |
+
self.c = int(c2 * e) # hidden channels
|
44 |
+
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
45 |
+
self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
|
46 |
+
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0, drop_path=drop_path[i]) for i in range(n))
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
"""Forward pass through C2f layer."""
|
50 |
+
y = list(self.cv1(x).chunk(2, 1))
|
51 |
+
y.extend(m(y[-1]) for m in self.m)
|
52 |
+
return self.cv2(torch.cat(y, 1))
|
53 |
+
|
54 |
+
def forward_split(self, x):
|
55 |
+
"""Forward pass using split() instead of chunk()."""
|
56 |
+
y = list(self.cv1(x).split((self.c, self.c), 1))
|
57 |
+
y.extend(m(y[-1]) for m in self.m)
|
58 |
+
return self.cv2(torch.cat(y, 1))
|
59 |
+
|
60 |
+
class Bottleneck(nn.Module):
|
61 |
+
"""Standard bottleneck."""
|
62 |
+
|
63 |
+
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5, drop_path=0.0): # ch_in, ch_out, shortcut, groups, kernels, expand
|
64 |
+
super().__init__()
|
65 |
+
c_ = int(c2 * e) # hidden channels
|
66 |
+
self.cv1 = Conv(c1, c_, k[0], 1)
|
67 |
+
self.cv2 = Conv(c_, c2, k[1], 1, g=g)
|
68 |
+
self.add = shortcut and c1 == c2
|
69 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
"""'forward()' applies the YOLOv5 FPN to input data."""
|
73 |
+
return x + self.drop_path1(self.cv2(self.cv1(x))) if self.add else self.cv2(self.cv1(x))
|
74 |
+
|
75 |
+
|
76 |
+
class Conv(nn.Module):
|
77 |
+
"""Modified to support layer fusion"""
|
78 |
+
default_act = nn.SiLU() # default activation
|
79 |
+
|
80 |
+
def __init__(self, a, b, kernel_size=1, stride=1, padding=None, g=1, dilation=1, bn_weight_init=1, bias=False, act=True):
|
81 |
+
super().__init__()
|
82 |
+
|
83 |
+
self.conv = torch.nn.Conv2d(a, b, kernel_size, stride, autopad(kernel_size, padding, dilation), dilation, g, bias=False)
|
84 |
+
if 1:
|
85 |
+
self.bn = torch.nn.BatchNorm2d(b)
|
86 |
+
torch.nn.init.constant_(self.bn.weight, bn_weight_init)
|
87 |
+
torch.nn.init.constant_(self.bn.bias, 0)
|
88 |
+
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
89 |
+
|
90 |
+
|
91 |
+
def forward(self,x):
|
92 |
+
x = self.conv(x)
|
93 |
+
x = self.bn(x)
|
94 |
+
x = self.act(x)
|
95 |
+
return x
|
96 |
+
|
97 |
+
@torch.no_grad()
|
98 |
+
def switch_to_deploy(self):
|
99 |
+
# return 1
|
100 |
+
if not isinstance(self.bn, nn.Identity):
|
101 |
+
c, bn = self.conv, self.bn
|
102 |
+
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
|
103 |
+
w = c.weight * w[:, None, None, None]
|
104 |
+
b = bn.bias - bn.running_mean * bn.weight / \
|
105 |
+
(bn.running_var + bn.eps)**0.5
|
106 |
+
|
107 |
+
self.conv.weight.data.copy_(w)
|
108 |
+
self.conv.bias = nn.Parameter(b)
|
109 |
+
|
110 |
+
self.bn = nn.Identity()
|
111 |
+
|
112 |
+
def autopad(k, p=None, d=1): # kernel, padding, dilation
|
113 |
+
"""Pad to 'same' shape outputs."""
|
114 |
+
if d > 1:
|
115 |
+
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
|
116 |
+
if p is None:
|
117 |
+
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
118 |
+
return p
|
119 |
+
|
120 |
+
|
121 |
+
#######################
|
122 |
+
## Codebase from YOLOv8
|
123 |
+
## END
|
124 |
+
#######################
|
125 |
+
|
126 |
+
def pixel_unshuffle(data, factor=2):
|
127 |
+
# performs nn.PixelShuffle(factor) in reverse, torch has some bug for ONNX and TRT, so doing it manually
|
128 |
+
B, C, H, W = data.shape
|
129 |
+
return data.view(B, C, factor, H//factor, factor, W//factor).permute(0,1,2,4,3,5).reshape(B, -1, H//factor, W//factor)
|
130 |
+
|
131 |
+
class SwiGLU(nn.Module):
|
132 |
+
# should be more advanced, but doesnt improve results so far
|
133 |
+
def forward(self, x):
|
134 |
+
x, gate = x.chunk(2, dim=-1)
|
135 |
+
return F.silu(gate) * x
|
136 |
+
|
137 |
+
|
138 |
+
def window_partition(x, window_size):
|
139 |
+
"""
|
140 |
+
Function for partitioning image into windows and later do windowed attention
|
141 |
+
Args:
|
142 |
+
x: (B, C, H, W)
|
143 |
+
window_size: window size
|
144 |
+
Returns:
|
145 |
+
windows - local window features (num_windows*B, window_size*window_size, C)
|
146 |
+
(Hp, Wp) - the size of the padded image
|
147 |
+
"""
|
148 |
+
B, C, H, W = x.shape
|
149 |
+
|
150 |
+
if window_size == 0 or (window_size==H and window_size==W):
|
151 |
+
windows = x.flatten(2).transpose(1, 2)
|
152 |
+
Hp, Wp = H, W
|
153 |
+
else:
|
154 |
+
pad_h = (window_size - H % window_size) % window_size
|
155 |
+
pad_w = (window_size - W % window_size) % window_size
|
156 |
+
if pad_h > 0 or pad_w > 0:
|
157 |
+
x = F.pad(x, (0, pad_w, 0, pad_h), mode="reflect")
|
158 |
+
Hp, Wp = H + pad_h, W + pad_w
|
159 |
+
|
160 |
+
x = x.view(B, C, Hp // window_size, window_size, Wp // window_size, window_size)
|
161 |
+
windows = x.permute(0, 2, 4, 3, 5, 1).reshape(-1, window_size*window_size, C)
|
162 |
+
|
163 |
+
return windows, (Hp, Wp)
|
164 |
+
|
165 |
+
class Conv2d_BN(nn.Module):
|
166 |
+
'''
|
167 |
+
Conv2d + BN layer with folding capability to speed up inference
|
168 |
+
Can be merged with Conv() function with additional arguments
|
169 |
+
'''
|
170 |
+
def __init__(self, a, b, kernel_size=1, stride=1, padding=0, dilation=1, groups=1, bn_weight_init=1, bias=False):
|
171 |
+
super().__init__()
|
172 |
+
self.conv = torch.nn.Conv2d(a, b, kernel_size, stride, padding, dilation, groups, bias=False)
|
173 |
+
if 1:
|
174 |
+
self.bn = torch.nn.BatchNorm2d(b)
|
175 |
+
torch.nn.init.constant_(self.bn.weight, bn_weight_init)
|
176 |
+
torch.nn.init.constant_(self.bn.bias, 0)
|
177 |
+
|
178 |
+
def forward(self,x):
|
179 |
+
x = self.conv(x)
|
180 |
+
x = self.bn(x)
|
181 |
+
return x
|
182 |
+
|
183 |
+
@torch.no_grad()
|
184 |
+
def switch_to_deploy(self):
|
185 |
+
if not isinstance(self.bn, nn.Identity):
|
186 |
+
c, bn = self.conv, self.bn
|
187 |
+
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
|
188 |
+
w = c.weight * w[:, None, None, None]
|
189 |
+
b = bn.bias - bn.running_mean * bn.weight / \
|
190 |
+
(bn.running_var + bn.eps)**0.5
|
191 |
+
self.conv.weight.data.copy_(w)
|
192 |
+
self.conv.bias = nn.Parameter(b)
|
193 |
+
self.bn = nn.Identity()
|
194 |
+
|
195 |
+
|
196 |
+
|
197 |
+
def window_reverse(windows, window_size, H, W, pad_hw):
|
198 |
+
"""
|
199 |
+
Windows to the full feature map
|
200 |
+
Args:
|
201 |
+
windows: local window features (num_windows*B, window_size, window_size, C)
|
202 |
+
window_size: Window size
|
203 |
+
H: Height of image
|
204 |
+
W: Width of image
|
205 |
+
pad_w - a tuple of image passing used in windowing step
|
206 |
+
Returns:
|
207 |
+
x: (B, C, H, W)
|
208 |
+
|
209 |
+
"""
|
210 |
+
# print(f"window_reverse, windows.shape {windows.shape}")
|
211 |
+
Hp, Wp = pad_hw
|
212 |
+
if window_size == 0 or (window_size==H and window_size==W):
|
213 |
+
B = int(windows.shape[0] / (Hp * Wp / window_size / window_size))
|
214 |
+
x = windows.transpose(1, 2).view(B, -1, H, W)
|
215 |
+
else:
|
216 |
+
B = int(windows.shape[0] / (Hp * Wp / window_size / window_size))
|
217 |
+
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
|
218 |
+
x = x.permute(0, 5, 1, 3, 2, 4).reshape(B,windows.shape[2], Hp, Wp)
|
219 |
+
|
220 |
+
if Hp > H or Wp > W:
|
221 |
+
x = x[:, :, :H, :W, ].contiguous()
|
222 |
+
|
223 |
+
return x
|
224 |
+
|
225 |
+
|
226 |
+
|
227 |
+
class PosEmbMLPSwinv2D(nn.Module):
|
228 |
+
"""
|
229 |
+
2D positional embedding from Swin Transformer v2
|
230 |
+
Added functionality to store the positional embedding in the model and not recompute it every time
|
231 |
+
"""
|
232 |
+
def __init__(
|
233 |
+
self, window_size, pretrained_window_size, num_heads, seq_length, no_log=False, cpb_mlp_hidden=512,
|
234 |
+
):
|
235 |
+
super().__init__()
|
236 |
+
self.window_size = window_size
|
237 |
+
self.num_heads = num_heads
|
238 |
+
# mlp to generate continuous relative position bias
|
239 |
+
self.cpb_mlp = nn.Sequential(
|
240 |
+
nn.Linear(2, cpb_mlp_hidden, bias=True),
|
241 |
+
nn.ReLU(inplace=True),
|
242 |
+
nn.Linear(cpb_mlp_hidden, num_heads, bias=False),
|
243 |
+
)
|
244 |
+
|
245 |
+
self.grid_exists = False
|
246 |
+
self.seq_length = seq_length
|
247 |
+
self.deploy = False
|
248 |
+
self.num_heads = num_heads
|
249 |
+
self.no_log = no_log
|
250 |
+
self.pretrained_window_size = pretrained_window_size
|
251 |
+
self.relative_bias_window_size = window_size
|
252 |
+
|
253 |
+
relative_coords_table, relative_position_index, relative_bias = self.relative_bias_initialization(window_size, num_heads,
|
254 |
+
pretrained_window_size, seq_length,
|
255 |
+
no_log)
|
256 |
+
|
257 |
+
self.register_buffer("relative_coords_table", relative_coords_table)
|
258 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
259 |
+
self.register_buffer("relative_bias", relative_bias) # for EMA
|
260 |
+
|
261 |
+
def relative_bias_initialization(self, window_size, num_heads, pretrained_window_size, seq_length, no_log):
|
262 |
+
# as in separate function to support window size chage after model weights loading
|
263 |
+
relative_coords_h = torch.arange(
|
264 |
+
-(window_size[0] - 1), window_size[0], dtype=torch.float32
|
265 |
+
)
|
266 |
+
relative_coords_w = torch.arange(
|
267 |
+
-(window_size[1] - 1), window_size[1], dtype=torch.float32
|
268 |
+
)
|
269 |
+
relative_coords_table = (
|
270 |
+
torch.stack(torch.meshgrid([relative_coords_h, relative_coords_w]))
|
271 |
+
.permute(1, 2, 0)
|
272 |
+
.contiguous()
|
273 |
+
.unsqueeze(0)
|
274 |
+
) # 1, 2*Wh-1, 2*Ww-1, 2
|
275 |
+
if pretrained_window_size[0] > 0:
|
276 |
+
relative_coords_table[:, :, :, 0] /= pretrained_window_size[0] - 1
|
277 |
+
relative_coords_table[:, :, :, 1] /= pretrained_window_size[1] - 1
|
278 |
+
else:
|
279 |
+
relative_coords_table[:, :, :, 0] /= self.window_size[0] - 1
|
280 |
+
relative_coords_table[:, :, :, 1] /= self.window_size[1] - 1
|
281 |
+
|
282 |
+
if not no_log:
|
283 |
+
relative_coords_table *= 8 # normalize to -8, 8
|
284 |
+
relative_coords_table = (
|
285 |
+
torch.sign(relative_coords_table)
|
286 |
+
* torch.log2(torch.abs(relative_coords_table) + 1.0)
|
287 |
+
/ np.log2(8)
|
288 |
+
)
|
289 |
+
|
290 |
+
# get pair-wise relative position index for each token inside the window
|
291 |
+
coords_h = torch.arange(self.window_size[0])
|
292 |
+
coords_w = torch.arange(self.window_size[1])
|
293 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
294 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
295 |
+
relative_coords = (
|
296 |
+
coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
297 |
+
) # 2, Wh*Ww, Wh*Ww
|
298 |
+
relative_coords = relative_coords.permute(
|
299 |
+
1, 2, 0
|
300 |
+
).contiguous() # Wh*Ww, Wh*Ww, 2
|
301 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
302 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
303 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
304 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
305 |
+
|
306 |
+
relative_bias = torch.zeros(1, num_heads, seq_length, seq_length)
|
307 |
+
|
308 |
+
self.relative_bias_window_size = window_size
|
309 |
+
|
310 |
+
return relative_coords_table, relative_position_index, relative_bias
|
311 |
+
|
312 |
+
|
313 |
+
def switch_to_deploy(self):
|
314 |
+
self.deploy = True
|
315 |
+
self.grid_exists = True
|
316 |
+
|
317 |
+
def forward(self, input_tensor):
|
318 |
+
# for efficiency, we want this forward to be folded into a single operation (sum)
|
319 |
+
# if resolution stays the same, then we dont need to recompute MLP layers
|
320 |
+
|
321 |
+
if not self.deploy or self.training:
|
322 |
+
self.grid_exists = False
|
323 |
+
|
324 |
+
#compare if all elements in self.window_size list match those in self.relative_bias_window_size
|
325 |
+
if not all([self.window_size[i] == self.relative_bias_window_size[i] for i in range(len(self.window_size))]):
|
326 |
+
relative_coords_table, relative_position_index, relative_bias = self.relative_bias_initialization(self.window_size, self.num_heads,
|
327 |
+
self.pretrained_window_size, self.seq_length,
|
328 |
+
self.no_log)
|
329 |
+
|
330 |
+
self.relative_coords_table = relative_coords_table.to(self.relative_coords_table.device)
|
331 |
+
self.relative_position_index = relative_position_index.to(self.relative_position_index.device)
|
332 |
+
self.relative_bias = relative_bias.to(self.relative_bias.device)
|
333 |
+
|
334 |
+
if self.deploy and self.grid_exists:
|
335 |
+
input_tensor = input_tensor + self.relative_bias
|
336 |
+
return input_tensor
|
337 |
+
|
338 |
+
if 1:
|
339 |
+
self.grid_exists = True
|
340 |
+
|
341 |
+
relative_position_bias_table = self.cpb_mlp(
|
342 |
+
self.relative_coords_table
|
343 |
+
).view(-1, self.num_heads)
|
344 |
+
relative_position_bias = relative_position_bias_table[
|
345 |
+
self.relative_position_index.view(-1)
|
346 |
+
].view(
|
347 |
+
self.window_size[0] * self.window_size[1],
|
348 |
+
self.window_size[0] * self.window_size[1],
|
349 |
+
-1,
|
350 |
+
) # Wh*Ww,Wh*Ww,nH
|
351 |
+
|
352 |
+
relative_position_bias = relative_position_bias.permute(
|
353 |
+
2, 0, 1
|
354 |
+
).contiguous() # nH, Wh*Ww, Wh*Ww
|
355 |
+
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
|
356 |
+
|
357 |
+
self.relative_bias = relative_position_bias.unsqueeze(0)
|
358 |
+
|
359 |
+
input_tensor = input_tensor + self.relative_bias
|
360 |
+
return input_tensor
|
361 |
+
|
362 |
+
|
363 |
+
class GRAAttentionBlock(nn.Module):
|
364 |
+
def __init__(self, window_size, dim_in, dim_out,
|
365 |
+
num_heads, drop_path=0., qk_scale=None, qkv_bias=False,
|
366 |
+
norm_layer=nn.LayerNorm, layer_scale=None,
|
367 |
+
use_swiglu=True,
|
368 |
+
subsample_ratio=1, dim_ratio=1, conv_base=False,
|
369 |
+
do_windowing=True, multi_query=False, use_shift=0,
|
370 |
+
cpb_mlp_hidden=512, conv_groups_ratio=0):
|
371 |
+
'''
|
372 |
+
Global Resolution Attention Block , see README for details
|
373 |
+
Attention with subsampling to get a bigger receptive field for attention
|
374 |
+
conv_base - use conv2d instead of avgpool2d for downsample / upsample
|
375 |
+
|
376 |
+
|
377 |
+
'''
|
378 |
+
super().__init__()
|
379 |
+
|
380 |
+
self.shift_size=window_size//2 if use_shift else 0
|
381 |
+
|
382 |
+
self.do_windowing = do_windowing
|
383 |
+
self.subsample_ratio = subsample_ratio
|
384 |
+
|
385 |
+
|
386 |
+
|
387 |
+
if do_windowing:
|
388 |
+
if conv_base:
|
389 |
+
self.downsample_op = nn.Conv2d(dim_in, dim_out, kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
|
390 |
+
|
391 |
+
|
392 |
+
self.downsample_mixer = nn.Identity()
|
393 |
+
self.upsample_mixer = nn.Identity()
|
394 |
+
self.upsample_op = nn.ConvTranspose2d(dim_in, dim_out, kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
|
395 |
+
else:
|
396 |
+
self.downsample_op = nn.AvgPool2d(kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
|
397 |
+
self.downsample_mixer = Conv2d_BN(dim_in, dim_out, kernel_size=1, stride=1) if subsample_ratio > 1 else nn.Identity()
|
398 |
+
self.upsample_mixer = nn.Upsample(scale_factor=subsample_ratio, mode='nearest') if subsample_ratio > 1 else nn.Identity()
|
399 |
+
self.upsample_op = Conv2d_BN(dim_in, dim_out, kernel_size=1, stride=1, padding=0, bias=False) if subsample_ratio > 1 else nn.Identity()
|
400 |
+
|
401 |
+
|
402 |
+
# in case there is no downsampling conv we want to have it separately
|
403 |
+
# will help with information propagation between windows
|
404 |
+
if subsample_ratio == 1:
|
405 |
+
# conv_groups_ratio=0
|
406 |
+
self.pre_conv = Conv2d_BN(dim_in, dim_in, kernel_size=3, stride=1, padding=1, groups=max(1,int(conv_groups_ratio*dim_in)), bias=False)
|
407 |
+
# self.pre_conv = nn.Conv2d(dim_in, dim_in, kernel_size=3, stride=1, padding=1, groups=max(1,int(conv_groups_ratio*dim_in)), bias=False)
|
408 |
+
# self.pre_conv_act = nn.ReLU6()
|
409 |
+
#for simplicity:
|
410 |
+
self.pre_conv_act = nn.Identity()
|
411 |
+
if conv_groups_ratio == -1:
|
412 |
+
self.pre_conv = nn.Identity()
|
413 |
+
self.pre_conv_act = nn.Identity()
|
414 |
+
|
415 |
+
self.window_size = window_size
|
416 |
+
|
417 |
+
self.norm1 = norm_layer(dim_in)
|
418 |
+
|
419 |
+
self.attn = WindowAttention(
|
420 |
+
dim_in,
|
421 |
+
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
422 |
+
resolution=window_size,
|
423 |
+
seq_length=window_size**2, dim_out=dim_in, multi_query=multi_query,
|
424 |
+
shift_size=self.shift_size, cpb_mlp_hidden=cpb_mlp_hidden)
|
425 |
+
|
426 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
427 |
+
|
428 |
+
use_layer_scale = layer_scale is not None and type(layer_scale) in [int, float]
|
429 |
+
self.gamma1 = nn.Parameter(layer_scale * torch.ones(dim_in)) if use_layer_scale else 1
|
430 |
+
|
431 |
+
### mlp layer
|
432 |
+
mlp_ratio = 4
|
433 |
+
self.norm2 = norm_layer(dim_in)
|
434 |
+
mlp_hidden_dim = int(dim_in * mlp_ratio)
|
435 |
+
|
436 |
+
activation = nn.GELU if not use_swiglu else SwiGLU
|
437 |
+
mlp_hidden_dim = int((4 * dim_in * 1 / 2) / 64) * 64 if use_swiglu else mlp_hidden_dim
|
438 |
+
|
439 |
+
self.mlp = Mlp(in_features=dim_in, hidden_features=mlp_hidden_dim, act_layer=activation, use_swiglu=use_swiglu)
|
440 |
+
|
441 |
+
self.gamma2 = nn.Parameter(layer_scale * torch.ones(dim_in)) if layer_scale else 1
|
442 |
+
self.drop_path2=DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
443 |
+
|
444 |
+
|
445 |
+
def forward(self, x):
|
446 |
+
skip_connection = x
|
447 |
+
attn_mask = None
|
448 |
+
|
449 |
+
# in case there is no downsampling conv we want to have it separately
|
450 |
+
# will help with information propagation
|
451 |
+
if self.subsample_ratio == 1:
|
452 |
+
x = self.pre_conv_act(self.pre_conv(x)) + skip_connection
|
453 |
+
|
454 |
+
if self.do_windowing:
|
455 |
+
# performing windowing if required
|
456 |
+
x = self.downsample_op(x)
|
457 |
+
x = self.downsample_mixer(x)
|
458 |
+
|
459 |
+
if self.window_size>0:
|
460 |
+
H, W = x.shape[2], x.shape[3]
|
461 |
+
|
462 |
+
if self.shift_size > 0 and H>self.window_size and W>self.window_size:
|
463 |
+
# @swin like cyclic shift, doesnt show better performance
|
464 |
+
x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(2, 3))
|
465 |
+
|
466 |
+
x, pad_hw = window_partition(x, self.window_size)
|
467 |
+
|
468 |
+
if self.shift_size > 0 and H>self.window_size and W>self.window_size:
|
469 |
+
# set atten matrix to have -100 and the top right square
|
470 |
+
# attn[:, :, :-self.shift_size, -self.shift_size:] = -100.0
|
471 |
+
# calculate attention mask for SW-MSA
|
472 |
+
# not used in final version, can be useful for some cases especially for high res
|
473 |
+
H, W = pad_hw
|
474 |
+
img_mask = torch.zeros((1, H, W, 1), device=x.device) # 1 H W 1
|
475 |
+
h_slices = (slice(0, -self.window_size),
|
476 |
+
slice(-self.window_size, -self.shift_size),
|
477 |
+
slice(-self.shift_size, None))
|
478 |
+
w_slices = (slice(0, -self.window_size),
|
479 |
+
slice(-self.window_size, -self.shift_size),
|
480 |
+
slice(-self.shift_size, None))
|
481 |
+
cnt = 0
|
482 |
+
for h in h_slices:
|
483 |
+
for w in w_slices:
|
484 |
+
img_mask[:, h, w, :] = cnt
|
485 |
+
cnt += 1
|
486 |
+
img_mask = img_mask.transpose(1,2).transpose(1,3)
|
487 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
488 |
+
|
489 |
+
mask_windows = mask_windows[0].view(-1, self.window_size * self.window_size)
|
490 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
491 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
492 |
+
|
493 |
+
# window attention
|
494 |
+
x = x + self.drop_path1(self.gamma1*self.attn(self.norm1(x), attn_mask=attn_mask)) # or pass H,W
|
495 |
+
# mlp layer
|
496 |
+
x = x + self.drop_path2(self.gamma2*self.mlp(self.norm2(x)))
|
497 |
+
|
498 |
+
if self.do_windowing:
|
499 |
+
if self.window_size > 0:
|
500 |
+
x = window_reverse(x, self.window_size, H, W, pad_hw)
|
501 |
+
|
502 |
+
# reverse cyclic shift
|
503 |
+
if self.shift_size > 0 and H>self.window_size and W>self.window_size:
|
504 |
+
# @swin like cyclic shift, not tested
|
505 |
+
x = torch.roll(x, shifts=(self.shift_size, self.shift_size), dims=(2, 3))
|
506 |
+
|
507 |
+
x = self.upsample_mixer(x)
|
508 |
+
x = self.upsample_op(x)
|
509 |
+
|
510 |
+
|
511 |
+
if x.shape[2] != skip_connection.shape[2] or x.shape[3] != skip_connection.shape[3]:
|
512 |
+
x = torch.nn.functional.pad(x, ( 0, -x.shape[3] + skip_connection.shape[3], 0, -x.shape[2] + skip_connection.shape[2]), mode="reflect")
|
513 |
+
# need to add skip connection because downsampling and upsampling will break residual connection
|
514 |
+
# 0.5 is needed to make sure that the skip connection is not too strong
|
515 |
+
# in case of no downsample / upsample we can show that 0.5 compensates for the residual connection
|
516 |
+
x = 0.5 * x + 0.5 * skip_connection
|
517 |
+
return x
|
518 |
+
|
519 |
+
|
520 |
+
|
521 |
+
|
522 |
+
class MultiResolutionAttention(nn.Module):
|
523 |
+
"""
|
524 |
+
MultiResolutionAttention (MRA) module
|
525 |
+
The idea is to use multiple attention blocks with different resolution
|
526 |
+
Feature maps are downsampled / upsampled for each attention block on different blocks
|
527 |
+
Every attention block supports windowing
|
528 |
+
"""
|
529 |
+
|
530 |
+
def __init__(self, window_size, sr_ratio,
|
531 |
+
dim, dim_ratio, num_heads,
|
532 |
+
do_windowing=True,
|
533 |
+
layer_scale=1e-5, norm_layer=nn.LayerNorm,
|
534 |
+
drop_path = 0, qkv_bias=False, qk_scale=1.0,
|
535 |
+
use_swiglu=True, multi_query=False, conv_base=False,
|
536 |
+
use_shift=0, cpb_mlp_hidden=512, conv_groups_ratio=0) -> None:
|
537 |
+
"""
|
538 |
+
Args:
|
539 |
+
input_resolution: input image resolution
|
540 |
+
window_size: window size
|
541 |
+
compression_ratio: compression ratio
|
542 |
+
max_depth: maximum depth of the GRA module
|
543 |
+
use_shift: do window shifting
|
544 |
+
"""
|
545 |
+
super().__init__()
|
546 |
+
|
547 |
+
depth = len(sr_ratio)
|
548 |
+
|
549 |
+
self.attention_blocks = nn.ModuleList()
|
550 |
+
|
551 |
+
|
552 |
+
for i in range(depth):
|
553 |
+
subsample_ratio = sr_ratio[i]
|
554 |
+
if len(window_size) > i:
|
555 |
+
window_size_local = window_size[i]
|
556 |
+
else:
|
557 |
+
window_size_local = window_size[0]
|
558 |
+
|
559 |
+
self.attention_blocks.append(GRAAttentionBlock(window_size=window_size_local,
|
560 |
+
dim_in=dim, dim_out=dim, num_heads=num_heads,
|
561 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, norm_layer=norm_layer,
|
562 |
+
layer_scale=layer_scale, drop_path=drop_path,
|
563 |
+
use_swiglu=use_swiglu, subsample_ratio=subsample_ratio, dim_ratio=dim_ratio,
|
564 |
+
do_windowing=do_windowing, multi_query=multi_query, conv_base=conv_base,
|
565 |
+
use_shift=use_shift, cpb_mlp_hidden=cpb_mlp_hidden, conv_groups_ratio=conv_groups_ratio),
|
566 |
+
)
|
567 |
+
|
568 |
+
def forward(self, x):
|
569 |
+
|
570 |
+
for attention_block in self.attention_blocks:
|
571 |
+
x = attention_block(x)
|
572 |
+
|
573 |
+
return x
|
574 |
+
|
575 |
+
|
576 |
+
|
577 |
+
class Mlp(nn.Module):
|
578 |
+
"""
|
579 |
+
Multi-Layer Perceptron (MLP) block
|
580 |
+
"""
|
581 |
+
|
582 |
+
def __init__(self,
|
583 |
+
in_features,
|
584 |
+
hidden_features=None,
|
585 |
+
out_features=None,
|
586 |
+
act_layer=nn.GELU,
|
587 |
+
use_swiglu=True,
|
588 |
+
drop=0.):
|
589 |
+
"""
|
590 |
+
Args:
|
591 |
+
in_features: input features dimension.
|
592 |
+
hidden_features: hidden features dimension.
|
593 |
+
out_features: output features dimension.
|
594 |
+
act_layer: activation function.
|
595 |
+
drop: dropout rate.
|
596 |
+
"""
|
597 |
+
|
598 |
+
super().__init__()
|
599 |
+
out_features = out_features or in_features
|
600 |
+
hidden_features = hidden_features or in_features
|
601 |
+
self.fc1 = nn.Linear(in_features, hidden_features * (2 if use_swiglu else 1), bias=False)
|
602 |
+
self.act = act_layer()
|
603 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=False)
|
604 |
+
|
605 |
+
def forward(self, x):
|
606 |
+
x_size = x.size()
|
607 |
+
x = x.view(-1, x_size[-1])
|
608 |
+
x = self.fc1(x)
|
609 |
+
x = self.act(x)
|
610 |
+
x = self.fc2(x)
|
611 |
+
x = x.view(x_size)
|
612 |
+
return x
|
613 |
+
|
614 |
+
class Downsample(nn.Module):
|
615 |
+
"""
|
616 |
+
Down-sampling block
|
617 |
+
Pixel Unshuffle is used for down-sampling, works great accuracy - wise but takes 10% more TRT time
|
618 |
+
"""
|
619 |
+
|
620 |
+
def __init__(self,
|
621 |
+
dim,
|
622 |
+
shuffle = False,
|
623 |
+
):
|
624 |
+
"""
|
625 |
+
Args:
|
626 |
+
dim: feature size dimension.
|
627 |
+
shuffle: idea with
|
628 |
+
keep_dim: bool argument for maintaining the resolution.
|
629 |
+
"""
|
630 |
+
|
631 |
+
super().__init__()
|
632 |
+
dim_out = 2 * dim
|
633 |
+
|
634 |
+
if shuffle:
|
635 |
+
self.norm = lambda x: pixel_unshuffle(x, factor=2)
|
636 |
+
self.reduction = Conv2d_BN(dim*4, dim_out, 1, 1, 0, bias=False)
|
637 |
+
# pixel unshuffleging works well but doesnt provide any speedup
|
638 |
+
else:
|
639 |
+
# removed layer norm for better, in this formulation we are getting 10% better speed
|
640 |
+
# LayerNorm for high resolution inputs will be a pain as it pools over the entire spatial dimension
|
641 |
+
# therefore we remove it compared to the original implementation in FasterViT
|
642 |
+
self.norm = nn.Identity()
|
643 |
+
self.reduction = Conv2d_BN(dim, dim_out, 3, 2, 1, bias=False)
|
644 |
+
|
645 |
+
|
646 |
+
def forward(self, x):
|
647 |
+
x = self.norm(x)
|
648 |
+
x = self.reduction(x)
|
649 |
+
return x
|
650 |
+
|
651 |
+
|
652 |
+
class PatchEmbed(nn.Module):
|
653 |
+
"""
|
654 |
+
Patch embedding block
|
655 |
+
Used to convert image into an initial set of feature maps with lower resolution
|
656 |
+
"""
|
657 |
+
|
658 |
+
def __init__(self, in_chans=3, in_dim=64, dim=96, shuffle_down=False):
|
659 |
+
"""
|
660 |
+
Args:
|
661 |
+
in_chans: number of input channels.
|
662 |
+
in_dim: intermediate feature size dimension to speed up stem.
|
663 |
+
dim: final stem channel number
|
664 |
+
shuffle_down: use PixelUnshuffle for down-sampling, effectively increases the receptive field
|
665 |
+
"""
|
666 |
+
|
667 |
+
super().__init__()
|
668 |
+
# shuffle_down = False
|
669 |
+
if not shuffle_down:
|
670 |
+
self.proj = nn.Identity()
|
671 |
+
self.conv_down = nn.Sequential(
|
672 |
+
Conv2d_BN(in_chans, in_dim, 3, 2, 1, bias=False),
|
673 |
+
nn.ReLU(),
|
674 |
+
Conv2d_BN(in_dim, dim, 3, 2, 1, bias=False),
|
675 |
+
nn.ReLU()
|
676 |
+
)
|
677 |
+
else:
|
678 |
+
self.proj = lambda x: pixel_unshuffle(x, factor=4)
|
679 |
+
self.conv_down = nn.Sequential(Conv2d_BN(in_chans*16, dim, 3, 1, 1),
|
680 |
+
nn.ReLU(),
|
681 |
+
)
|
682 |
+
|
683 |
+
def forward(self, x):
|
684 |
+
x = self.proj(x)
|
685 |
+
x = self.conv_down(x)
|
686 |
+
return x
|
687 |
+
|
688 |
+
|
689 |
+
|
690 |
+
class ConvBlock(nn.Module):
|
691 |
+
"""
|
692 |
+
Convolutional block, used in first couple of stages
|
693 |
+
Experimented with plan resnet-18 like modules, they are the best in terms of throughput
|
694 |
+
Finally, YOLOv8 idea seem to work fine (resnet-18 like block with squeezed feature dimension, and feature concatendation at the end)
|
695 |
+
"""
|
696 |
+
def __init__(self, dim,
|
697 |
+
drop_path=0.,
|
698 |
+
layer_scale=None,
|
699 |
+
kernel_size=3,
|
700 |
+
):
|
701 |
+
super().__init__()
|
702 |
+
|
703 |
+
self.conv1 = Conv2d_BN(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
|
704 |
+
self.act1 = nn.GELU()
|
705 |
+
|
706 |
+
self.conv2 = Conv2d_BN(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
|
707 |
+
|
708 |
+
self.layer_scale = layer_scale
|
709 |
+
if layer_scale is not None and type(layer_scale) in [int, float]:
|
710 |
+
self.gamma = nn.Parameter(layer_scale * torch.ones(dim))
|
711 |
+
self.layer_scale = True
|
712 |
+
else:
|
713 |
+
self.layer_scale = False
|
714 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
715 |
+
|
716 |
+
def forward(self, x):
|
717 |
+
input = x
|
718 |
+
|
719 |
+
x = self.conv1(x)
|
720 |
+
x = self.act1(x)
|
721 |
+
x = self.conv2(x)
|
722 |
+
|
723 |
+
if self.layer_scale:
|
724 |
+
x = x * self.gamma.view(1, -1, 1, 1)
|
725 |
+
x = input + self.drop_path(x)
|
726 |
+
return x
|
727 |
+
|
728 |
+
|
729 |
+
class WindowAttention(nn.Module):
|
730 |
+
# Windowed Attention from SwinV2
|
731 |
+
# use a MLP trick to deal with various input image resolutions, then fold it to improve speed
|
732 |
+
|
733 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, resolution=0,
|
734 |
+
seq_length=0, dim_out=None, multi_query=False, shift_size=0, cpb_mlp_hidden=512):
|
735 |
+
# taken from EdgeViT and tweaked with attention bias.
|
736 |
+
super().__init__()
|
737 |
+
if not dim_out: dim_out = dim
|
738 |
+
self.shift_size = shift_size
|
739 |
+
self.multi_query = multi_query
|
740 |
+
self.num_heads = num_heads
|
741 |
+
head_dim = dim // num_heads
|
742 |
+
self.head_dim = dim // num_heads
|
743 |
+
|
744 |
+
self.dim_internal = dim
|
745 |
+
|
746 |
+
self.scale = qk_scale or head_dim ** -0.5
|
747 |
+
if not multi_query:
|
748 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
749 |
+
else:
|
750 |
+
self.qkv = nn.Linear(dim, dim + 2*self.head_dim, bias=qkv_bias)
|
751 |
+
|
752 |
+
self.proj = nn.Linear(dim, dim_out, bias=False)
|
753 |
+
# attention positional bias
|
754 |
+
self.pos_emb_funct = PosEmbMLPSwinv2D(window_size=[resolution, resolution],
|
755 |
+
pretrained_window_size=[resolution, resolution],
|
756 |
+
num_heads=num_heads,
|
757 |
+
seq_length=seq_length,
|
758 |
+
cpb_mlp_hidden=cpb_mlp_hidden)
|
759 |
+
|
760 |
+
self.resolution = resolution
|
761 |
+
|
762 |
+
def forward(self, x, attn_mask = None):
|
763 |
+
B, N, C = x.shape
|
764 |
+
|
765 |
+
if not self.multi_query:
|
766 |
+
qkv = self.qkv(x).reshape(B, -1, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
767 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
768 |
+
else:
|
769 |
+
qkv = self.qkv(x)
|
770 |
+
(q, k, v) = qkv.split([self.dim_internal, self.head_dim, self.head_dim], dim=2)
|
771 |
+
|
772 |
+
q = q.reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
773 |
+
k = k.reshape(B, -1, 1, C // self.num_heads).permute(0, 2, 1, 3)
|
774 |
+
v = v.reshape(B, -1, 1, C // self.num_heads).permute(0, 2, 1, 3)
|
775 |
+
|
776 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
777 |
+
|
778 |
+
attn = self.pos_emb_funct(attn)
|
779 |
+
|
780 |
+
#add window shift
|
781 |
+
if attn_mask is not None:
|
782 |
+
nW = attn_mask.shape[0]
|
783 |
+
attn = attn.view(B // nW, nW, self.num_heads, N, N) + attn_mask.unsqueeze(1).unsqueeze(0)
|
784 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
785 |
+
|
786 |
+
attn = attn.softmax(dim=-1)
|
787 |
+
x = (attn @ v).transpose(1, 2).reshape(B, -1, C)
|
788 |
+
x = self.proj(x)
|
789 |
+
return x
|
790 |
+
|
791 |
+
|
792 |
+
|
793 |
+
class ERADIOLayer(nn.Module):
|
794 |
+
"""
|
795 |
+
E-RADIO Layer
|
796 |
+
"""
|
797 |
+
|
798 |
+
def __init__(self,
|
799 |
+
dim,
|
800 |
+
depth,
|
801 |
+
num_heads,
|
802 |
+
window_size,
|
803 |
+
conv=False,
|
804 |
+
downsample=True,
|
805 |
+
mlp_ratio=4.,
|
806 |
+
qkv_bias=False,
|
807 |
+
qk_scale=None,
|
808 |
+
norm_layer=nn.LayerNorm,
|
809 |
+
drop_path=0.,
|
810 |
+
layer_scale=None,
|
811 |
+
layer_scale_conv=None,
|
812 |
+
sr_dim_ratio=1,
|
813 |
+
sr_ratio=1,
|
814 |
+
multi_query=False,
|
815 |
+
use_swiglu=True,
|
816 |
+
yolo_arch=False,
|
817 |
+
downsample_shuffle=False,
|
818 |
+
conv_base=False,
|
819 |
+
use_shift=False,
|
820 |
+
cpb_mlp_hidden=512,
|
821 |
+
conv_groups_ratio=0,
|
822 |
+
verbose: bool = True,
|
823 |
+
|
824 |
+
):
|
825 |
+
"""
|
826 |
+
Args:
|
827 |
+
dim: feature size dimension.
|
828 |
+
depth: number of layers in each stage.
|
829 |
+
input_resolution: input image resolution.
|
830 |
+
window_size: window size in each stage.
|
831 |
+
downsample: bool argument for down-sampling.
|
832 |
+
mlp_ratio: MLP ratio.
|
833 |
+
num_heads: number of heads in each stage.
|
834 |
+
qkv_bias: bool argument for query, key, value learnable bias.
|
835 |
+
qk_scale: bool argument to scaling query, key.
|
836 |
+
drop: dropout rate.
|
837 |
+
attn_drop: attention dropout rate.
|
838 |
+
drop_path: drop path rate.
|
839 |
+
norm_layer: normalization layer.
|
840 |
+
layer_scale: layer scaling coefficient.
|
841 |
+
use_shift: SWIN like window shifting for half the window size for every alternating layer (considering multi-resolution)
|
842 |
+
conv_groups_ratio: group ratio for conv when no subsampling in multi-res attention
|
843 |
+
"""
|
844 |
+
|
845 |
+
super().__init__()
|
846 |
+
self.conv = conv
|
847 |
+
self.yolo_arch=False
|
848 |
+
self.verbose = verbose
|
849 |
+
if conv:
|
850 |
+
if not yolo_arch:
|
851 |
+
self.blocks = nn.ModuleList([
|
852 |
+
ConvBlock(dim=dim,
|
853 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
854 |
+
layer_scale=layer_scale_conv)
|
855 |
+
for i in range(depth)])
|
856 |
+
self.blocks = nn.Sequential(*self.blocks)
|
857 |
+
else:
|
858 |
+
self.blocks = C2f(dim,dim,n=depth,shortcut=True,e=0.5)
|
859 |
+
self.yolo_arch=True
|
860 |
+
else:
|
861 |
+
if not isinstance(window_size, list): window_size = [window_size]
|
862 |
+
self.window_size = window_size[0]
|
863 |
+
self.do_single_windowing = True
|
864 |
+
if not isinstance(sr_ratio, list): sr_ratio = [sr_ratio]
|
865 |
+
self.sr_ratio = sr_ratio
|
866 |
+
if any([sr!=1 for sr in sr_ratio]) or len(set(window_size))>1:
|
867 |
+
self.do_single_windowing = False
|
868 |
+
do_windowing = True
|
869 |
+
else:
|
870 |
+
self.do_single_windowing = True
|
871 |
+
do_windowing = False
|
872 |
+
|
873 |
+
#for v2_2
|
874 |
+
if conv_groups_ratio != -1:
|
875 |
+
self.do_single_windowing = False
|
876 |
+
do_windowing = True
|
877 |
+
|
878 |
+
self.blocks = nn.ModuleList()
|
879 |
+
for i in range(depth):
|
880 |
+
self.blocks.append(
|
881 |
+
MultiResolutionAttention(window_size=window_size,
|
882 |
+
sr_ratio=sr_ratio,
|
883 |
+
dim=dim,
|
884 |
+
dim_ratio = sr_dim_ratio,
|
885 |
+
num_heads=num_heads,
|
886 |
+
norm_layer=norm_layer,
|
887 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
888 |
+
layer_scale=layer_scale,
|
889 |
+
qkv_bias=qkv_bias,
|
890 |
+
qk_scale=qk_scale,
|
891 |
+
use_swiglu=use_swiglu,
|
892 |
+
do_windowing=do_windowing,
|
893 |
+
multi_query=multi_query,
|
894 |
+
conv_base=conv_base,
|
895 |
+
cpb_mlp_hidden=cpb_mlp_hidden,
|
896 |
+
use_shift =0 if ((not use_shift) or ((i) % 2 == 0)) else True ,
|
897 |
+
conv_groups_ratio=conv_groups_ratio,
|
898 |
+
))
|
899 |
+
self.blocks = nn.Sequential(*self.blocks)
|
900 |
+
|
901 |
+
self.transformer = not conv
|
902 |
+
self.downsample = None if not downsample else Downsample(dim=dim, shuffle=downsample_shuffle)
|
903 |
+
|
904 |
+
|
905 |
+
def forward(self, x):
|
906 |
+
B, C, H, W = x.shape
|
907 |
+
|
908 |
+
# do padding for transforemr
|
909 |
+
interpolate = True
|
910 |
+
if self.transformer and interpolate:
|
911 |
+
# Windowed Attention will split feature map into windows with the size of window_size x window_size
|
912 |
+
# if the resolution is not divisible by window_size, we need to interpolate the feature map
|
913 |
+
# can be done via padding, but doing so after training hurts the model performance.
|
914 |
+
# interpolation affects the performance as well, but not as much as padding
|
915 |
+
if isinstance(self.window_size, list) or isinstance(self.window_size, tuple):
|
916 |
+
current_max_window_size = max(self.window_size)
|
917 |
+
else:
|
918 |
+
current_max_window_size = self.window_size
|
919 |
+
|
920 |
+
max_window_size = max([res_upsample*current_max_window_size for res_upsample in self.sr_ratio])
|
921 |
+
if H % max_window_size != 0 or W % max_window_size != 0:
|
922 |
+
new_h = int(np.ceil(H/max_window_size)*max_window_size)
|
923 |
+
new_w = int(np.ceil(W/max_window_size)*max_window_size)
|
924 |
+
x = F.interpolate(x, size=(new_h, new_w), mode='nearest')
|
925 |
+
if self.verbose:
|
926 |
+
warnings.warn(f"Choosen window size is not optimal for given resolution. Interpolation of features maps will be done and it can affect the performance. Max window size is {max_window_size}, feature map size is {H}x{W}, interpolated feature map size is {new_h}x{new_w}.")
|
927 |
+
|
928 |
+
|
929 |
+
if self.transformer and self.do_single_windowing:
|
930 |
+
H, W = x.shape[2], x.shape[3]
|
931 |
+
x, pad_hw = window_partition(x, self.window_size)
|
932 |
+
|
933 |
+
#run main blocks
|
934 |
+
x = self.blocks(x)
|
935 |
+
|
936 |
+
if self.transformer and self.do_single_windowing:
|
937 |
+
x = window_reverse(x, self.window_size, H, W, pad_hw)
|
938 |
+
|
939 |
+
if self.transformer and interpolate:
|
940 |
+
#lets keep original resolution, might be not ideal, but for the upsampling tower we need to keep the expected resolution.
|
941 |
+
x = F.interpolate(x, size=(H, W), mode='nearest')
|
942 |
+
|
943 |
+
if self.downsample is None:
|
944 |
+
return x, x
|
945 |
+
|
946 |
+
return self.downsample(x), x # changing to output pre downsampled features
|
947 |
+
|
948 |
+
|
949 |
+
class InterpolateLayer(nn.Module):
|
950 |
+
def __init__(self, size=None, scale_factor=None, mode='nearest'):
|
951 |
+
super(InterpolateLayer, self).__init__()
|
952 |
+
self.size = size
|
953 |
+
self.scale_factor = scale_factor
|
954 |
+
self.mode = mode
|
955 |
+
|
956 |
+
def forward(self, x):
|
957 |
+
return F.interpolate(x, size=self.size, scale_factor=self.scale_factor, mode=self.mode)
|
958 |
+
|
959 |
+
|
960 |
+
class HiResNeck(nn.Module):
|
961 |
+
"""
|
962 |
+
The block is used to output dense features from all stages
|
963 |
+
Otherwise, by default, only the last stage features are returned with E-RADIO
|
964 |
+
"""
|
965 |
+
def __init__(self, dim, depths, neck_start_stage, full_features_head_dim, downsample_enabled):
|
966 |
+
|
967 |
+
'''
|
968 |
+
Hi Resolution neck to support output of high res features that are useful for dense tasks.
|
969 |
+
depths - total number of layers in the base model
|
970 |
+
neck_start_stage - when to start the neck, 0 - start from the first stage, 1 - start from the second stage etc.
|
971 |
+
earlier layers result in higher resolution features at the cost of compute
|
972 |
+
full_features_head_dim - number of channels in the dense features head
|
973 |
+
'''
|
974 |
+
super().__init__()
|
975 |
+
# create feature projection layers for segmentation output
|
976 |
+
self.neck_features_proj = nn.ModuleList()
|
977 |
+
self.neck_start_stage = neck_start_stage
|
978 |
+
upsample_ratio = 1
|
979 |
+
for i in range(len(depths)):
|
980 |
+
level_n_features_output = int(dim * 2 ** i)
|
981 |
+
|
982 |
+
if self.neck_start_stage > i: continue
|
983 |
+
|
984 |
+
if (upsample_ratio > 1) or full_features_head_dim!=level_n_features_output:
|
985 |
+
feature_projection = nn.Sequential()
|
986 |
+
if False:
|
987 |
+
feature_projection.add_module("norm",nn.BatchNorm2d(level_n_features_output)) #fast, but worse
|
988 |
+
feature_projection.add_module("dconv", nn.ConvTranspose2d(level_n_features_output,
|
989 |
+
full_features_head_dim, kernel_size=upsample_ratio, stride=upsample_ratio))
|
990 |
+
else:
|
991 |
+
# B, in_channels, H, W -> B, in_channels, H*upsample_ratio, W*upsample_ratio
|
992 |
+
# print("upsample ratio", upsample_ratio, level_n_features_output, level_n_features_output)
|
993 |
+
feature_projection.add_module("upsample", InterpolateLayer(scale_factor=upsample_ratio, mode='nearest'))
|
994 |
+
feature_projection.add_module("conv1", nn.Conv2d(level_n_features_output, level_n_features_output, kernel_size=3, stride=1, padding=1, groups=level_n_features_output))
|
995 |
+
feature_projection.add_module("norm",nn.BatchNorm2d(level_n_features_output))
|
996 |
+
# B, in_channels, H*upsample_ratio, W*upsample_ratio -> B, full_features_head_dim, H*upsample_ratio, W*upsample_ratio
|
997 |
+
feature_projection.add_module("conv2", nn.Conv2d(level_n_features_output, full_features_head_dim, kernel_size=1, stride=1, padding=0))
|
998 |
+
else:
|
999 |
+
feature_projection = nn.Sequential()
|
1000 |
+
|
1001 |
+
self.neck_features_proj.append(feature_projection)
|
1002 |
+
|
1003 |
+
if i>0 and downsample_enabled[i]:
|
1004 |
+
upsample_ratio *= 2
|
1005 |
+
|
1006 |
+
def forward(self, x, il_level=-1, full_features=None):
|
1007 |
+
if self.neck_start_stage > il_level:
|
1008 |
+
return full_features
|
1009 |
+
|
1010 |
+
if full_features is None:
|
1011 |
+
full_features = self.neck_features_proj[il_level - self.neck_start_stage](x)
|
1012 |
+
else:
|
1013 |
+
#upsample torch tensor x to match full_features size, and add to full_features
|
1014 |
+
feature_projection = self.neck_features_proj[il_level - self.neck_start_stage](x)
|
1015 |
+
if feature_projection.shape[2] != full_features.shape[2] or feature_projection.shape[3] != full_features.shape[3]:
|
1016 |
+
feature_projection = torch.nn.functional.pad(feature_projection, ( 0, -feature_projection.shape[3] + full_features.shape[3], 0, -feature_projection.shape[2] + full_features.shape[2]))
|
1017 |
+
full_features = full_features + feature_projection
|
1018 |
+
return full_features
|
1019 |
+
|
1020 |
+
class ERADIO(nn.Module):
|
1021 |
+
"""
|
1022 |
+
Efficient RADIO
|
1023 |
+
"""
|
1024 |
+
|
1025 |
+
def __init__(self,
|
1026 |
+
dim,
|
1027 |
+
in_dim,
|
1028 |
+
depths,
|
1029 |
+
window_size,
|
1030 |
+
mlp_ratio,
|
1031 |
+
num_heads,
|
1032 |
+
drop_path_rate=0.2,
|
1033 |
+
in_chans=3,
|
1034 |
+
num_classes=1000,
|
1035 |
+
qkv_bias=False,
|
1036 |
+
qk_scale=None,
|
1037 |
+
layer_scale=None,
|
1038 |
+
layer_scale_conv=None,
|
1039 |
+
layer_norm_last=False,
|
1040 |
+
sr_ratio = [1, 1, 1, 1],
|
1041 |
+
max_depth = -1,
|
1042 |
+
conv_base=False,
|
1043 |
+
use_swiglu=False,
|
1044 |
+
multi_query=False,
|
1045 |
+
norm_layer=nn.LayerNorm,
|
1046 |
+
drop_uniform=False,
|
1047 |
+
yolo_arch=False,
|
1048 |
+
shuffle_down=False,
|
1049 |
+
downsample_shuffle=False,
|
1050 |
+
return_full_features=False,
|
1051 |
+
full_features_head_dim=128,
|
1052 |
+
neck_start_stage=1,
|
1053 |
+
use_neck=False,
|
1054 |
+
use_shift=False,
|
1055 |
+
cpb_mlp_hidden=512,
|
1056 |
+
conv_groups_ratio=0,
|
1057 |
+
verbose: bool = False,
|
1058 |
+
**kwargs):
|
1059 |
+
"""
|
1060 |
+
Args:
|
1061 |
+
dim: feature size dimension.
|
1062 |
+
depths: number of layers in each stage.
|
1063 |
+
window_size: window size in each stage.
|
1064 |
+
mlp_ratio: MLP ratio.
|
1065 |
+
num_heads: number of heads in each stage.
|
1066 |
+
drop_path_rate: drop path rate.
|
1067 |
+
in_chans: number of input channels.
|
1068 |
+
num_classes: number of classes.
|
1069 |
+
qkv_bias: bool argument for query, key, value learnable bias.
|
1070 |
+
qk_scale: bool argument to scaling query, key.
|
1071 |
+
drop_rate: dropout rate.
|
1072 |
+
attn_drop_rate: attention dropout rate.
|
1073 |
+
norm_layer: normalization layer.
|
1074 |
+
layer_scale: layer scaling coefficient.
|
1075 |
+
return_full_features: output dense features as well as logits
|
1076 |
+
full_features_head_dim: number of channels in the dense features head
|
1077 |
+
neck_start_stage: a stage id to start full feature neck. Model has 4 stages, indix starts with 0
|
1078 |
+
for 224 resolution, the output of the stage before downsample:
|
1079 |
+
stage 0: 56x56, stage 1: 28x28, stage 2: 14x14, stage 3: 7x7
|
1080 |
+
use_neck: even for summarization embedding use neck
|
1081 |
+
use_shift: SWIN like window shifting but without masking attention
|
1082 |
+
conv_groups_ratio: will be used for conv blocks where there is no multires attention,
|
1083 |
+
if 0 then normal conv,
|
1084 |
+
if 1 then channels are independent,
|
1085 |
+
if -1 then no conv at all
|
1086 |
+
|
1087 |
+
"""
|
1088 |
+
super().__init__()
|
1089 |
+
|
1090 |
+
num_features = int(dim * 2 ** (len(depths) - 1))
|
1091 |
+
self.num_classes = num_classes
|
1092 |
+
self.patch_embed = PatchEmbed(in_chans=in_chans, in_dim=in_dim, dim=dim, shuffle_down=shuffle_down)
|
1093 |
+
# set return_full_features true if we want to return full features from all stages
|
1094 |
+
self.return_full_features = return_full_features
|
1095 |
+
self.use_neck = use_neck
|
1096 |
+
|
1097 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
1098 |
+
if drop_uniform:
|
1099 |
+
dpr = [drop_path_rate for x in range(sum(depths))]
|
1100 |
+
|
1101 |
+
if not isinstance(max_depth, list): max_depth = [max_depth] * len(depths)
|
1102 |
+
|
1103 |
+
self.levels = nn.ModuleList()
|
1104 |
+
for i in range(len(depths)):
|
1105 |
+
conv = True if (i == 0 or i == 1) else False
|
1106 |
+
|
1107 |
+
level = ERADIOLayer(dim=int(dim * 2 ** i),
|
1108 |
+
depth=depths[i],
|
1109 |
+
num_heads=num_heads[i],
|
1110 |
+
window_size=window_size[i],
|
1111 |
+
mlp_ratio=mlp_ratio,
|
1112 |
+
qkv_bias=qkv_bias,
|
1113 |
+
qk_scale=qk_scale,
|
1114 |
+
conv=conv,
|
1115 |
+
drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])],
|
1116 |
+
downsample=(i < len(depths) - 1),
|
1117 |
+
layer_scale=layer_scale,
|
1118 |
+
layer_scale_conv=layer_scale_conv,
|
1119 |
+
sr_ratio=sr_ratio[i],
|
1120 |
+
use_swiglu=use_swiglu,
|
1121 |
+
multi_query=multi_query,
|
1122 |
+
norm_layer=norm_layer,
|
1123 |
+
yolo_arch=yolo_arch,
|
1124 |
+
downsample_shuffle=downsample_shuffle,
|
1125 |
+
conv_base=conv_base,
|
1126 |
+
cpb_mlp_hidden=cpb_mlp_hidden,
|
1127 |
+
use_shift=use_shift,
|
1128 |
+
conv_groups_ratio=conv_groups_ratio,
|
1129 |
+
verbose=verbose)
|
1130 |
+
|
1131 |
+
self.levels.append(level)
|
1132 |
+
|
1133 |
+
if self.return_full_features or self.use_neck:
|
1134 |
+
#num_heads
|
1135 |
+
downsample_enabled = [self.levels[i-1].downsample is not None for i in range(len(self.levels))]
|
1136 |
+
self.high_res_neck = HiResNeck(dim, depths, neck_start_stage, full_features_head_dim, downsample_enabled)
|
1137 |
+
|
1138 |
+
self.switched_to_deploy = False
|
1139 |
+
|
1140 |
+
self.norm = LayerNorm2d(num_features) if layer_norm_last else nn.BatchNorm2d(num_features)
|
1141 |
+
self.avgpool = nn.AdaptiveAvgPool2d(1)
|
1142 |
+
self.head = nn.Linear(num_features, num_classes) if num_classes > 0 else nn.Identity()
|
1143 |
+
self.apply(self._init_weights)
|
1144 |
+
|
1145 |
+
def _init_weights(self, m):
|
1146 |
+
if isinstance(m, nn.Linear):
|
1147 |
+
trunc_normal_(m.weight, std=.02)
|
1148 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
1149 |
+
nn.init.constant_(m.bias, 0)
|
1150 |
+
elif isinstance(m, nn.LayerNorm):
|
1151 |
+
nn.init.constant_(m.bias, 0)
|
1152 |
+
nn.init.constant_(m.weight, 1.0)
|
1153 |
+
elif isinstance(m, LayerNorm2d):
|
1154 |
+
nn.init.constant_(m.bias, 0)
|
1155 |
+
nn.init.constant_(m.weight, 1.0)
|
1156 |
+
elif isinstance(m, nn.BatchNorm2d):
|
1157 |
+
nn.init.ones_(m.weight)
|
1158 |
+
nn.init.zeros_(m.bias)
|
1159 |
+
|
1160 |
+
@torch.jit.ignore
|
1161 |
+
def no_weight_decay_keywords(self):
|
1162 |
+
return {'rpb'}
|
1163 |
+
|
1164 |
+
def forward_features(self, x):
|
1165 |
+
_, _, H, W = x.shape
|
1166 |
+
if H % 32 != 0 or W % 32 != 0:
|
1167 |
+
raise ValueError(f"E-RADIO requires input dimensions to be divisible by 32 but got H x W: {H} x {W}")
|
1168 |
+
x = self.patch_embed(x)
|
1169 |
+
full_features = None
|
1170 |
+
for il, level in enumerate(self.levels):
|
1171 |
+
x, pre_downsample_x = level(x)
|
1172 |
+
|
1173 |
+
if self.return_full_features or self.use_neck:
|
1174 |
+
full_features = self.high_res_neck(pre_downsample_x, il, full_features)
|
1175 |
+
|
1176 |
+
# x = self.norm(full_features if (self.return_full_features or self.use_neck) else x)
|
1177 |
+
x = self.norm(x) # new version for
|
1178 |
+
|
1179 |
+
if not self.return_full_features:
|
1180 |
+
return x, None
|
1181 |
+
|
1182 |
+
return x, full_features
|
1183 |
+
|
1184 |
+
def forward(self, x):
|
1185 |
+
x, full_features = self.forward_features(x)
|
1186 |
+
|
1187 |
+
x = self.avgpool(x)
|
1188 |
+
x = torch.flatten(x, 1)
|
1189 |
+
|
1190 |
+
x = self.head(x)
|
1191 |
+
if full_features is not None:
|
1192 |
+
return x, full_features
|
1193 |
+
return x
|
1194 |
+
|
1195 |
+
def switch_to_deploy(self):
|
1196 |
+
'''
|
1197 |
+
A method to perform model self-compression
|
1198 |
+
merges BN into conv layers
|
1199 |
+
converts MLP relative positional bias into precomputed buffers
|
1200 |
+
'''
|
1201 |
+
if not self.switched_to_deploy:
|
1202 |
+
for level in [self.patch_embed, self.levels, self.head]:
|
1203 |
+
for module in level.modules():
|
1204 |
+
if hasattr(module, 'switch_to_deploy'):
|
1205 |
+
module.switch_to_deploy()
|
1206 |
+
self.switched_to_deploy = True
|
1207 |
+
|
1208 |
+
|
1209 |
+
def change_window_size(self, new_window_size):
|
1210 |
+
"""
|
1211 |
+
E-RADIO employs windowed attention, which may be sensitive to the choice of this parameter,
|
1212 |
+
especially in cases of uneven partitioning of the feature maps.
|
1213 |
+
E-RADIO allows for the adjustment of the window size after training,
|
1214 |
+
making it adaptable to different input image resolutions.
|
1215 |
+
The recommended values for window size based on input resolution are as follows:
|
1216 |
+
|
1217 |
+
Input Resolution | Window Size
|
1218 |
+
224 | 7
|
1219 |
+
256 | 8
|
1220 |
+
386 | 12
|
1221 |
+
512 | 16
|
1222 |
+
Ideally, the window size should be a factor of the input resolution. In the third stage, we divide the resolution by 16, so the window size should be
|
1223 |
+
img_res/16/2
|
1224 |
+
for the third stage and img_res/32 for the last stage. While this can be applied in a brute-force manner, a better way is to do model.change_window_size.
|
1225 |
+
Manual way to change resolution -> model.change_window_size(resolution)
|
1226 |
+
"""
|
1227 |
+
window_size = new_window_size
|
1228 |
+
print(f"Setting window size to {window_size}")
|
1229 |
+
for module in self.modules():
|
1230 |
+
if hasattr(module, "window_size"):
|
1231 |
+
# check if tuple or a number
|
1232 |
+
if isinstance(module.window_size, tuple):
|
1233 |
+
if module.window_size[0] != window_size:
|
1234 |
+
module.window_size = (window_size, window_size)
|
1235 |
+
elif isinstance(module.window_size, list):
|
1236 |
+
if module.window_size[0] != window_size:
|
1237 |
+
module.window_size = [window_size, window_size]
|
1238 |
+
else:
|
1239 |
+
module.window_size = window_size
|
1240 |
+
|
1241 |
+
|
1242 |
+
def set_optimal_window_size(self, image_dim, max_window_size = 16):
|
1243 |
+
"""
|
1244 |
+
Using hand picked window size for various resolutions.
|
1245 |
+
|
1246 |
+
E-RADIO employs windowed attention, which may be sensitive to the choice of this parameter,
|
1247 |
+
especially in cases of uneven partitioning of the feature maps.
|
1248 |
+
E-RADIO allows for the adjustment of the window size after training,
|
1249 |
+
making it adaptable to different input image resolutions.
|
1250 |
+
The recommended values for window size based on input resolution are as follows:
|
1251 |
+
|
1252 |
+
Input Resolution | Window Size
|
1253 |
+
224 | 7
|
1254 |
+
256 | 8
|
1255 |
+
386 | 12
|
1256 |
+
512 | 16
|
1257 |
+
Ideally, the window size should be a factor of the input resolution. In the third stage, we divide the resolution by 16, so the window size should be
|
1258 |
+
img_res/16/2
|
1259 |
+
for the third stage and img_res/32 for the last stage. While this can be applied in a brute-force manner, a better way is to do model.change_window_size.
|
1260 |
+
Manual way to change resolution -> model.change_window_size(resolution)
|
1261 |
+
|
1262 |
+
"""
|
1263 |
+
# import math
|
1264 |
+
|
1265 |
+
def divisorGenerator(n):
|
1266 |
+
large_divisors = []
|
1267 |
+
for i in range(1, int(math.sqrt(n) + 1)):
|
1268 |
+
if n % i == 0:
|
1269 |
+
yield i
|
1270 |
+
if i*i != n:
|
1271 |
+
large_divisors.append(n / i)
|
1272 |
+
for divisor in reversed(large_divisors):
|
1273 |
+
yield divisor
|
1274 |
+
|
1275 |
+
if isinstance(image_dim, list) or isinstance(image_dim, tuple):
|
1276 |
+
image_dim = min(image_dim)
|
1277 |
+
|
1278 |
+
# we do windowed attention in the 3rd stage for the first time, therefore //16,
|
1279 |
+
# we do subsampled attention with downsample by 2 so need to get //32 actually
|
1280 |
+
# ideally we should rewrite this to be dependent on the structure of the model like what if subsampled is removed etc
|
1281 |
+
all_divisors = np.array(list(divisorGenerator(image_dim//32)))
|
1282 |
+
new_window_size = int(min(all_divisors[all_divisors <= max_window_size][-1], max_window_size))
|
1283 |
+
|
1284 |
+
# for image_dim in [128, 224, 256, 384, 512, 768, 1024]:
|
1285 |
+
# all_divisors = np.array(list(divisorGenerator(image_dim//32)))
|
1286 |
+
# new_window_size = int(min(all_divisors[all_divisors <= max_window_size][-1], max_window_size))
|
1287 |
+
# print(f"Setting window size to {new_window_size} for image resolution {image_dim}")
|
1288 |
+
|
1289 |
+
self.change_window_size(new_window_size = new_window_size)
|
1290 |
+
|
1291 |
+
|
1292 |
+
@register_model
|
1293 |
+
def eradio_large_fullres_ws16(pretrained=False, **kwargs):
|
1294 |
+
model = ERADIO(
|
1295 |
+
depths=[3, 3, 5, 5],
|
1296 |
+
num_heads=[2, 4, 8, 16],
|
1297 |
+
window_size=[None, None, [16, 16], 16],
|
1298 |
+
dim=192,
|
1299 |
+
in_dim=64,
|
1300 |
+
mlp_ratio=4,
|
1301 |
+
drop_path_rate=0.0,
|
1302 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
1303 |
+
use_swiglu=False,
|
1304 |
+
yolo_arch=True,
|
1305 |
+
shuffle_down=False,
|
1306 |
+
conv_base=True,
|
1307 |
+
use_neck=True,
|
1308 |
+
full_features_head_dim=1536,
|
1309 |
+
neck_start_stage=2,
|
1310 |
+
**kwargs,
|
1311 |
+
)
|
1312 |
+
if pretrained:
|
1313 |
+
model.load_state_dict(torch.load(pretrained)["state_dict"])
|
1314 |
+
return model
|
1315 |
+
|
1316 |
+
|
1317 |
+
@register_model
|
1318 |
+
def eradio_xxxtiny(pretrained=False, **kwargs): # ,
|
1319 |
+
model = ERADIO(
|
1320 |
+
depths=[1, 3, 4, 5],
|
1321 |
+
num_heads=[2, 4, 8, 16],
|
1322 |
+
window_size=[None, None, [16, 16], 16],
|
1323 |
+
dim=32,
|
1324 |
+
in_dim=32,
|
1325 |
+
mlp_ratio=4,
|
1326 |
+
drop_path_rate=0.0,
|
1327 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
1328 |
+
use_swiglu=False,
|
1329 |
+
yolo_arch=True,
|
1330 |
+
shuffle_down=False,
|
1331 |
+
conv_base=True,
|
1332 |
+
use_neck=True,
|
1333 |
+
full_features_head_dim=256,
|
1334 |
+
neck_start_stage=2,
|
1335 |
+
**kwargs,
|
1336 |
+
)
|
1337 |
+
if pretrained:
|
1338 |
+
model.load_state_dict(torch.load(pretrained))
|
1339 |
+
return model
|
1340 |
+
|
1341 |
+
@register_model
|
1342 |
+
def eradio_xxxtiny_8x_ws12(pretrained=False, **kwargs):
|
1343 |
+
model = ERADIO(depths=[1, 3, 4, 5],
|
1344 |
+
num_heads=[2, 4, 8, 16],
|
1345 |
+
window_size=[None, None, [12, 12], 12],
|
1346 |
+
dim=32,
|
1347 |
+
in_dim=32,
|
1348 |
+
mlp_ratio=4,
|
1349 |
+
drop_path_rate=0.0,
|
1350 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
1351 |
+
use_swiglu=False,
|
1352 |
+
downsample_shuffle=False,
|
1353 |
+
yolo_arch=True,
|
1354 |
+
shuffle_down=False,
|
1355 |
+
cpb_mlp_hidden=64,
|
1356 |
+
use_neck=True,
|
1357 |
+
full_features_head_dim=256,
|
1358 |
+
neck_start_stage=2,
|
1359 |
+
conv_groups_ratio = 1,
|
1360 |
+
**kwargs)
|
1361 |
+
if pretrained:
|
1362 |
+
model.load_state_dict(torch.load(pretrained)["state_dict"])
|
1363 |
+
return model
|
1364 |
+
|
1365 |
+
|
1366 |
+
@register_model
|
1367 |
+
def eradio_xxxtiny_8x_ws16(pretrained=False, **kwargs):
|
1368 |
+
model = ERADIO(depths=[1, 3, 4, 5],
|
1369 |
+
num_heads=[2, 4, 8, 16],
|
1370 |
+
window_size=[None, None, [16, 16], 16],
|
1371 |
+
dim=32,
|
1372 |
+
in_dim=32,
|
1373 |
+
mlp_ratio=4,
|
1374 |
+
drop_path_rate=0.0,
|
1375 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
1376 |
+
use_swiglu=False,
|
1377 |
+
downsample_shuffle=False,
|
1378 |
+
yolo_arch=True,
|
1379 |
+
shuffle_down=False,
|
1380 |
+
cpb_mlp_hidden=64,
|
1381 |
+
use_neck=True,
|
1382 |
+
full_features_head_dim=256,
|
1383 |
+
neck_start_stage=1,
|
1384 |
+
conv_groups_ratio = 1,
|
1385 |
+
**kwargs)
|
1386 |
+
if pretrained:
|
1387 |
+
model.load_state_dict(torch.load(pretrained)["state_dict"])
|
1388 |
+
return model
|
1389 |
+
|
1390 |
+
@register_model
|
1391 |
+
def eradio(pretrained=False, **kwargs):
|
1392 |
+
return eradio_large_fullres_ws16(pretrained=pretrained, **kwargs)
|
tim/models/nvidia_radio/radio/extra_models.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from distutils.version import LooseVersion
|
2 |
+
from types import MethodType
|
3 |
+
from typing import List, Optional, Tuple, Union
|
4 |
+
import warnings
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
from timm.models.registry import register_model
|
11 |
+
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
12 |
+
|
13 |
+
from .forward_intermediates import forward_intermediates
|
14 |
+
from .input_conditioner import InputConditioner
|
15 |
+
|
16 |
+
_has_torch_sdpa = hasattr(F, 'scaled_dot_product_attention')
|
17 |
+
|
18 |
+
|
19 |
+
class PaliGemmaWrapper(nn.Module):
|
20 |
+
def __init__(self, vis_model: nn.Module, embed_dim: int):
|
21 |
+
super().__init__()
|
22 |
+
|
23 |
+
self.vis_model = vis_model
|
24 |
+
self.embed_dim = embed_dim
|
25 |
+
|
26 |
+
@property
|
27 |
+
def patch_size(self):
|
28 |
+
return self.vis_model.embeddings.patch_size
|
29 |
+
|
30 |
+
@property
|
31 |
+
def blocks(self):
|
32 |
+
return self.vis_model.encoder.layers
|
33 |
+
|
34 |
+
@property
|
35 |
+
def embed_dim(self):
|
36 |
+
return self.vis_model.embeddings.embed_dim
|
37 |
+
|
38 |
+
def forward(self, x: torch.Tensor):
|
39 |
+
outputs = self.vis_model(
|
40 |
+
x,
|
41 |
+
return_dict=False,
|
42 |
+
interpolate_pos_encoding=True,
|
43 |
+
)
|
44 |
+
|
45 |
+
features = outputs[0].to(torch.float32)
|
46 |
+
|
47 |
+
summary = features.mean(dim=1)
|
48 |
+
|
49 |
+
return summary, features
|
50 |
+
|
51 |
+
def forward_features(self, x: torch.Tensor):
|
52 |
+
return self(x)
|
53 |
+
|
54 |
+
|
55 |
+
def _get_paligemma_model(repo: str, embed_dim: int = None, dtype: torch.dtype = torch.bfloat16):
|
56 |
+
from transformers import PaliGemmaForConditionalGeneration, __version__ as tx_version
|
57 |
+
|
58 |
+
if LooseVersion(tx_version) > LooseVersion('4.44.2'):
|
59 |
+
warnings.warn(f'Your transformers version "{tx_version}" is higher than 4.44.2, and for whatever reason, PaliGemma might be broken.')
|
60 |
+
|
61 |
+
extra_args = dict()
|
62 |
+
|
63 |
+
if dtype is not None:
|
64 |
+
extra_args['torch_dtype'] = dtype
|
65 |
+
rev = str(dtype).split('.')[-1]
|
66 |
+
extra_args['revision'] = rev
|
67 |
+
|
68 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(repo, **extra_args)
|
69 |
+
|
70 |
+
vis_model = model.vision_tower.vision_model
|
71 |
+
|
72 |
+
vis_model = PaliGemmaWrapper(vis_model, embed_dim)
|
73 |
+
|
74 |
+
return vis_model
|
75 |
+
|
76 |
+
@register_model
|
77 |
+
def paligemma_896_student(**kwargs):
|
78 |
+
model = _get_paligemma_model('google/paligemma-3b-pt-896', embed_dim=1152, dtype=None)
|
79 |
+
|
80 |
+
return model
|
81 |
+
|
82 |
+
|
83 |
+
def dv2_sdpa(self, x: torch.Tensor) -> torch.Tensor:
|
84 |
+
B, N, C = x.shape
|
85 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
86 |
+
|
87 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
88 |
+
x = F.scaled_dot_product_attention(
|
89 |
+
q, k, v,
|
90 |
+
is_causal=False,
|
91 |
+
dropout_p=self.attn_drop.p if self.training else 0.,
|
92 |
+
scale=self.scale,
|
93 |
+
)
|
94 |
+
x = x.transpose(1, 2).reshape(B, N, C)
|
95 |
+
x = self.proj(x)
|
96 |
+
x = self.proj_drop(x)
|
97 |
+
return x
|
98 |
+
|
99 |
+
def _load_dino_v2(dino_v2_model, cache_dir: Optional[str] = None, pretrained=True, **kwargs):
|
100 |
+
if cache_dir:
|
101 |
+
torch.hub.set_dir(cache_dir)
|
102 |
+
model: nn.Module = torch.hub.load(
|
103 |
+
'facebookresearch/dinov2',
|
104 |
+
dino_v2_model,
|
105 |
+
pretrained=pretrained,
|
106 |
+
# **kwargs,
|
107 |
+
)
|
108 |
+
|
109 |
+
if _has_torch_sdpa:
|
110 |
+
for n, m in model.named_modules():
|
111 |
+
if n.endswith('.attn'):
|
112 |
+
m.forward = MethodType(dv2_sdpa, m)
|
113 |
+
|
114 |
+
return model
|
115 |
+
|
116 |
+
class DinoWrapper(nn.Module):
|
117 |
+
def __init__(self, dino_model: nn.Module):
|
118 |
+
super().__init__()
|
119 |
+
|
120 |
+
self.inner = dino_model
|
121 |
+
dino_model.blocks = nn.Sequential(*dino_model.blocks)
|
122 |
+
|
123 |
+
@property
|
124 |
+
def embed_dim(self):
|
125 |
+
return self.inner.embed_dim
|
126 |
+
|
127 |
+
@property
|
128 |
+
def patch_size(self):
|
129 |
+
return self.inner.patch_size
|
130 |
+
|
131 |
+
@property
|
132 |
+
def num_cls_tokens(self):
|
133 |
+
return getattr(self.inner, 'num_tokens', 1)
|
134 |
+
|
135 |
+
@property
|
136 |
+
def num_registers(self):
|
137 |
+
return getattr(self.inner, 'num_register_tokens', 0)
|
138 |
+
|
139 |
+
@property
|
140 |
+
def num_summary_tokens(self):
|
141 |
+
return self.num_cls_tokens + self.num_registers
|
142 |
+
|
143 |
+
@property
|
144 |
+
def blocks(self):
|
145 |
+
return self.inner.blocks
|
146 |
+
|
147 |
+
def forward(self, *args, **kwargs) -> Tuple[torch.Tensor, torch.Tensor]:
|
148 |
+
parts = self.inner.forward_features(*args, **kwargs)
|
149 |
+
|
150 |
+
cls_token = parts['x_norm_clstoken']
|
151 |
+
features = parts['x_norm_patchtokens']
|
152 |
+
|
153 |
+
return cls_token, features
|
154 |
+
|
155 |
+
def forward_features(self, x: torch.Tensor):
|
156 |
+
x = self.inner.prepare_tokens_with_masks(x)
|
157 |
+
x = self.inner.blocks(x)
|
158 |
+
x_norm = self.inner.norm(x)
|
159 |
+
|
160 |
+
return x_norm[:, 0], x_norm[:, self.num_summary_tokens:]
|
161 |
+
|
162 |
+
def patchify(self, x: torch.Tensor) -> torch.Tensor:
|
163 |
+
return self.inner.prepare_tokens_with_masks(x)
|
164 |
+
|
165 |
+
def forward_intermediates(self,
|
166 |
+
x: torch.Tensor,
|
167 |
+
norm: bool = False,
|
168 |
+
**kwargs,
|
169 |
+
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
170 |
+
return forward_intermediates(
|
171 |
+
self,
|
172 |
+
patch_extractor=self.inner.prepare_tokens_with_masks,
|
173 |
+
num_summary_tokens=self.num_summary_tokens,
|
174 |
+
num_cls_tokens=self.num_cls_tokens,
|
175 |
+
norm=self.inner.norm if norm else lambda y: y,
|
176 |
+
x=x,
|
177 |
+
**kwargs,
|
178 |
+
)
|
179 |
+
|
180 |
+
|
181 |
+
def _dino_student(arch: str, **kwargs):
|
182 |
+
from . import dinov2_arch
|
183 |
+
|
184 |
+
factory = getattr(dinov2_arch, arch)
|
185 |
+
model = factory()
|
186 |
+
|
187 |
+
model = DinoWrapper(model)
|
188 |
+
|
189 |
+
conditioner = InputConditioner(
|
190 |
+
input_scale=1.0,
|
191 |
+
norm_mean=IMAGENET_DEFAULT_MEAN,
|
192 |
+
norm_std=IMAGENET_DEFAULT_STD,
|
193 |
+
)
|
194 |
+
|
195 |
+
model.input_conditioner = conditioner
|
196 |
+
|
197 |
+
return model
|
198 |
+
|
199 |
+
|
200 |
+
@register_model
|
201 |
+
def dino_v2_l_student(**kwargs):
|
202 |
+
return _dino_student('dinov2_vitl14_reg', **kwargs)
|
203 |
+
|
204 |
+
@register_model
|
205 |
+
def dino_v2_g_student(**kwargs):
|
206 |
+
return _dino_student('dinov2_vitg14_reg', **kwargs)
|
tim/models/nvidia_radio/radio/extra_timm_models.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
import math
|
10 |
+
import warnings
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from torch import nn
|
14 |
+
from torch.nn import functional as F
|
15 |
+
|
16 |
+
from timm.models import register_model
|
17 |
+
from timm.models.vision_transformer import (
|
18 |
+
VisionTransformer,
|
19 |
+
_create_vision_transformer as _timm_create_vision_transformer,
|
20 |
+
Mlp,
|
21 |
+
Block,
|
22 |
+
LayerScale as TIMMLayerScale,
|
23 |
+
)
|
24 |
+
|
25 |
+
# Import these to also register them
|
26 |
+
from . import dinov2_arch
|
27 |
+
|
28 |
+
|
29 |
+
@register_model
|
30 |
+
def vit_tiny_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
|
31 |
+
""" ViT-Tiny (Vit-Ti/16)
|
32 |
+
"""
|
33 |
+
model_args = dict(patch_size=14, embed_dim=192, depth=12, num_heads=3)
|
34 |
+
model = _create_vision_transformer('vit_tiny_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs))
|
35 |
+
return model
|
36 |
+
|
37 |
+
|
38 |
+
@register_model
|
39 |
+
def vit_small_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
|
40 |
+
""" ViT-Small (ViT-S/16)
|
41 |
+
"""
|
42 |
+
model_args = dict(patch_size=14, embed_dim=384, depth=12, num_heads=6)
|
43 |
+
model = _create_vision_transformer('vit_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
|
44 |
+
return model
|
45 |
+
|
46 |
+
|
47 |
+
@register_model
|
48 |
+
def vit_base_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
|
49 |
+
""" ViT-Base (ViT-B/14) from original paper (https://arxiv.org/abs/2010.11929).
|
50 |
+
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
|
51 |
+
"""
|
52 |
+
model_args = dict(patch_size=14, embed_dim=768, depth=12, num_heads=12)
|
53 |
+
model = _create_vision_transformer('vit_base_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs))
|
54 |
+
return model
|
55 |
+
|
56 |
+
|
57 |
+
@register_model
|
58 |
+
def vit_base_patch16_v2_224(pretrained=False, **kwargs) -> VisionTransformer:
|
59 |
+
""" ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
|
60 |
+
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
|
61 |
+
"""
|
62 |
+
model_args = dict(
|
63 |
+
patch_size=16, embed_dim=768, depth=12, num_heads=12, init_values=1e-5,
|
64 |
+
reg_tokens=4, no_embed_class=True, img_size=518 * 16 // 14
|
65 |
+
)
|
66 |
+
model = _create_vision_transformer(
|
67 |
+
'vit_base_patch14_reg4_dinov2', pretrained=pretrained, **dict(model_args, **kwargs))
|
68 |
+
return model
|
69 |
+
|
70 |
+
|
71 |
+
@register_model
|
72 |
+
def vit_large_patch16_v2_224(pretrained: bool = False, **kwargs) -> VisionTransformer:
|
73 |
+
""" ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
|
74 |
+
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
|
75 |
+
"""
|
76 |
+
name = 'vit_large_patch14_reg4_dinov2'
|
77 |
+
model_args = dict(
|
78 |
+
patch_size=16, embed_dim=1024, depth=24, num_heads=16, init_values=1e-5,
|
79 |
+
reg_tokens=4, no_embed_class=True, img_size=518 * 16 // 14
|
80 |
+
)
|
81 |
+
model = _create_vision_transformer(name, pretrained=pretrained, **dict(model_args, **kwargs))
|
82 |
+
|
83 |
+
return model
|
84 |
+
|
85 |
+
@register_model
|
86 |
+
def vit_huge_patch16_224(pretrained=False, **kwargs) -> VisionTransformer:
|
87 |
+
""" ViT-Huge model (ViT-H/16) from original paper (https://arxiv.org/abs/2010.11929).
|
88 |
+
"""
|
89 |
+
model_args = dict(patch_size=16, embed_dim=1280, depth=32, num_heads=16)
|
90 |
+
if pretrained:
|
91 |
+
# There is no pretrained version of ViT-H/16, but we can adapt a ViT-H/14 for this purpose
|
92 |
+
model = _create_vision_transformer('vit_huge_patch14_224', pretrained=True, **dict(model_args, **kwargs))
|
93 |
+
else:
|
94 |
+
model = _create_vision_transformer('vit_huge_patch16_224', pretrained=False, **dict(model_args, **kwargs))
|
95 |
+
return model
|
96 |
+
|
97 |
+
|
98 |
+
@register_model
|
99 |
+
def vit_huge_patch16_224_mlpnorm(pretrained=False, **kwargs) -> VisionTransformer:
|
100 |
+
""" ViT-Huge model (ViT-H/16) from original paper (https://arxiv.org/abs/2010.11929).
|
101 |
+
"""
|
102 |
+
model = vit_huge_patch16_224(pretrained=pretrained, **kwargs)
|
103 |
+
|
104 |
+
for m in model.modules():
|
105 |
+
if isinstance(m, Mlp) and not isinstance(m.norm, nn.LayerNorm):
|
106 |
+
m.norm = nn.LayerNorm(m.fc1.out_features)
|
107 |
+
|
108 |
+
return model
|
109 |
+
|
110 |
+
|
111 |
+
@register_model
|
112 |
+
def vit_giant_patch16_224(pretrained=False, scaled_ln: bool = False, **kwargs) -> VisionTransformer:
|
113 |
+
""" ViT-giant model (ViT-g/16) from original paper (https://arxiv.org/abs/2010.11929).
|
114 |
+
"""
|
115 |
+
model_args = dict(patch_size=16, embed_dim=1536, depth=40, num_heads=24)
|
116 |
+
model = _create_vision_transformer('vit_giant_patch16_224', pretrained=False, **dict(model_args, **kwargs))
|
117 |
+
if scaled_ln:
|
118 |
+
_apply_scaled_ln(model)
|
119 |
+
return model
|
120 |
+
|
121 |
+
|
122 |
+
@register_model
|
123 |
+
def vit_bigG_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
|
124 |
+
model_args = dict(patch_size=14, embed_dim=1664, depth=48, num_heads=16, init_values=1e-6)
|
125 |
+
model = _create_vision_transformer('vit_bigG_patch14', pretrained=False, **dict(model_args, **kwargs))
|
126 |
+
return model
|
127 |
+
|
128 |
+
|
129 |
+
def _create_vision_transformer(*args, **kwargs):
|
130 |
+
model = _timm_create_vision_transformer(*args, **kwargs)
|
131 |
+
_patch_layer_scale(model)
|
132 |
+
return model
|
133 |
+
|
134 |
+
|
135 |
+
def _patch_layer_scale(model: VisionTransformer):
|
136 |
+
def replace_ls(old_ls: TIMMLayerScale):
|
137 |
+
new_ls = dinov2_arch.LayerScale(old_ls.gamma.shape[0], inplace=old_ls.inplace)
|
138 |
+
new_ls.load_state_dict(old_ls.state_dict())
|
139 |
+
return new_ls
|
140 |
+
|
141 |
+
# Monkey patch: Replace TIMM's LayerScale with our modified DINOv2 one, that uses a param name
|
142 |
+
# other than gamma, so that HFHub doesn't mess with it!
|
143 |
+
for mod in model.modules():
|
144 |
+
if isinstance(mod, Block):
|
145 |
+
if isinstance(mod.ls1, TIMMLayerScale):
|
146 |
+
mod.ls1 = replace_ls(mod.ls1)
|
147 |
+
if isinstance(mod.ls2, TIMMLayerScale):
|
148 |
+
mod.ls2 = replace_ls(mod.ls2)
|
149 |
+
pass
|
150 |
+
|
151 |
+
|
152 |
+
class ScaledLayerNorm(nn.LayerNorm):
|
153 |
+
'''
|
154 |
+
https://arxiv.org/pdf/2502.05795v1
|
155 |
+
'''
|
156 |
+
def __init__(self, ln_base: nn.LayerNorm, depth: int = 0):
|
157 |
+
super().__init__(ln_base.normalized_shape, eps=ln_base.eps, elementwise_affine=ln_base.elementwise_affine)
|
158 |
+
self.load_state_dict(ln_base.state_dict())
|
159 |
+
self.register_buffer('ln_scale', torch.tensor(1.0 / math.sqrt(depth)), persistent=False)
|
160 |
+
|
161 |
+
def forward(self, x):
|
162 |
+
y = super().forward(x)
|
163 |
+
y = y * self.ln_scale
|
164 |
+
return y
|
165 |
+
|
166 |
+
|
167 |
+
class DyT(nn.Module):
|
168 |
+
def __init__(self, C: int, init_alpha: float):
|
169 |
+
super().__init__()
|
170 |
+
self.alpha = nn.Parameter(torch.full((1,), init_alpha))
|
171 |
+
self.gamma = nn.Parameter(torch.ones(C))
|
172 |
+
self.beta = nn.Parameter(torch.zeros(C))
|
173 |
+
|
174 |
+
def forward(self, x: torch.Tensor):
|
175 |
+
x = F.tanh(self.alpha * x)
|
176 |
+
return self.gamma * x + self.beta
|
177 |
+
|
178 |
+
@register_model
|
179 |
+
def vit_large_dyt_patch16_224(pretrained: bool = False, **kwargs) -> VisionTransformer:
|
180 |
+
""" ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
|
181 |
+
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
|
182 |
+
"""
|
183 |
+
model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16)
|
184 |
+
model = _create_vision_transformer('vit_large_dyt_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
|
185 |
+
|
186 |
+
def _replace_ln_with_dyt(ln: nn.LayerNorm, depth: int):
|
187 |
+
return DyT(ln.normalized_shape[0], init_alpha=0.9)
|
188 |
+
_replace_ln(model, _replace_ln_with_dyt)
|
189 |
+
|
190 |
+
return model
|
191 |
+
|
192 |
+
|
193 |
+
def _apply_scaled_ln(model: VisionTransformer):
|
194 |
+
warnings.warn('Post-LayerNorm scaling activated!')
|
195 |
+
|
196 |
+
_replace_ln(model, lambda ln, depth: ScaledLayerNorm(ln, depth=depth))
|
197 |
+
|
198 |
+
def _replace_ln(model: VisionTransformer, fn):
|
199 |
+
def _inner_replace_ln(block: Block, depth: int, key: str):
|
200 |
+
prev = getattr(block, key)
|
201 |
+
if isinstance(prev, nn.LayerNorm):
|
202 |
+
setattr(block, key, fn(prev, depth=depth))
|
203 |
+
|
204 |
+
for i, block in enumerate(model.blocks):
|
205 |
+
_inner_replace_ln(block, i + 1, 'norm1')
|
206 |
+
_inner_replace_ln(block, i + 1, 'norm2')
|
tim/models/nvidia_radio/radio/feature_normalizer.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
from collections import namedtuple
|
9 |
+
from typing import NamedTuple, Optional, Tuple
|
10 |
+
import torch
|
11 |
+
from torch import nn
|
12 |
+
|
13 |
+
|
14 |
+
def _run_kernel(x: torch.Tensor, mean: torch.Tensor, tx: torch.Tensor):
|
15 |
+
if x.ndim <= 3:
|
16 |
+
x = x - mean
|
17 |
+
x = x @ tx.T
|
18 |
+
elif x.ndim == 4:
|
19 |
+
x = x - mean.reshape(1, -1, 1, 1)
|
20 |
+
kernel = tx.reshape(*tx.shape, 1, 1)
|
21 |
+
x = torch.nn.functional.conv2d(x, weight=kernel, bias=None, stride=1, padding=0)
|
22 |
+
else:
|
23 |
+
raise ValueError(f'Unsupported input dimension: {x.ndim}, shape: {x.shape}')
|
24 |
+
return x
|
25 |
+
|
26 |
+
|
27 |
+
class FeatureNormalizer(nn.Module):
|
28 |
+
def __init__(self, embed_dim: int, dtype: torch.dtype = torch.float32):
|
29 |
+
super().__init__()
|
30 |
+
|
31 |
+
self.register_buffer('mean', torch.zeros(embed_dim, dtype=dtype))
|
32 |
+
self.register_buffer('tx', torch.eye(embed_dim, dtype=dtype))
|
33 |
+
|
34 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
35 |
+
x = _run_kernel(x, self.mean, self.tx)
|
36 |
+
return x
|
37 |
+
|
38 |
+
|
39 |
+
class InterFeatState(NamedTuple):
|
40 |
+
y: torch.Tensor
|
41 |
+
alpha: torch.Tensor
|
42 |
+
|
43 |
+
|
44 |
+
class IntermediateFeatureNormalizerBase(nn.Module):
|
45 |
+
def forward(self, x: torch.Tensor, index: int, rot_index: int = None, skip: Optional[int] = None) -> InterFeatState:
|
46 |
+
raise NotImplementedError()
|
47 |
+
|
48 |
+
|
49 |
+
class IntermediateFeatureNormalizer(IntermediateFeatureNormalizerBase):
|
50 |
+
def __init__(self, num_intermediates: int, embed_dim: int, rot_per_layer: bool = False, dtype: torch.dtype = torch.float32):
|
51 |
+
super().__init__()
|
52 |
+
self.register_buffer('alphas', torch.ones(num_intermediates, dtype=dtype))
|
53 |
+
|
54 |
+
rot = torch.eye(embed_dim, dtype=dtype)
|
55 |
+
if rot_per_layer:
|
56 |
+
rot = rot.unsqueeze(0).repeat(num_intermediates, 1, 1)
|
57 |
+
|
58 |
+
self.register_buffer('rotation', rot.contiguous())
|
59 |
+
self.register_buffer('means', torch.zeros(num_intermediates, embed_dim, dtype=dtype))
|
60 |
+
|
61 |
+
def forward(self, x: torch.Tensor, index: int, rot_index: int = None, skip: Optional[int] = None) -> InterFeatState:
|
62 |
+
if rot_index is None:
|
63 |
+
rot_index = index
|
64 |
+
|
65 |
+
if skip:
|
66 |
+
assert x.ndim == 3, f'Cannot use the `skip` parameter when the `x` tensor isn\'t 3-dimensional.'
|
67 |
+
prefix, x = x[:, :skip], x[:, skip:]
|
68 |
+
|
69 |
+
rotation = self._get_rotation(rot_index)
|
70 |
+
y = _run_kernel(x, self.means[index], rotation)
|
71 |
+
|
72 |
+
alpha = self.alphas[index]
|
73 |
+
if skip:
|
74 |
+
alpha = torch.cat([
|
75 |
+
torch.ones(skip, dtype=alpha.dtype, device=alpha.device),
|
76 |
+
alpha[None].expand(y.shape[1]),
|
77 |
+
]).reshape(1, -1, 1)
|
78 |
+
y = torch.cat([prefix, y], dim=1)
|
79 |
+
else:
|
80 |
+
if x.ndim == 3:
|
81 |
+
alpha = alpha.reshape(1, 1, 1).expand(1, y.shape[1], 1)
|
82 |
+
elif x.ndim == 4:
|
83 |
+
alpha = alpha.reshape(1, 1, 1, 1).expand(1, 1, *y.shape[2:])
|
84 |
+
else:
|
85 |
+
raise ValueError(f'Unsupported input dimension: {x.ndim}')
|
86 |
+
|
87 |
+
return InterFeatState(y, alpha)
|
88 |
+
|
89 |
+
def _get_rotation(self, rot_index: int) -> torch.Tensor:
|
90 |
+
if self.rotation.ndim == 2:
|
91 |
+
return self.rotation
|
92 |
+
return self.rotation[rot_index]
|
93 |
+
|
94 |
+
|
95 |
+
class NullIntermediateFeatureNormalizer(IntermediateFeatureNormalizerBase):
|
96 |
+
instances = dict()
|
97 |
+
|
98 |
+
def __init__(self, dtype: torch.dtype, device: torch.device):
|
99 |
+
super().__init__()
|
100 |
+
self.register_buffer('alpha', torch.tensor(1, dtype=dtype, device=device))
|
101 |
+
|
102 |
+
@staticmethod
|
103 |
+
def get_instance(dtype: torch.dtype, device: torch.device):
|
104 |
+
instance = NullIntermediateFeatureNormalizer.instances.get((dtype, device), None)
|
105 |
+
if instance is None:
|
106 |
+
instance = NullIntermediateFeatureNormalizer(dtype, device)
|
107 |
+
NullIntermediateFeatureNormalizer.instances[(dtype, device)] = instance
|
108 |
+
return instance
|
109 |
+
|
110 |
+
def forward(self, x: torch.Tensor, index: int, rot_index: int = None, skip: Optional[int] = None) -> InterFeatState:
|
111 |
+
return InterFeatState(x, self.alpha)
|
tim/models/nvidia_radio/radio/forward_intermediates.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
from typing import Callable, Dict, List, Optional, Set, Tuple, Union, Any, Iterable
|
10 |
+
from types import MethodType
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from torch import nn
|
14 |
+
|
15 |
+
from .feature_normalizer import IntermediateFeatureNormalizerBase, NullIntermediateFeatureNormalizer
|
16 |
+
|
17 |
+
|
18 |
+
def _take_indices(
|
19 |
+
num_blocks: int,
|
20 |
+
n: Optional[Union[int, List[int], Tuple[int]]],
|
21 |
+
) -> Tuple[Set[int], int]:
|
22 |
+
if isinstance(n, int):
|
23 |
+
assert n >= 0
|
24 |
+
take_indices = {x for x in range(num_blocks - n, num_blocks)}
|
25 |
+
else:
|
26 |
+
take_indices = {num_blocks + idx if idx < 0 else idx for idx in n}
|
27 |
+
return take_indices, max(take_indices)
|
28 |
+
|
29 |
+
|
30 |
+
def forward_intermediates(
|
31 |
+
model: nn.Module,
|
32 |
+
patch_extractor: Callable[[torch.Tensor], torch.Tensor],
|
33 |
+
norm: nn.Module,
|
34 |
+
num_summary_tokens: int,
|
35 |
+
num_cls_tokens: int,
|
36 |
+
x: torch.Tensor,
|
37 |
+
indices: Optional[Union[int, List[int], Tuple[int]]] = None,
|
38 |
+
return_prefix_tokens: bool = False,
|
39 |
+
stop_early: bool = False,
|
40 |
+
output_fmt: str = 'NCHW',
|
41 |
+
intermediates_only: bool = False,
|
42 |
+
aggregation: Optional[str] = "sparse",
|
43 |
+
inter_feature_normalizer: Optional[IntermediateFeatureNormalizerBase] = None,
|
44 |
+
norm_alpha_scheme = "post-alpha",
|
45 |
+
block_kwargs: Dict = None,
|
46 |
+
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
|
47 |
+
""" Forward features that returns intermediates.
|
48 |
+
|
49 |
+
The Dense layer aggregation method is inspired from the paper: "Dense Connector for MLLMs"
|
50 |
+
by Yao, Huanjin et al. (2024). arXiv preprint arXiv:2405.13800}
|
51 |
+
|
52 |
+
Args:
|
53 |
+
x: Input image tensor
|
54 |
+
indices: Take last n blocks if int, select matching indices if sequence
|
55 |
+
return_prefix_tokens: Return both prefix and spatial intermediate tokens
|
56 |
+
norm: Apply norm layer to all intermediates
|
57 |
+
stop_early: Stop iterating over blocks when last desired intermediate hit
|
58 |
+
output_fmt: Shape of intermediate feature outputs
|
59 |
+
intermediates_only: Only return intermediate features
|
60 |
+
aggregation: intermediate layer aggregation method (sparse or dense)
|
61 |
+
norm_alpha_scheme: apply alpha before ("pre-alpha") or after accumulation ("post-alpha")
|
62 |
+
Returns:
|
63 |
+
"""
|
64 |
+
assert output_fmt in ('NCHW', 'NLC'), 'Output format must be one of NCHW or NLC.'
|
65 |
+
assert aggregation in ('sparse', 'dense'), 'Aggregation must be one of sparse or dense.'
|
66 |
+
reshape = output_fmt == 'NCHW'
|
67 |
+
intermediates = []
|
68 |
+
|
69 |
+
block_kwargs = block_kwargs or dict()
|
70 |
+
|
71 |
+
blocks = model.blocks
|
72 |
+
|
73 |
+
take_indices, max_index = _take_indices(len(blocks), indices)
|
74 |
+
take_indices = sorted(take_indices)
|
75 |
+
# forward pass
|
76 |
+
B, _, height, width = x.shape
|
77 |
+
|
78 |
+
x = patch_extractor(x)
|
79 |
+
|
80 |
+
if stop_early:
|
81 |
+
blocks = blocks[:max_index + 1]
|
82 |
+
|
83 |
+
if inter_feature_normalizer is None or norm_alpha_scheme == 'none':
|
84 |
+
inter_feature_normalizer = NullIntermediateFeatureNormalizer.get_instance(x.dtype, x.device)
|
85 |
+
|
86 |
+
assert norm_alpha_scheme in ('none', 'pre-alpha', 'post-alpha'), f'Unsupported alpha scheme: {norm_alpha_scheme}'
|
87 |
+
post_alpha_scheme = norm_alpha_scheme == 'post-alpha'
|
88 |
+
|
89 |
+
accumulator = 0
|
90 |
+
alpha_sum = 0
|
91 |
+
num_accumulated = 0
|
92 |
+
|
93 |
+
take_off = 0
|
94 |
+
|
95 |
+
for i, blk in enumerate(blocks):
|
96 |
+
x = blk(x, **block_kwargs)
|
97 |
+
if aggregation == "dense":
|
98 |
+
# Arbitrarily use the rotation matrix from the final layer in the dense group
|
99 |
+
y, alpha = inter_feature_normalizer(x, i, rot_index=take_indices[take_off], skip=num_summary_tokens)
|
100 |
+
if post_alpha_scheme:
|
101 |
+
accumulator = accumulator + y
|
102 |
+
alpha_sum = alpha_sum + alpha
|
103 |
+
else:
|
104 |
+
accumulator = accumulator + (alpha * y)
|
105 |
+
alpha_sum += 1
|
106 |
+
num_accumulated += 1
|
107 |
+
if i == take_indices[take_off]:
|
108 |
+
if aggregation == "dense":
|
109 |
+
alpha = alpha_sum / num_accumulated
|
110 |
+
x_ = alpha * accumulator / num_accumulated
|
111 |
+
num_accumulated = 0
|
112 |
+
accumulator = 0
|
113 |
+
alpha_sum = 0
|
114 |
+
else:
|
115 |
+
y, alpha = inter_feature_normalizer(x, i, skip=num_summary_tokens)
|
116 |
+
x_ = alpha * y
|
117 |
+
# normalize intermediates with final norm layer if enabled
|
118 |
+
intermediates.append(norm(x_))
|
119 |
+
take_off = min(take_off + 1, len(take_indices) - 1)
|
120 |
+
|
121 |
+
# process intermediates
|
122 |
+
|
123 |
+
# split prefix (e.g. class, distill) and spatial feature tokens
|
124 |
+
prefix_tokens = [y[:, :num_cls_tokens] for y in intermediates]
|
125 |
+
intermediates = [y[:, num_summary_tokens:] for y in intermediates]
|
126 |
+
|
127 |
+
if reshape:
|
128 |
+
# reshape to BCHW output format
|
129 |
+
H = height // model.patch_size
|
130 |
+
W = width // model.patch_size
|
131 |
+
intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates]
|
132 |
+
if not torch.jit.is_scripting() and return_prefix_tokens:
|
133 |
+
# return_prefix not support in torchscript due to poor type handling
|
134 |
+
intermediates = list(zip(prefix_tokens, intermediates))
|
135 |
+
if intermediates_only:
|
136 |
+
return intermediates
|
137 |
+
x = norm(x)
|
138 |
+
return x, intermediates
|
tim/models/nvidia_radio/radio/hf_model.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from collections import namedtuple
|
15 |
+
from typing import Callable, Dict, Optional, List, Union
|
16 |
+
|
17 |
+
from timm.models import VisionTransformer
|
18 |
+
import torch
|
19 |
+
from torch import nn
|
20 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
21 |
+
|
22 |
+
|
23 |
+
from .common import RESOURCE_MAP, DEFAULT_VERSION
|
24 |
+
|
25 |
+
# Import all required modules.
|
26 |
+
from .adaptor_base import AdaptorBase, RadioOutput, AdaptorInput
|
27 |
+
from .adaptor_generic import GenericAdaptor, AdaptorBase
|
28 |
+
from .adaptor_mlp import create_mlp_from_config
|
29 |
+
from .adaptor_registry import adaptor_registry
|
30 |
+
from .cls_token import ClsToken
|
31 |
+
from .dinov2_arch import dinov2_vitg14_reg
|
32 |
+
from .enable_cpe_support import enable_cpe
|
33 |
+
from .enable_spectral_reparam import configure_spectral_reparam_from_args
|
34 |
+
from .eradio_model import eradio
|
35 |
+
from .feature_normalizer import FeatureNormalizer, IntermediateFeatureNormalizer
|
36 |
+
from .forward_intermediates import forward_intermediates
|
37 |
+
from .radio_model import create_model_from_args
|
38 |
+
from .radio_model import RADIOModel as RADIOModelBase, Resolution
|
39 |
+
from .input_conditioner import get_default_conditioner, InputConditioner
|
40 |
+
from .open_clip_adaptor import OpenCLIP_RADIO
|
41 |
+
from .vit_patch_generator import ViTPatchGenerator
|
42 |
+
from .vitdet import apply_vitdet_arch, VitDetArgs
|
43 |
+
|
44 |
+
# Register extra models
|
45 |
+
from .extra_timm_models import *
|
46 |
+
from .extra_models import *
|
47 |
+
|
48 |
+
|
49 |
+
class RADIOConfig(PretrainedConfig):
|
50 |
+
"""Pretrained Hugging Face configuration for RADIO models."""
|
51 |
+
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
args: Optional[dict] = None,
|
55 |
+
version: Optional[str] = DEFAULT_VERSION,
|
56 |
+
patch_size: Optional[int] = None,
|
57 |
+
max_resolution: Optional[int] = None,
|
58 |
+
preferred_resolution: Optional[Resolution] = None,
|
59 |
+
adaptor_names: Union[str, List[str]] = None,
|
60 |
+
adaptor_configs: Dict[str, Dict[str, int]] = None,
|
61 |
+
vitdet_window_size: Optional[int] = None,
|
62 |
+
feature_normalizer_config: Optional[dict] = None,
|
63 |
+
inter_feature_normalizer_config: Optional[dict] = None,
|
64 |
+
**kwargs,
|
65 |
+
):
|
66 |
+
self.args = args
|
67 |
+
for field in ["dtype", "amp_dtype"]:
|
68 |
+
if self.args is not None and field in self.args:
|
69 |
+
# Convert to a string in order to make it serializable.
|
70 |
+
# For example for torch.float32 we will store "float32",
|
71 |
+
# for "bfloat16" we will store "bfloat16".
|
72 |
+
self.args[field] = str(args[field]).split(".")[-1]
|
73 |
+
self.version = version
|
74 |
+
resource = RESOURCE_MAP[version]
|
75 |
+
self.patch_size = patch_size or resource.patch_size
|
76 |
+
self.max_resolution = max_resolution or resource.max_resolution
|
77 |
+
self.preferred_resolution = (
|
78 |
+
preferred_resolution or resource.preferred_resolution
|
79 |
+
)
|
80 |
+
self.adaptor_names = adaptor_names
|
81 |
+
self.adaptor_configs = adaptor_configs
|
82 |
+
self.vitdet_window_size = vitdet_window_size
|
83 |
+
self.feature_normalizer_config = feature_normalizer_config
|
84 |
+
self.inter_feature_normalizer_config = inter_feature_normalizer_config
|
85 |
+
super().__init__(**kwargs)
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
class RADIOModel(PreTrainedModel):
|
90 |
+
"""Pretrained Hugging Face model for RADIO.
|
91 |
+
|
92 |
+
This class inherits from PreTrainedModel, which provides
|
93 |
+
HuggingFace's functionality for loading and saving models.
|
94 |
+
"""
|
95 |
+
|
96 |
+
config_class = RADIOConfig
|
97 |
+
|
98 |
+
def __init__(self, config: RADIOConfig):
|
99 |
+
super().__init__(config)
|
100 |
+
|
101 |
+
RADIOArgs = namedtuple("RADIOArgs", config.args.keys())
|
102 |
+
args = RADIOArgs(**config.args)
|
103 |
+
self.config = config
|
104 |
+
|
105 |
+
model = create_model_from_args(args)
|
106 |
+
input_conditioner: InputConditioner = get_default_conditioner()
|
107 |
+
|
108 |
+
dtype = getattr(args, "dtype", torch.float32)
|
109 |
+
if isinstance(dtype, str):
|
110 |
+
# Convert the dtype's string representation back to a dtype.
|
111 |
+
dtype = getattr(torch, dtype)
|
112 |
+
model.to(dtype=dtype)
|
113 |
+
input_conditioner.dtype = dtype
|
114 |
+
|
115 |
+
summary_idxs = torch.tensor(
|
116 |
+
[i for i, t in enumerate(args.teachers) if t.get("use_summary", True)],
|
117 |
+
dtype=torch.int64,
|
118 |
+
)
|
119 |
+
|
120 |
+
adaptor_configs = config.adaptor_configs
|
121 |
+
adaptor_names = config.adaptor_names or []
|
122 |
+
|
123 |
+
adaptors = dict()
|
124 |
+
for adaptor_name in adaptor_names:
|
125 |
+
mlp_config = adaptor_configs[adaptor_name]
|
126 |
+
adaptor = GenericAdaptor(args, None, None, mlp_config)
|
127 |
+
adaptor.head_idx = mlp_config["head_idx"]
|
128 |
+
adaptors[adaptor_name] = adaptor
|
129 |
+
|
130 |
+
feature_normalizer = None
|
131 |
+
if config.feature_normalizer_config is not None:
|
132 |
+
# Actual normalization values will be restored when loading checkpoint weights.
|
133 |
+
feature_normalizer = FeatureNormalizer(config.feature_normalizer_config["embed_dim"])
|
134 |
+
|
135 |
+
inter_feature_normalizer = None
|
136 |
+
if config.inter_feature_normalizer_config is not None:
|
137 |
+
inter_feature_normalizer = IntermediateFeatureNormalizer(
|
138 |
+
config.inter_feature_normalizer_config["num_intermediates"],
|
139 |
+
config.inter_feature_normalizer_config["embed_dim"],
|
140 |
+
rot_per_layer=config.inter_feature_normalizer_config["rot_per_layer"],
|
141 |
+
dtype=dtype)
|
142 |
+
|
143 |
+
self.radio_model = RADIOModelBase(
|
144 |
+
model,
|
145 |
+
input_conditioner,
|
146 |
+
summary_idxs=summary_idxs,
|
147 |
+
patch_size=config.patch_size,
|
148 |
+
max_resolution=config.max_resolution,
|
149 |
+
window_size=config.vitdet_window_size,
|
150 |
+
preferred_resolution=config.preferred_resolution,
|
151 |
+
adaptors=adaptors,
|
152 |
+
feature_normalizer=feature_normalizer,
|
153 |
+
inter_feature_normalizer=inter_feature_normalizer,
|
154 |
+
)
|
155 |
+
|
156 |
+
@property
|
157 |
+
def adaptors(self) -> nn.ModuleDict:
|
158 |
+
return self.radio_model.adaptors
|
159 |
+
|
160 |
+
@property
|
161 |
+
def model(self) -> VisionTransformer:
|
162 |
+
return self.radio_model.model
|
163 |
+
|
164 |
+
@property
|
165 |
+
def input_conditioner(self) -> InputConditioner:
|
166 |
+
return self.radio_model.input_conditioner
|
167 |
+
|
168 |
+
@property
|
169 |
+
def num_summary_tokens(self) -> int:
|
170 |
+
return self.radio_model.num_summary_tokens
|
171 |
+
|
172 |
+
@property
|
173 |
+
def patch_size(self) -> int:
|
174 |
+
return self.radio_model.patch_size
|
175 |
+
|
176 |
+
@property
|
177 |
+
def max_resolution(self) -> int:
|
178 |
+
return self.radio_model.max_resolution
|
179 |
+
|
180 |
+
@property
|
181 |
+
def preferred_resolution(self) -> Resolution:
|
182 |
+
return self.radio_model.preferred_resolution
|
183 |
+
|
184 |
+
@property
|
185 |
+
def window_size(self) -> int:
|
186 |
+
return self.radio_model.window_size
|
187 |
+
|
188 |
+
@property
|
189 |
+
def min_resolution_step(self) -> int:
|
190 |
+
return self.radio_model.min_resolution_step
|
191 |
+
|
192 |
+
def make_preprocessor_external(self) -> Callable[[torch.Tensor], torch.Tensor]:
|
193 |
+
return self.radio_model.make_preprocessor_external()
|
194 |
+
|
195 |
+
def get_nearest_supported_resolution(self, height: int, width: int) -> Resolution:
|
196 |
+
return self.radio_model.get_nearest_supported_resolution(height, width)
|
197 |
+
|
198 |
+
def switch_to_deploy(self):
|
199 |
+
return self.radio_model.switch_to_deploy()
|
200 |
+
|
201 |
+
def forward(self, x: torch.Tensor):
|
202 |
+
return self.radio_model.forward(x)
|
tim/models/nvidia_radio/radio/input_conditioner.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
from typing import Union, Tuple
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from torch import nn
|
13 |
+
|
14 |
+
|
15 |
+
norm_t = Union[Tuple[float, float, float], torch.Tensor]
|
16 |
+
|
17 |
+
class InputConditioner(nn.Module):
|
18 |
+
def __init__(self,
|
19 |
+
input_scale: float,
|
20 |
+
norm_mean: norm_t,
|
21 |
+
norm_std: norm_t,
|
22 |
+
dtype: torch.dtype = None,
|
23 |
+
):
|
24 |
+
super().__init__()
|
25 |
+
|
26 |
+
self.dtype = dtype
|
27 |
+
|
28 |
+
self.register_buffer("norm_mean", _to_tensor(norm_mean) / input_scale)
|
29 |
+
self.register_buffer("norm_std", _to_tensor(norm_std) / input_scale)
|
30 |
+
|
31 |
+
def forward(self, x: torch.Tensor):
|
32 |
+
y = (x - self.norm_mean) / self.norm_std
|
33 |
+
if self.dtype is not None:
|
34 |
+
y = y.to(self.dtype)
|
35 |
+
return y
|
36 |
+
|
37 |
+
|
38 |
+
def get_default_conditioner():
|
39 |
+
from timm.data.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
|
40 |
+
|
41 |
+
return InputConditioner(
|
42 |
+
input_scale=1.0,
|
43 |
+
norm_mean=OPENAI_CLIP_MEAN,
|
44 |
+
norm_std=OPENAI_CLIP_STD,
|
45 |
+
)
|
46 |
+
|
47 |
+
|
48 |
+
def _to_tensor(v: norm_t):
|
49 |
+
return torch.as_tensor(v, dtype=torch.float32).view(-1, 1, 1)
|
tim/models/nvidia_radio/radio/open_clip_adaptor.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
from argparse import Namespace
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from torch import nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
from .adaptor_registry import adaptor_registry, dict_t, state_t
|
15 |
+
|
16 |
+
from .adaptor_generic import GenericAdaptor
|
17 |
+
|
18 |
+
|
19 |
+
class OpenCLIP_RADIO(GenericAdaptor):
|
20 |
+
def __init__(self, main_config: Namespace, adaptor_config: dict_t, state: state_t):
|
21 |
+
super().__init__(main_config, adaptor_config, state)
|
22 |
+
|
23 |
+
import open_clip
|
24 |
+
|
25 |
+
self.oc_model = open_clip.create_model_from_pretrained(
|
26 |
+
model_name=adaptor_config['model'],
|
27 |
+
pretrained=adaptor_config['pretrained'],
|
28 |
+
return_transform=False,
|
29 |
+
)
|
30 |
+
# Unload these parameters
|
31 |
+
self.oc_model.visual = None
|
32 |
+
|
33 |
+
self.tokenizer = open_clip.get_tokenizer(model_name=adaptor_config['model'])
|
34 |
+
|
35 |
+
def encode_text(self, text, normalize: bool = False):
|
36 |
+
return self.oc_model.encode_text(text, normalize=normalize)
|
37 |
+
|
38 |
+
|
39 |
+
@adaptor_registry.register_adaptor("open_clip")
|
40 |
+
def create_open_clip_adaptor(main_config: Namespace, adaptor_config: dict_t, state: state_t):
|
41 |
+
return OpenCLIP_RADIO(main_config, adaptor_config, state)
|
tim/models/nvidia_radio/radio/radio_model.py
ADDED
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
from typing import Callable, Dict, Iterable, List, NamedTuple, Optional, Tuple, Union
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from torch import nn
|
12 |
+
|
13 |
+
from timm.models import create_model, VisionTransformer
|
14 |
+
from types import MethodType
|
15 |
+
|
16 |
+
from .enable_cpe_support import enable_cpe
|
17 |
+
from .input_conditioner import InputConditioner
|
18 |
+
from .adaptor_base import AdaptorBase, RadioOutput, AdaptorInput
|
19 |
+
from . import eradio_model
|
20 |
+
from .enable_spectral_reparam import configure_spectral_reparam_from_args
|
21 |
+
from .feature_normalizer import FeatureNormalizer, IntermediateFeatureNormalizer
|
22 |
+
from . import dual_hybrid_vit
|
23 |
+
|
24 |
+
|
25 |
+
class Resolution(NamedTuple):
|
26 |
+
height: int
|
27 |
+
width: int
|
28 |
+
|
29 |
+
|
30 |
+
class RADIOModel(nn.Module):
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
model: nn.Module,
|
34 |
+
input_conditioner: InputConditioner,
|
35 |
+
patch_size: int,
|
36 |
+
max_resolution: int,
|
37 |
+
preferred_resolution: Resolution,
|
38 |
+
summary_idxs: Optional[torch.Tensor] = None,
|
39 |
+
window_size: int = None,
|
40 |
+
adaptors: Dict[str, AdaptorBase] = None,
|
41 |
+
feature_normalizer: Optional[FeatureNormalizer] = None,
|
42 |
+
inter_feature_normalizer: Optional[IntermediateFeatureNormalizer] = None,
|
43 |
+
):
|
44 |
+
super().__init__()
|
45 |
+
|
46 |
+
self.model = model
|
47 |
+
self.input_conditioner = input_conditioner
|
48 |
+
if summary_idxs is not None:
|
49 |
+
self.register_buffer('summary_idxs', summary_idxs)
|
50 |
+
else:
|
51 |
+
self.summary_idxs = None
|
52 |
+
|
53 |
+
self._preferred_resolution = preferred_resolution
|
54 |
+
self._patch_size = patch_size
|
55 |
+
self._max_resolution = max_resolution
|
56 |
+
self._window_size = window_size
|
57 |
+
|
58 |
+
adaptors = adaptors or dict()
|
59 |
+
self.adaptors = nn.ModuleDict(adaptors)
|
60 |
+
|
61 |
+
if feature_normalizer is None:
|
62 |
+
feature_normalizer = nn.Identity()
|
63 |
+
self.feature_normalizer = feature_normalizer
|
64 |
+
self.inter_feature_normalizer = inter_feature_normalizer
|
65 |
+
|
66 |
+
@property
|
67 |
+
def num_summary_tokens(self) -> int:
|
68 |
+
if hasattr(self.model, 'num_summary_tokens'):
|
69 |
+
return self.model.num_summary_tokens
|
70 |
+
|
71 |
+
patch_gen = getattr(self.model, "patch_generator", None)
|
72 |
+
if patch_gen is not None:
|
73 |
+
return patch_gen.num_skip
|
74 |
+
elif getattr(self.model, 'global_pool', None) == 'avg':
|
75 |
+
return 0
|
76 |
+
return 1
|
77 |
+
|
78 |
+
@property
|
79 |
+
def num_cls_tokens(self) -> int:
|
80 |
+
if hasattr(self.model, 'num_cls_tokens'):
|
81 |
+
return self.model.num_cls_tokens
|
82 |
+
|
83 |
+
patch_gen = getattr(self.model, 'patch_generator', None)
|
84 |
+
if patch_gen is not None:
|
85 |
+
return patch_gen.num_cls_tokens
|
86 |
+
elif getattr(self.model, 'global_pool', None) == 'avg':
|
87 |
+
return 0
|
88 |
+
return 1
|
89 |
+
|
90 |
+
@property
|
91 |
+
def patch_size(self) -> int:
|
92 |
+
if self._patch_size is not None:
|
93 |
+
return self._patch_size
|
94 |
+
if hasattr(self.model, "patch_size"):
|
95 |
+
return self.model.patch_size
|
96 |
+
patch_gen = getattr(self.model, "patch_generator", None)
|
97 |
+
if patch_gen is not None:
|
98 |
+
return patch_gen.patch_size
|
99 |
+
return None
|
100 |
+
|
101 |
+
@property
|
102 |
+
def max_resolution(self) -> int:
|
103 |
+
return self._max_resolution
|
104 |
+
|
105 |
+
@property
|
106 |
+
def preferred_resolution(self) -> Resolution:
|
107 |
+
return self._preferred_resolution
|
108 |
+
|
109 |
+
@property
|
110 |
+
def window_size(self) -> int:
|
111 |
+
return self._window_size
|
112 |
+
|
113 |
+
@property
|
114 |
+
def min_resolution_step(self) -> int:
|
115 |
+
res = self.patch_size
|
116 |
+
if self.window_size is not None:
|
117 |
+
res *= self.window_size
|
118 |
+
return res
|
119 |
+
|
120 |
+
@property
|
121 |
+
def blocks(self) -> Iterable[nn.Module]:
|
122 |
+
blocks = getattr(self.model, 'blocks', None)
|
123 |
+
if blocks is not None:
|
124 |
+
return blocks
|
125 |
+
return None
|
126 |
+
|
127 |
+
@property
|
128 |
+
def embed_dim(self) -> int:
|
129 |
+
return self.model.embed_dim
|
130 |
+
|
131 |
+
def make_preprocessor_external(self) -> Callable[[torch.Tensor], torch.Tensor]:
|
132 |
+
ret = self.input_conditioner
|
133 |
+
self.input_conditioner = nn.Identity()
|
134 |
+
return ret
|
135 |
+
|
136 |
+
def get_nearest_supported_resolution(self, height: int, width: int) -> Resolution:
|
137 |
+
height = int(round(height / self.min_resolution_step) * self.min_resolution_step)
|
138 |
+
width = int(round(width / self.min_resolution_step) * self.min_resolution_step)
|
139 |
+
|
140 |
+
height = max(height, self.min_resolution_step)
|
141 |
+
width = max(width, self.min_resolution_step)
|
142 |
+
|
143 |
+
return Resolution(height=height, width=width)
|
144 |
+
|
145 |
+
def switch_to_deploy(self):
|
146 |
+
fn = getattr(self.model, 'switch_to_deploy', None)
|
147 |
+
if fn is not None:
|
148 |
+
fn()
|
149 |
+
|
150 |
+
def forward(self, x: torch.Tensor, feature_fmt: str = 'NLC') -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
151 |
+
'''
|
152 |
+
Forward process for model.
|
153 |
+
Args:
|
154 |
+
x: Input tensor. Unless `make_preprocessor_external` has been called, then the dynamic range of `x` is expected to be `[0, 1]`,
|
155 |
+
otherwise `x` is expected to be mean centered with unit standard deviation.
|
156 |
+
feature_format: ['NLC', 'NCHW'] - The output format for the features.
|
157 |
+
'''
|
158 |
+
res_step = self.min_resolution_step
|
159 |
+
if res_step is not None and (x.shape[-2] % res_step != 0 or x.shape[-1] % res_step != 0):
|
160 |
+
raise ValueError('The input resolution must be a multiple of `self.min_resolution_step`. '
|
161 |
+
'`self.get_nearest_supported_resolution(<height>, <width>) is provided as a convenience API. '
|
162 |
+
f'Input: {x.shape[-2:]}, Nearest: {self.get_nearest_supported_resolution(*x.shape[-2:])}')
|
163 |
+
|
164 |
+
x = self.input_conditioner(x)
|
165 |
+
y = self.model.forward_features(x)
|
166 |
+
ret = self._extract_final(x, y, feature_fmt=feature_fmt)
|
167 |
+
return ret
|
168 |
+
|
169 |
+
def forward_pack(self, x: List[torch.Tensor], feature_fmt: str = 'NLC') -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
170 |
+
'''
|
171 |
+
Forward process for model.
|
172 |
+
Args:
|
173 |
+
x: Input tensor. Unless `make_preprocessor_external` has been called, then the dynamic range of `x` is expected to be `[0, 1]`,
|
174 |
+
otherwise `x` is expected to be mean centered with unit standard deviation.
|
175 |
+
feature_format: ['NLC', 'NCHW'] - The output format for the features.
|
176 |
+
'''
|
177 |
+
res_step = self.min_resolution_step
|
178 |
+
for _x in x:
|
179 |
+
if res_step is not None and (_x.shape[-2] % res_step != 0 or _x.shape[-1] % res_step != 0):
|
180 |
+
raise ValueError('The input resolution must be a multiple of `self.min_resolution_step`. '
|
181 |
+
'`self.get_nearest_supported_resolution(<height>, <width>) is provided as a convenience API. '
|
182 |
+
f'Input: {_x.shape[-2:]}, Nearest: {self.get_nearest_supported_resolution(*_x.shape[-2:])}')
|
183 |
+
|
184 |
+
x = [self.input_conditioner(_x) for _x in x]
|
185 |
+
y, cu_seqlens = self.model.forward_features(x)
|
186 |
+
all_summary, spatial_features = [], []
|
187 |
+
num_cls_tokens = self.model.patch_generator.num_cls_tokens
|
188 |
+
num_skip = self.model.patch_generator.num_skip
|
189 |
+
for i in range(len(cu_seqlens)-1):
|
190 |
+
summary = y[cu_seqlens[i]: cu_seqlens[i+1]][: num_cls_tokens]
|
191 |
+
all_feat = y[cu_seqlens[i]: cu_seqlens[i+1]][num_skip :]
|
192 |
+
all_summary.append(summary)
|
193 |
+
spatial_features.append(all_feat)
|
194 |
+
all_summary = torch.cat(all_summary)
|
195 |
+
spatial_features = torch.cat(spatial_features)
|
196 |
+
return all_summary, spatial_features
|
197 |
+
|
198 |
+
def _extract_final(self, x: torch.Tensor, y: torch.Tensor, feature_fmt: str = 'NLC'):
|
199 |
+
if isinstance(self.model, VisionTransformer):
|
200 |
+
patch_gen = getattr(self.model, "patch_generator", None)
|
201 |
+
if patch_gen is not None:
|
202 |
+
all_summary = y[:, : patch_gen.num_cls_tokens]
|
203 |
+
if self.summary_idxs is not None:
|
204 |
+
bb_summary = all_summary[:, self.summary_idxs]
|
205 |
+
else:
|
206 |
+
bb_summary = all_summary
|
207 |
+
all_feat = y[:, patch_gen.num_skip :]
|
208 |
+
elif self.model.global_pool == "avg":
|
209 |
+
all_summary = y[:, self.model.num_prefix_tokens :].mean(dim=1)
|
210 |
+
bb_summary = all_summary
|
211 |
+
all_feat = y
|
212 |
+
else:
|
213 |
+
all_summary = y[:, 0]
|
214 |
+
bb_summary = all_summary
|
215 |
+
all_feat = y[:, 1:]
|
216 |
+
elif isinstance(self.model, eradio_model.ERADIO):
|
217 |
+
_, f = y
|
218 |
+
all_feat = f.flatten(2).transpose(1, 2)
|
219 |
+
all_summary = all_feat.mean(dim=1)
|
220 |
+
bb_summary = all_summary
|
221 |
+
elif isinstance(y, (list, tuple)):
|
222 |
+
all_summary, all_feat = y
|
223 |
+
bb_summary = all_summary
|
224 |
+
else:
|
225 |
+
all_summary = y[:, :self.num_cls_tokens]
|
226 |
+
if self.summary_idxs is not None and all_summary.shape[1] > 1:
|
227 |
+
if all_summary.shape[1] == 1:
|
228 |
+
# Create dummy duplicates
|
229 |
+
all_summary = all_summary.expand(-1, 128, -1)
|
230 |
+
bb_summary = all_summary[:, self.summary_idxs]
|
231 |
+
else:
|
232 |
+
bb_summary = all_summary
|
233 |
+
all_feat = y[:, self.num_summary_tokens:]
|
234 |
+
|
235 |
+
all_feat = self.feature_normalizer(all_feat)
|
236 |
+
|
237 |
+
if feature_fmt == 'NCHW':
|
238 |
+
fmt_feat = (all_feat.reshape(all_feat.shape[0], x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size, all_feat.shape[2])
|
239 |
+
.permute(0, 3, 1, 2)
|
240 |
+
)
|
241 |
+
elif feature_fmt == 'NLC':
|
242 |
+
fmt_feat = all_feat
|
243 |
+
else:
|
244 |
+
raise ValueError(f'Unsupported feature_fmt: {feature_fmt}. Must be one of ["NLC", "NCHW"]')
|
245 |
+
|
246 |
+
ret = RadioOutput(bb_summary.flatten(1), fmt_feat)
|
247 |
+
|
248 |
+
if self.adaptors:
|
249 |
+
ret = dict(backbone=ret)
|
250 |
+
for name, adaptor in self.adaptors.items():
|
251 |
+
if all_summary.ndim == 3:
|
252 |
+
if all_summary.shape[1] == 1:
|
253 |
+
summary = all_summary[:, 0]
|
254 |
+
else:
|
255 |
+
summary = all_summary[:, adaptor.head_idx]
|
256 |
+
else:
|
257 |
+
summary = all_summary
|
258 |
+
ada_input = AdaptorInput(images=x, summary=summary.float(), features=all_feat, feature_fmt=feature_fmt, patch_size=self.patch_size)
|
259 |
+
v = adaptor(ada_input).to(torch.float32)
|
260 |
+
ret[name] = v
|
261 |
+
|
262 |
+
return ret
|
263 |
+
|
264 |
+
def forward_intermediates(
|
265 |
+
self,
|
266 |
+
x: torch.Tensor,
|
267 |
+
indices: Optional[Union[int, List[int], Tuple[int]]] = None,
|
268 |
+
return_prefix_tokens: bool = False,
|
269 |
+
norm: bool = False,
|
270 |
+
stop_early: bool = False,
|
271 |
+
output_fmt: str = 'NCHW',
|
272 |
+
intermediates_only: bool = False,
|
273 |
+
aggregation: Optional[str] = "sparse",
|
274 |
+
norm_alpha_scheme: Optional[str] = "post-alpha",
|
275 |
+
) -> List[RadioOutput]:
|
276 |
+
""" Forward features that returns intermediates.
|
277 |
+
Args:
|
278 |
+
x: Input image tensor
|
279 |
+
indices: Take last n blocks if int, select matching indices if sequence
|
280 |
+
return_prefix_tokens: Return both prefix and spatial intermediate tokens
|
281 |
+
norm: Apply norm layer to all intermediates
|
282 |
+
stop_early: Stop iterating over blocks when last desired intermediate hit
|
283 |
+
output_fmt: Shape of intermediate feature outputs. Options: NCHW, NLC
|
284 |
+
intermediates_only: Only return intermediate features
|
285 |
+
aggregation: intermediate layer aggregation method (sparse or dense).
|
286 |
+
Dense accumulation is done by averaging the features in each group.
|
287 |
+
norm_alpha_scheme: apply alpha before ("pre-alpha") or after accumulation ("post-alpha"), or don't normalize ("none")
|
288 |
+
Only affects dense aggregation
|
289 |
+
Returns:
|
290 |
+
List of RadioOutput objects.
|
291 |
+
"""
|
292 |
+
x = self.input_conditioner(x)
|
293 |
+
intermediates = self.model.forward_intermediates(
|
294 |
+
x,
|
295 |
+
indices=indices,
|
296 |
+
return_prefix_tokens=return_prefix_tokens,
|
297 |
+
norm=norm,
|
298 |
+
stop_early=stop_early,
|
299 |
+
output_fmt=output_fmt,
|
300 |
+
intermediates_only=intermediates_only,
|
301 |
+
aggregation=aggregation,
|
302 |
+
inter_feature_normalizer=self.inter_feature_normalizer,
|
303 |
+
norm_alpha_scheme=norm_alpha_scheme,
|
304 |
+
)
|
305 |
+
|
306 |
+
if not intermediates_only:
|
307 |
+
final, intermediates = intermediates
|
308 |
+
|
309 |
+
def prepare_summary(summ: Optional[torch.Tensor]):
|
310 |
+
if summ is None:
|
311 |
+
return summ
|
312 |
+
if self.summary_idxs is not None and summ.shape[1] > 1:
|
313 |
+
summ = summ[:, self.summary_idxs]
|
314 |
+
return summ.flatten(1)
|
315 |
+
|
316 |
+
if return_prefix_tokens:
|
317 |
+
radio_outputs = [
|
318 |
+
RadioOutput(prepare_summary(summary), features)
|
319 |
+
for summary, features in intermediates
|
320 |
+
]
|
321 |
+
else:
|
322 |
+
radio_outputs = intermediates
|
323 |
+
|
324 |
+
if intermediates_only:
|
325 |
+
return radio_outputs
|
326 |
+
else:
|
327 |
+
final = self._extract_final(x, final, feature_fmt=output_fmt)
|
328 |
+
return final, radio_outputs
|
329 |
+
|
330 |
+
|
331 |
+
|
332 |
+
def create_model_from_args(args) -> nn.Module:
|
333 |
+
in_chans = 3
|
334 |
+
if args.in_chans is not None:
|
335 |
+
in_chans = args.in_chans
|
336 |
+
elif args.input_size is not None:
|
337 |
+
in_chans = args.input_size[0]
|
338 |
+
|
339 |
+
# Skip weight initialization unless it's explicitly requested.
|
340 |
+
weight_init = args.model_kwargs.pop("weight_init", "skip")
|
341 |
+
|
342 |
+
model = create_model(
|
343 |
+
args.model,
|
344 |
+
pretrained=args.pretrained,
|
345 |
+
in_chans=in_chans,
|
346 |
+
num_classes=args.num_classes,
|
347 |
+
drop_rate=args.drop,
|
348 |
+
drop_path_rate=args.drop_path,
|
349 |
+
drop_block_rate=args.drop_block,
|
350 |
+
global_pool=args.gp,
|
351 |
+
bn_momentum=args.bn_momentum,
|
352 |
+
bn_eps=args.bn_eps,
|
353 |
+
scriptable=args.torchscript,
|
354 |
+
checkpoint_path=args.initial_checkpoint,
|
355 |
+
weight_init=weight_init,
|
356 |
+
**args.model_kwargs,
|
357 |
+
)
|
358 |
+
|
359 |
+
if hasattr(model, 'norm') and not getattr(args, 'model_norm', False):
|
360 |
+
model.norm = nn.Identity()
|
361 |
+
|
362 |
+
model.head = nn.Identity()
|
363 |
+
|
364 |
+
if args.cpe_max_size is not None:
|
365 |
+
uq_teachers = set(t['name'] for t in args.teachers)
|
366 |
+
enable_cpe(
|
367 |
+
model,
|
368 |
+
args.cpe_max_size,
|
369 |
+
num_cls_tokens=len(uq_teachers) if args.cls_token_per_teacher else 1,
|
370 |
+
register_multiple=getattr(args, 'register_multiple', None),
|
371 |
+
num_registers=getattr(args, 'cpe_num_registers', None),
|
372 |
+
support_packing=args.support_packing,
|
373 |
+
)
|
374 |
+
|
375 |
+
return model
|
tim/models/nvidia_radio/radio/vision_transformer_xpos.py
ADDED
@@ -0,0 +1,357 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Final, List, Optional, Tuple, Union
|
3 |
+
|
4 |
+
|
5 |
+
from einops import rearrange
|
6 |
+
from timm.models import register_model
|
7 |
+
import torch
|
8 |
+
from torch import Type, nn
|
9 |
+
from torch.nn import functional as F
|
10 |
+
from torch.nn.init import xavier_normal_, xavier_uniform_, zeros_
|
11 |
+
|
12 |
+
from .forward_intermediates import forward_intermediates
|
13 |
+
|
14 |
+
|
15 |
+
def _get_init_scale(num_encoder_layers: int, num_decoder_layers: int, is_encoder: bool):
|
16 |
+
if num_encoder_layers > 0 and num_decoder_layers == 0:
|
17 |
+
return math.sqrt(math.log(2 * num_encoder_layers))
|
18 |
+
if num_decoder_layers > 0 and num_encoder_layers == 0:
|
19 |
+
return math.sqrt(math.log(2 * num_decoder_layers))
|
20 |
+
if is_encoder:
|
21 |
+
# Both encoders and decoders
|
22 |
+
return math.sqrt(
|
23 |
+
0.33 * math.log(3 * num_decoder_layers) * math.log(2 * num_encoder_layers)
|
24 |
+
)
|
25 |
+
|
26 |
+
return math.sqrt(math.log(3 * num_decoder_layers))
|
27 |
+
|
28 |
+
|
29 |
+
# [1,2] [1,1,2,2]
|
30 |
+
# [3,4] -> [3,3,4,4]
|
31 |
+
# [5,6] [5,5,6,6]
|
32 |
+
def duplicate_interleave(m):
|
33 |
+
return m.view(-1, 1).repeat(1, 2).view(m.shape[0], -1)
|
34 |
+
|
35 |
+
# 0,1,2,3,4,5,6,7 -> -1,0,-3,2,-5,4,-7,6
|
36 |
+
def rotate_every_two(x):
|
37 |
+
x1 = x[:, :, ::2]
|
38 |
+
x2 = x[:, :, 1::2]
|
39 |
+
x = torch.stack((-x2, x1), dim=-1)
|
40 |
+
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')\
|
41 |
+
|
42 |
+
|
43 |
+
class XPosEmbedding2D(torch.nn.Module):
|
44 |
+
"""Implementation of xPos based on RotaryEmbedding from GPT-NeoX.
|
45 |
+
This implementation is designed to operate on queries and keys that are compatible with
|
46 |
+
[batch_size, n_heads_per_partition, seq_len, head_dim] (e.g. MinGPTAttention format).
|
47 |
+
"""
|
48 |
+
|
49 |
+
def __init__(
|
50 |
+
self,
|
51 |
+
head_dim: int,
|
52 |
+
base=50000,
|
53 |
+
scale_base=512
|
54 |
+
):
|
55 |
+
super().__init__()
|
56 |
+
half_dim = head_dim // 2
|
57 |
+
self.half_dim = half_dim
|
58 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, half_dim, 2).float() / half_dim))
|
59 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
60 |
+
self.head_dim = head_dim
|
61 |
+
self.token_shape_cached = None
|
62 |
+
self.batch_size_cached = None
|
63 |
+
self.cos_cached: torch.Tensor | None = None
|
64 |
+
self.sin_cached: torch.Tensor | None = None
|
65 |
+
self.scale_cached: torch.Tensor | None = None
|
66 |
+
self.scale_base = scale_base
|
67 |
+
self.register_buffer("scale",
|
68 |
+
(torch.arange(0, half_dim, 2) + 0.4 * half_dim) / (1.4 * half_dim))
|
69 |
+
|
70 |
+
def cos_sin(
|
71 |
+
self,
|
72 |
+
token_shape: Tuple[int, int],
|
73 |
+
device="cuda",
|
74 |
+
dtype=torch.bfloat16,
|
75 |
+
) -> torch.Tensor:
|
76 |
+
if token_shape != self.token_shape_cached:
|
77 |
+
self.token_shape_cached = token_shape
|
78 |
+
y = torch.arange(token_shape[0], device=device, dtype=self.inv_freq.dtype)
|
79 |
+
x = torch.arange(token_shape[1], device=device, dtype=self.inv_freq.dtype)
|
80 |
+
x, y = torch.meshgrid(x, y, indexing='xy')
|
81 |
+
|
82 |
+
y_freqs = torch.einsum("i,j->ij", y.flatten(), self.inv_freq)
|
83 |
+
x_freqs = torch.einsum("i,j->ij", x.flatten(), self.inv_freq)
|
84 |
+
|
85 |
+
y_scales = self.scale ** y.flatten().div(self.scale_base)[:, None]
|
86 |
+
x_scales = self.scale ** x.flatten().div(self.scale_base)[:, None]
|
87 |
+
|
88 |
+
freqs = torch.cat([y_freqs, x_freqs], dim=-1)
|
89 |
+
emb = torch.repeat_interleave(freqs, repeats=2, dim=-1)
|
90 |
+
|
91 |
+
scales = torch.cat([y_scales, x_scales], dim=-1)
|
92 |
+
scales = torch.repeat_interleave(scales, repeats=2, dim=-1)
|
93 |
+
|
94 |
+
if dtype in [torch.float16, torch.bfloat16]:
|
95 |
+
emb = emb.float()
|
96 |
+
|
97 |
+
self.cos_cached = emb.cos()[None, :, :]
|
98 |
+
self.sin_cached = emb.sin()[None, :, :]
|
99 |
+
self.scale_cached = scales[None, :, :]
|
100 |
+
|
101 |
+
self.cos_cached = self.cos_cached.type(dtype)
|
102 |
+
self.sin_cached = self.sin_cached.type(dtype)
|
103 |
+
self.scale_cached = self.scale_cached.type(dtype)
|
104 |
+
|
105 |
+
return self.cos_cached, self.sin_cached, self.scale_cached
|
106 |
+
|
107 |
+
def forward(self, q: torch.Tensor, k: torch.Tensor, token_shape: Tuple[int, int]):
|
108 |
+
batch, seq_len, head_dim = q.shape
|
109 |
+
cos, sin, scale = self.cos_sin(token_shape, q.device, q.dtype)
|
110 |
+
# scale = self.scale**torch.arange(seq_len).to(self.scale).div(self.scale_base)[:, None]
|
111 |
+
# scale = torch.repeat_interleave(scale, 2, dim=-1).to(q.device)
|
112 |
+
# scale = torch.cat([scale, scale], dim=-1)
|
113 |
+
# scale = 1
|
114 |
+
return (
|
115 |
+
(q * cos * scale) + (rotate_every_two(q) * sin * scale),
|
116 |
+
(k * cos * (1 / scale)) + (rotate_every_two(k) * sin * (1 / scale)),
|
117 |
+
)
|
118 |
+
|
119 |
+
|
120 |
+
class MagnetoAttention(nn.Module):
|
121 |
+
def __init__(self, d_model: int, n_head: int, pos_emb: XPosEmbedding2D):
|
122 |
+
super().__init__()
|
123 |
+
self.num_heads = n_head
|
124 |
+
self.head_dim = d_model // n_head
|
125 |
+
self.scale = self.head_dim ** -0.5
|
126 |
+
|
127 |
+
self.qkv = nn.Linear(d_model, d_model * 3, bias=False)
|
128 |
+
self.proj = nn.Linear(d_model, d_model)
|
129 |
+
self.pos_emb = pos_emb
|
130 |
+
|
131 |
+
self.norm0 = nn.LayerNorm(d_model)
|
132 |
+
self.norm1 = nn.LayerNorm(d_model)
|
133 |
+
|
134 |
+
def forward(self, x: torch.Tensor, num_prefix_tokens: int, patch_shape: Tuple[int, int]) -> torch.Tensor:
|
135 |
+
B, N, C = x.shape
|
136 |
+
x = self.norm0(x)
|
137 |
+
|
138 |
+
qkv = self.qkv(x).reshape(B, N, 3, C).permute(2, 0, 1, 3)
|
139 |
+
q, k, v = qkv.unbind(0)
|
140 |
+
|
141 |
+
q_pref = q[:, :num_prefix_tokens]
|
142 |
+
q_patch = q[:, num_prefix_tokens:]
|
143 |
+
|
144 |
+
k_pref = k[:, :num_prefix_tokens]
|
145 |
+
k_patch = k[:, num_prefix_tokens:]
|
146 |
+
|
147 |
+
q_patch, k_patch = self.pos_emb(q_patch, k_patch, patch_shape)
|
148 |
+
|
149 |
+
q = torch.cat([q_pref, q_patch], dim=1)
|
150 |
+
k = torch.cat([k_pref, k_patch], dim=1)
|
151 |
+
|
152 |
+
def head_reshape(t: torch.Tensor):
|
153 |
+
return t.reshape(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
|
154 |
+
|
155 |
+
q = head_reshape(q)
|
156 |
+
k = head_reshape(k)
|
157 |
+
v = head_reshape(v)
|
158 |
+
|
159 |
+
x = F.scaled_dot_product_attention(q, k, v)
|
160 |
+
x = x.transpose(1, 2).reshape(B, N, C)
|
161 |
+
x = self.norm1(x)
|
162 |
+
x = self.proj(x)
|
163 |
+
return x
|
164 |
+
|
165 |
+
def _reset_parameters(self):
|
166 |
+
xavier_uniform_(self.qkv.weight)
|
167 |
+
if self.qkv.bias is not None:
|
168 |
+
zeros_(self.qkv.bias)
|
169 |
+
xavier_normal_(self.proj.weight)
|
170 |
+
zeros_(self.proj.bias)
|
171 |
+
|
172 |
+
|
173 |
+
class MagnetoTransformerEncoderLayer(nn.Module):
|
174 |
+
def __init__(self, d_model: int, nhead: int, pos_emb: XPosEmbedding2D,
|
175 |
+
num_encoder_layers: int, num_decoder_layers: int = 0,
|
176 |
+
dim_mhsa: int = 0,
|
177 |
+
dim_feedforward: int = 2048,
|
178 |
+
layer_norm_eps: float = 1e-5,
|
179 |
+
batch_first: bool = True):
|
180 |
+
super().__init__()
|
181 |
+
|
182 |
+
if dim_mhsa == 0:
|
183 |
+
dim_mhsa = d_model
|
184 |
+
|
185 |
+
self._num_encoder_layers = num_encoder_layers
|
186 |
+
self._num_decoder_layers = num_decoder_layers
|
187 |
+
|
188 |
+
self.attn = MagnetoAttention(d_model, nhead, pos_emb)
|
189 |
+
|
190 |
+
self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps)
|
191 |
+
self.linear2 = nn.Linear(d_model, dim_feedforward)
|
192 |
+
self.norm3 = nn.LayerNorm(dim_feedforward, eps=layer_norm_eps)
|
193 |
+
self.linear3 = nn.Linear(dim_feedforward, d_model)
|
194 |
+
|
195 |
+
def initialize(self):
|
196 |
+
gamma = _get_init_scale(self._num_encoder_layers, self._num_decoder_layers, is_encoder=True)
|
197 |
+
|
198 |
+
# Magneto Initialization
|
199 |
+
for mod in self.children():
|
200 |
+
if isinstance(mod, nn.Linear):
|
201 |
+
xavier_normal_(mod.weight.data, gamma)
|
202 |
+
elif isinstance(mod, MagnetoAttention):
|
203 |
+
mod._reset_parameters()
|
204 |
+
|
205 |
+
def forward(self, x: torch.Tensor, num_prefix_tokens: int, patch_shape: Tuple[int, int]) -> torch.Tensor:
|
206 |
+
x = x + self._sa_block(x, num_prefix_tokens, patch_shape)
|
207 |
+
x = x + self._ff_block(x)
|
208 |
+
return x
|
209 |
+
|
210 |
+
def _sa_block(self, x: torch.Tensor, num_prefix_tokens: int, patch_shape: Tuple[int, int]) -> torch.Tensor:
|
211 |
+
x = self.attn(x, num_prefix_tokens, patch_shape)
|
212 |
+
return x
|
213 |
+
|
214 |
+
def _ff_block(self, x: torch.Tensor) -> torch.Tensor:
|
215 |
+
x = self.norm2(x)
|
216 |
+
x = self.linear2(x)
|
217 |
+
x = F.gelu(x)
|
218 |
+
x = self.norm3(x)
|
219 |
+
x = self.linear3(x)
|
220 |
+
return x
|
221 |
+
|
222 |
+
|
223 |
+
class VisionTransformer(nn.Module):
|
224 |
+
""" Vision Transformer
|
225 |
+
|
226 |
+
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
|
227 |
+
- https://arxiv.org/abs/2010.11929
|
228 |
+
"""
|
229 |
+
dynamic_img_size: Final[bool]
|
230 |
+
|
231 |
+
def __init__(
|
232 |
+
self,
|
233 |
+
patch_size: Union[int, Tuple[int, int]] = 16,
|
234 |
+
in_chans: int = 3,
|
235 |
+
embed_dim: int = 768,
|
236 |
+
depth: int = 12,
|
237 |
+
num_heads: int = 12,
|
238 |
+
mlp_ratio: float = 4.,
|
239 |
+
num_cls_tokens: int = 1,
|
240 |
+
num_reg_tokens: int = 0,
|
241 |
+
) -> None:
|
242 |
+
"""
|
243 |
+
Args:
|
244 |
+
patch_size: Patch size.
|
245 |
+
in_chans: Number of image input channels.
|
246 |
+
embed_dim: Transformer embedding dimension.
|
247 |
+
depth: Depth of transformer.
|
248 |
+
num_heads: Number of attention heads.
|
249 |
+
mlp_ratio: Ratio of mlp hidden dim to embedding dim.
|
250 |
+
num_cls_tokens: Number of cls tokens
|
251 |
+
num_reg_tokens: Number of register tokens.
|
252 |
+
block_fn: Transformer block layer.
|
253 |
+
"""
|
254 |
+
super().__init__()
|
255 |
+
|
256 |
+
self.patch_size = patch_size
|
257 |
+
self.embed_dim = embed_dim
|
258 |
+
self.num_cls_tokens = num_cls_tokens
|
259 |
+
self.num_reg_tokens = num_reg_tokens
|
260 |
+
|
261 |
+
self.patch_embed = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
262 |
+
|
263 |
+
self.prefix_buffer = nn.Parameter(torch.randn(1, self.num_prefix_tokens, embed_dim) * .02)
|
264 |
+
|
265 |
+
pos_emb = XPosEmbedding2D(embed_dim)
|
266 |
+
|
267 |
+
self.blocks = nn.ModuleList([
|
268 |
+
MagnetoTransformerEncoderLayer(
|
269 |
+
d_model=embed_dim,
|
270 |
+
nhead=num_heads,
|
271 |
+
num_encoder_layers=depth,
|
272 |
+
num_decoder_layers=0,
|
273 |
+
dim_feedforward=int(embed_dim * mlp_ratio),
|
274 |
+
pos_emb=pos_emb,
|
275 |
+
)
|
276 |
+
for _ in range(depth)
|
277 |
+
])
|
278 |
+
|
279 |
+
for block in self.blocks:
|
280 |
+
block.initialize()
|
281 |
+
|
282 |
+
@property
|
283 |
+
def num_prefix_tokens(self):
|
284 |
+
return self.num_cls_tokens + self.num_reg_tokens
|
285 |
+
|
286 |
+
@property
|
287 |
+
def num_summary_tokens(self):
|
288 |
+
return self.num_prefix_tokens
|
289 |
+
|
290 |
+
def forward_features(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
291 |
+
x, patch_shape = self._patchify(x)
|
292 |
+
|
293 |
+
for block in self.blocks:
|
294 |
+
x = block(x, self.num_prefix_tokens, patch_shape)
|
295 |
+
|
296 |
+
summary = x[:, :self.num_cls_tokens]
|
297 |
+
features = x[:, self.num_prefix_tokens:]
|
298 |
+
|
299 |
+
return summary, features
|
300 |
+
|
301 |
+
def forward_intermediates(self, x: torch.Tensor, norm: bool = False, **kwargs):
|
302 |
+
patch_shape = tuple(d // self.patch_size for d in x.shape[-2:])
|
303 |
+
|
304 |
+
def patch_extractor(x: torch.Tensor):
|
305 |
+
x, _ = self._patchify(x)
|
306 |
+
return x
|
307 |
+
|
308 |
+
return forward_intermediates(
|
309 |
+
self,
|
310 |
+
patch_extractor=patch_extractor,
|
311 |
+
num_summary_tokens=self.num_prefix_tokens,
|
312 |
+
num_cls_tokens=self.num_cls_tokens,
|
313 |
+
norm=lambda y: y,
|
314 |
+
x=x,
|
315 |
+
block_kwargs=dict(num_prefix_tokens=self.num_prefix_tokens, patch_shape=patch_shape),
|
316 |
+
**kwargs,
|
317 |
+
)
|
318 |
+
|
319 |
+
def _patchify(self, x: torch.Tensor):
|
320 |
+
x = self.patch_embed(x)
|
321 |
+
patch_shape = x.shape[-2:]
|
322 |
+
x = rearrange(x, 'b c h w -> b (h w) c')
|
323 |
+
|
324 |
+
prefix = self.prefix_buffer.expand(x.shape[0], -1, -1)
|
325 |
+
|
326 |
+
x = torch.cat([prefix, x], dim=1)
|
327 |
+
return x, patch_shape
|
328 |
+
|
329 |
+
|
330 |
+
@register_model
|
331 |
+
def vit_base_patch16_xpos(num_cls_tokens: int = 1, num_reg_tokens: int = 0, **kwargs) -> VisionTransformer:
|
332 |
+
return VisionTransformer(patch_size=16, embed_dim=768, depth=12, num_heads=12,
|
333 |
+
num_cls_tokens=num_cls_tokens, num_reg_tokens=num_reg_tokens)
|
334 |
+
|
335 |
+
|
336 |
+
@register_model
|
337 |
+
def vit_large_patch16_xpos(num_cls_tokens: int = 1, num_reg_tokens: int = 0, **kwargs) -> VisionTransformer:
|
338 |
+
return VisionTransformer(patch_size=16, embed_dim=1024, depth=24, num_heads=16,
|
339 |
+
num_cls_tokens=num_cls_tokens, num_reg_tokens=num_reg_tokens)
|
340 |
+
|
341 |
+
|
342 |
+
@register_model
|
343 |
+
def vit_huge_patch16_xpos(num_cls_tokens: int = 1, num_reg_tokens: int = 0, **kwargs) -> VisionTransformer:
|
344 |
+
return VisionTransformer(patch_size=16, embed_dim=1280, depth=32, num_heads=16,
|
345 |
+
num_cls_tokens=num_cls_tokens, num_reg_tokens=num_reg_tokens)
|
346 |
+
|
347 |
+
|
348 |
+
@register_model
|
349 |
+
def vit_giant_patch16_xpos(num_cls_tokens: int = 1, num_reg_tokens: int = 0, **kwargs) -> VisionTransformer:
|
350 |
+
return VisionTransformer(patch_size=16, embed_dim=1408, depth=40, num_heads=16,
|
351 |
+
num_cls_tokens=num_cls_tokens, num_reg_tokens=num_reg_tokens)
|
352 |
+
|
353 |
+
|
354 |
+
@register_model
|
355 |
+
def vit_bigG_patch16_xpos(num_cls_tokens: int = 1, num_reg_tokens: int = 0, **kwargs) -> VisionTransformer:
|
356 |
+
return VisionTransformer(patch_size=16, embed_dim=1664, depth=48, num_heads=16,
|
357 |
+
num_cls_tokens=num_cls_tokens, num_reg_tokens=num_reg_tokens)
|
tim/models/nvidia_radio/radio/vit_patch_generator.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
import math
|
10 |
+
from typing import Union, Tuple, Optional
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn.functional as F
|
14 |
+
from torch import nn
|
15 |
+
from einops import rearrange
|
16 |
+
|
17 |
+
from .cls_token import ClsToken
|
18 |
+
|
19 |
+
input_dim_t = Union[int, Tuple[int, int]]
|
20 |
+
|
21 |
+
try:
|
22 |
+
# raise ImportError()
|
23 |
+
from indirect_grid_sample import indirect_grid_sample
|
24 |
+
except ImportError:
|
25 |
+
indirect_grid_sample = None
|
26 |
+
|
27 |
+
class ViTPatchGenerator(nn.Module):
|
28 |
+
def __init__(self,
|
29 |
+
patch_size: int,
|
30 |
+
embed_dim: int,
|
31 |
+
input_dims: input_dim_t,
|
32 |
+
abs_pos: bool = True,
|
33 |
+
normalize_patches: bool = False,
|
34 |
+
cls_token: bool = False,
|
35 |
+
max_input_dims: Optional[input_dim_t] = None,
|
36 |
+
pos_dropout: float = 0.0,
|
37 |
+
return_pos_enc: bool = False,
|
38 |
+
num_cls_tokens: int = 1,
|
39 |
+
register_multiple: Optional[int] = None,
|
40 |
+
num_registers: Optional[int] = None,
|
41 |
+
patch_bias: bool = False,
|
42 |
+
device=None, dtype=None,
|
43 |
+
):
|
44 |
+
super().__init__()
|
45 |
+
|
46 |
+
if isinstance(input_dims, int):
|
47 |
+
input_dims = (input_dims, input_dims)
|
48 |
+
|
49 |
+
if max_input_dims is None:
|
50 |
+
max_input_dims = input_dims
|
51 |
+
if isinstance(max_input_dims, int):
|
52 |
+
max_input_dims = (max_input_dims, max_input_dims)
|
53 |
+
|
54 |
+
max_input_dims = tuple(
|
55 |
+
int(math.ceil(d / patch_size) * patch_size)
|
56 |
+
for d in max_input_dims
|
57 |
+
)
|
58 |
+
|
59 |
+
self.cpe_mode = max_input_dims != input_dims
|
60 |
+
self.pos_dropout = pos_dropout
|
61 |
+
self.return_pos_enc = return_pos_enc
|
62 |
+
|
63 |
+
factory = dict(device=device, dtype=dtype)
|
64 |
+
|
65 |
+
self.patch_size = patch_size
|
66 |
+
self.abs_pos = abs_pos
|
67 |
+
self.embed_dim = embed_dim
|
68 |
+
|
69 |
+
self.num_rows = max_input_dims[0] // patch_size
|
70 |
+
self.num_cols = max_input_dims[1] // patch_size
|
71 |
+
self.input_dims = tuple(d // patch_size for d in input_dims)
|
72 |
+
self.num_patches = self.num_rows * self.num_cols
|
73 |
+
self.max_input_dims = max_input_dims
|
74 |
+
|
75 |
+
self.im_to_patches = Im2Patches(patch_size)
|
76 |
+
self.embedder = ViTPatchLinear(patch_size, embed_dim, bias=patch_bias, **factory)
|
77 |
+
|
78 |
+
if abs_pos:
|
79 |
+
scale = embed_dim ** -0.5
|
80 |
+
self.pos_embed = nn.Parameter(torch.randn(1, self.num_patches, embed_dim, **factory) * scale)
|
81 |
+
|
82 |
+
self.cls_token = ClsToken(
|
83 |
+
embed_dim,
|
84 |
+
num_tokens=num_cls_tokens,
|
85 |
+
enabled=cls_token,
|
86 |
+
register_multiple=register_multiple,
|
87 |
+
num_registers=num_registers,
|
88 |
+
)
|
89 |
+
|
90 |
+
self.patch_normalizer = nn.LayerNorm(embed_dim) if normalize_patches else nn.Identity()
|
91 |
+
|
92 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
93 |
+
patches = self.embed_patches(x)
|
94 |
+
patches, pos_enc = self.apply_pos_enc(patches, input_size=x.shape[2:])
|
95 |
+
patches = self.cls_token(patches)
|
96 |
+
patches = self.patch_normalizer(patches)
|
97 |
+
if self.return_pos_enc:
|
98 |
+
return patches, pos_enc
|
99 |
+
return patches
|
100 |
+
|
101 |
+
@property
|
102 |
+
def apply_cls_token(self):
|
103 |
+
return self.cls_token.enabled
|
104 |
+
|
105 |
+
@property
|
106 |
+
def num_cls_tokens(self):
|
107 |
+
return self.cls_token.num_tokens
|
108 |
+
|
109 |
+
@property
|
110 |
+
def num_cls_patches(self):
|
111 |
+
return self.cls_token.num_patches
|
112 |
+
|
113 |
+
@property
|
114 |
+
def num_registers(self):
|
115 |
+
return self.cls_token.num_registers
|
116 |
+
|
117 |
+
@property
|
118 |
+
def num_skip(self):
|
119 |
+
return self.num_cls_tokens + self.num_registers
|
120 |
+
|
121 |
+
def no_weight_decay(self):
|
122 |
+
return [
|
123 |
+
'pos_embed',
|
124 |
+
]
|
125 |
+
|
126 |
+
def _load_embed(self, src_embed: torch.Tensor, targ_embed: nn.Parameter):
|
127 |
+
if src_embed.shape != targ_embed.shape:
|
128 |
+
src_size = int(math.sqrt(src_embed.shape[1]))
|
129 |
+
|
130 |
+
assert src_size ** 2 == src_embed.shape[1], 'Unable to interpolate non-square embedding'
|
131 |
+
|
132 |
+
src_embed = rearrange(src_embed, 'b (h w) c -> b c h w', h=src_size, w=src_size)
|
133 |
+
src_embed = F.interpolate(src_embed, size=(self.num_rows, self.num_cols), mode='bicubic', align_corners=True, antialias=False)
|
134 |
+
src_embed = rearrange(src_embed, 'b c h w -> b (h w) c')
|
135 |
+
targ_embed.data.copy_(src_embed)
|
136 |
+
|
137 |
+
def _load_projection(self, src_proj_weight: torch.Tensor, targ_proj_weight: torch.Tensor):
|
138 |
+
if src_proj_weight.shape != targ_proj_weight.shape:
|
139 |
+
src_patch_size = int(math.sqrt(src_proj_weight.shape[1] // 3))
|
140 |
+
|
141 |
+
assert (src_patch_size ** 2) * 3 == src_proj_weight.shape[1], 'Unable to interpolate non-square patch size'
|
142 |
+
|
143 |
+
src_proj_weight = rearrange(src_proj_weight, 'b (c h w) -> b c h w', c=3, h=src_patch_size, w=src_patch_size)
|
144 |
+
src_proj_weight = F.interpolate(src_proj_weight, size=(self.patch_size, self.patch_size), mode='bicubic', align_corners=True, antialias=False)
|
145 |
+
src_proj_weight = rearrange(src_proj_weight, 'b c h w -> b (c h w)')
|
146 |
+
targ_proj_weight.data.copy_(src_proj_weight)
|
147 |
+
|
148 |
+
def embed_patches(self, x: torch.Tensor) -> torch.Tensor:
|
149 |
+
patches = self.im_to_patches(x)
|
150 |
+
patches = self.embedder(patches)
|
151 |
+
return patches
|
152 |
+
|
153 |
+
def apply_pos_enc(self,
|
154 |
+
patches: torch.Tensor,
|
155 |
+
patch_idxs: Optional[torch.Tensor] = None,
|
156 |
+
input_size: Optional[Tuple[int, int]] = None,
|
157 |
+
) -> torch.Tensor:
|
158 |
+
if not self.abs_pos:
|
159 |
+
return patches
|
160 |
+
|
161 |
+
pos_enc = self.get_pos_enc(patches.shape[0], patch_idxs, input_size)
|
162 |
+
|
163 |
+
if self.training and self.pos_dropout > 0:
|
164 |
+
keeps = torch.rand(patches.shape[0], 1, 1, dtype=pos_enc.dtype, device=pos_enc.device) > self.pos_dropout
|
165 |
+
pos_enc_drop = torch.where(keeps, pos_enc, 0)
|
166 |
+
else:
|
167 |
+
pos_enc_drop = pos_enc
|
168 |
+
|
169 |
+
return patches + pos_enc_drop, pos_enc
|
170 |
+
|
171 |
+
def get_pos_enc(self,
|
172 |
+
batch_size: int,
|
173 |
+
patch_idxs: Optional[torch.Tensor] = None,
|
174 |
+
input_size: Optional[Tuple[int, int]] = None,
|
175 |
+
) -> torch.Tensor:
|
176 |
+
if input_size is None:
|
177 |
+
input_dims = self.input_dims
|
178 |
+
else:
|
179 |
+
input_dims = tuple(d // self.patch_size for d in input_size)
|
180 |
+
|
181 |
+
pos_embed = self._get_pos_embeddings(batch_size, input_dims)
|
182 |
+
|
183 |
+
if patch_idxs is None:
|
184 |
+
return pos_embed
|
185 |
+
|
186 |
+
exp_patch_idxs = patch_idxs.unsqueeze(-1).expand(-1, -1, pos_embed.shape[-1])
|
187 |
+
|
188 |
+
pos_embed = torch.gather(pos_embed.expand(patch_idxs.shape[0], -1, -1), dim=1, index=exp_patch_idxs)
|
189 |
+
return pos_embed
|
190 |
+
|
191 |
+
|
192 |
+
def _get_pos_embeddings(self, batch_size: int, input_dims: Tuple[int, int]):
|
193 |
+
if (self.num_rows, self.num_cols) == input_dims:
|
194 |
+
return self.pos_embed
|
195 |
+
|
196 |
+
pos_embed = self.pos_embed.reshape(1, self.num_rows, self.num_cols, -1).permute(0, 3, 1, 2)
|
197 |
+
|
198 |
+
def window_select(pos_embed):
|
199 |
+
if input_dims[0] < pos_embed.shape[-2]:
|
200 |
+
pos_embed = pos_embed[..., :input_dims[0], :]
|
201 |
+
if input_dims[1] < pos_embed.shape[-1]:
|
202 |
+
pos_embed = pos_embed[..., :, :input_dims[1]]
|
203 |
+
return pos_embed
|
204 |
+
|
205 |
+
if self.cpe_mode:
|
206 |
+
if self.training:
|
207 |
+
min_scale = math.sqrt(0.1)
|
208 |
+
scale = torch.rand(batch_size, 1, 1, device=pos_embed.device) * (1 - min_scale) + min_scale
|
209 |
+
aspect_min = math.log(3 / 4)
|
210 |
+
aspect_max = -aspect_min
|
211 |
+
aspect = torch.exp(torch.rand(batch_size, 1, 1, device=pos_embed.device) * (aspect_max - aspect_min) + aspect_min)
|
212 |
+
|
213 |
+
scale_x = scale * aspect
|
214 |
+
scale_y = scale * (1 / aspect)
|
215 |
+
scale_xy = torch.stack([scale_x, scale_y], dim=-1).clamp_(0, 1)
|
216 |
+
|
217 |
+
pos_xy = torch.rand(batch_size, 1, 1, 2, device=pos_embed.device) * (1 - scale_xy)
|
218 |
+
|
219 |
+
lin_x = torch.linspace(0, 1, steps=input_dims[1], device=pos_embed.device)[None, None].expand(batch_size, input_dims[0], -1)
|
220 |
+
lin_y = torch.linspace(0, 1, steps=input_dims[0], device=pos_embed.device)[None, :, None].expand(batch_size, -1, input_dims[1])
|
221 |
+
|
222 |
+
lin_xy = torch.stack([lin_x, lin_y], dim=-1)
|
223 |
+
|
224 |
+
grid_xy = lin_xy * scale_xy + pos_xy
|
225 |
+
|
226 |
+
# Convert to [-1, 1] range
|
227 |
+
grid_xy.mul_(2).sub_(1)
|
228 |
+
|
229 |
+
pos_embed = F.grid_sample(
|
230 |
+
pos_embed.float().expand(batch_size, -1, -1, -1),
|
231 |
+
grid=grid_xy,
|
232 |
+
mode='bilinear',
|
233 |
+
padding_mode='zeros',
|
234 |
+
align_corners=True,
|
235 |
+
).to(pos_embed.dtype)
|
236 |
+
else:
|
237 |
+
# i_rows, i_cols = input_dims
|
238 |
+
# p_rows, p_cols = pos_embed.shape[2:]
|
239 |
+
# if i_rows <= p_rows and i_cols <= p_cols:
|
240 |
+
# left = (p_cols - i_cols) // 2
|
241 |
+
# top = (p_rows - i_rows) // 2
|
242 |
+
# pos_embed = pos_embed[..., top:top+i_rows, left:left+i_cols]
|
243 |
+
# else:
|
244 |
+
max_dim = max(input_dims)
|
245 |
+
pos_embed = F.interpolate(pos_embed.float(), size=(max_dim, max_dim), align_corners=True, mode='bilinear').to(pos_embed.dtype)
|
246 |
+
|
247 |
+
pos_embed = window_select(pos_embed)
|
248 |
+
else:
|
249 |
+
pos_embed = window_select(pos_embed)
|
250 |
+
|
251 |
+
if pos_embed.shape[-2:] != input_dims:
|
252 |
+
pos_embed = F.interpolate(pos_embed.float(), size=input_dims, align_corners=True, mode='bilinear').to(pos_embed.dtype)
|
253 |
+
|
254 |
+
pos_embed = pos_embed.flatten(2).permute(0, 2, 1)
|
255 |
+
|
256 |
+
return pos_embed
|
257 |
+
|
258 |
+
|
259 |
+
class Im2Patches(nn.Module):
|
260 |
+
def __init__(self, patch_size: int):
|
261 |
+
super().__init__()
|
262 |
+
self.patch_size = patch_size
|
263 |
+
|
264 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
265 |
+
if self.patch_size == 1:
|
266 |
+
patches = x.flatten(2)
|
267 |
+
patches = patches.permute(0, 2, 1)
|
268 |
+
return patches
|
269 |
+
|
270 |
+
py = x.shape[-2] // self.patch_size
|
271 |
+
px = x.shape[-1] // self.patch_size
|
272 |
+
patches = rearrange(x, 'b c (py yy) (px xx) -> b (py px) (c yy xx)',
|
273 |
+
py=py, yy=self.patch_size,
|
274 |
+
px=px, xx=self.patch_size,
|
275 |
+
)
|
276 |
+
return patches
|
277 |
+
|
278 |
+
|
279 |
+
class ViTPatchLinear(nn.Linear):
|
280 |
+
def __init__(self, patch_size: int, embed_dim: int, bias: bool = False, **factory):
|
281 |
+
super().__init__(
|
282 |
+
3 * (patch_size ** 2),
|
283 |
+
embed_dim,
|
284 |
+
bias=bias,
|
285 |
+
**factory
|
286 |
+
)
|
287 |
+
self.patch_size = patch_size
|
tim/models/nvidia_radio/radio/vitdet.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
from contextlib import contextmanager
|
3 |
+
from logging import getLogger
|
4 |
+
import math
|
5 |
+
import sys
|
6 |
+
from typing import List, Union, Iterable
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
from torch import nn
|
11 |
+
|
12 |
+
from timm.models import VisionTransformer
|
13 |
+
from einops import rearrange
|
14 |
+
|
15 |
+
from .extra_models import DinoWrapper
|
16 |
+
|
17 |
+
DEFAULT_NUM_WINDOWED = 5
|
18 |
+
DEFAULT_NUM_GLOBAL = 4
|
19 |
+
|
20 |
+
|
21 |
+
class VitDetArgs:
|
22 |
+
def __init__(self,
|
23 |
+
window_size: int,
|
24 |
+
num_summary_tokens: int,
|
25 |
+
num_windowed: int = None,
|
26 |
+
num_global: int = None,
|
27 |
+
):
|
28 |
+
self.window_size = window_size
|
29 |
+
self.num_summary_tokens = num_summary_tokens
|
30 |
+
self.num_windowed = num_windowed
|
31 |
+
self.num_global = num_global
|
32 |
+
|
33 |
+
|
34 |
+
def apply_vitdet_arch(model: Union[VisionTransformer, DinoWrapper], args: VitDetArgs):
|
35 |
+
if isinstance(model, VisionTransformer):
|
36 |
+
patch_embed = getattr(model, 'patch_generator', model.patch_embed)
|
37 |
+
|
38 |
+
return ViTDetHook(patch_embed, model.blocks, args)
|
39 |
+
elif isinstance(model, DinoWrapper):
|
40 |
+
inner = model.inner
|
41 |
+
|
42 |
+
patch_embed = getattr(inner, 'patch_generator', inner.patch_embed)
|
43 |
+
return ViTDetHook(patch_embed, inner.blocks, args)
|
44 |
+
else:
|
45 |
+
print(f'Warning: Unable to apply VitDet aug!', file=sys.stderr)
|
46 |
+
|
47 |
+
|
48 |
+
class ViTDetHook:
|
49 |
+
def __init__(self,
|
50 |
+
embedder: nn.Module,
|
51 |
+
blocks: nn.Sequential,
|
52 |
+
args: VitDetArgs,
|
53 |
+
):
|
54 |
+
self.blocks = blocks
|
55 |
+
self.num_summary_tokens = args.num_summary_tokens
|
56 |
+
self.window_size = args.window_size
|
57 |
+
|
58 |
+
self._input_resolution = None
|
59 |
+
self._num_windows = None
|
60 |
+
self._cls_patch = None
|
61 |
+
self._order_cache = dict()
|
62 |
+
|
63 |
+
embedder.register_forward_pre_hook(self._enter_model)
|
64 |
+
|
65 |
+
# This will decide if we window-fy the patches
|
66 |
+
# and enable vit-det for this iteration, and if so,
|
67 |
+
# rearrange the patches for efficient mode switching
|
68 |
+
blocks.register_forward_pre_hook(self._enter_blocks)
|
69 |
+
|
70 |
+
is_global = True
|
71 |
+
if args.num_windowed is not None:
|
72 |
+
period = args.num_windowed + 1
|
73 |
+
else:
|
74 |
+
num_global = args.num_global or DEFAULT_NUM_GLOBAL
|
75 |
+
period = max(len(blocks) // num_global, 1)
|
76 |
+
|
77 |
+
for i, layer in enumerate(blocks[:-1]):
|
78 |
+
ctr = i % period
|
79 |
+
if ctr == 0:
|
80 |
+
layer.register_forward_pre_hook(self._to_windows)
|
81 |
+
is_global = False
|
82 |
+
elif ctr == period - 1:
|
83 |
+
layer.register_forward_pre_hook(self._to_global)
|
84 |
+
is_global = True
|
85 |
+
|
86 |
+
# Always ensure the final layer is a global layer
|
87 |
+
if not is_global:
|
88 |
+
blocks[-1].register_forward_pre_hook(self._to_global)
|
89 |
+
|
90 |
+
blocks.register_forward_hook(self._exit_model)
|
91 |
+
|
92 |
+
def _enter_model(self, _, input: List[torch.Tensor]):
|
93 |
+
self._input_resolution = input[0].shape[-2:]
|
94 |
+
|
95 |
+
def _enter_blocks(self, _, input: List[torch.Tensor]):
|
96 |
+
# print(f'{get_rank()} - ViTDet Window Size: {self._window_size}', file=sys.stderr)
|
97 |
+
|
98 |
+
patches = input[0]
|
99 |
+
patches = self._rearrange_patches(patches)
|
100 |
+
|
101 |
+
return (patches,) + input[1:]
|
102 |
+
|
103 |
+
def _to_windows(self, _, input: List[torch.Tensor]):
|
104 |
+
patches = input[0]
|
105 |
+
|
106 |
+
if self.num_summary_tokens:
|
107 |
+
self._cls_patch = patches[:, :self.num_summary_tokens]
|
108 |
+
patches = patches[:, self.num_summary_tokens:]
|
109 |
+
|
110 |
+
patches = rearrange(
|
111 |
+
patches, 'b (p t) c -> (b p) t c',
|
112 |
+
p=self._num_windows, t=self.window_size ** 2,
|
113 |
+
)
|
114 |
+
|
115 |
+
return (patches,) + input[1:]
|
116 |
+
|
117 |
+
def _to_global(self, _, input: List[torch.Tensor]):
|
118 |
+
patches = input[0]
|
119 |
+
|
120 |
+
patches = rearrange(
|
121 |
+
patches, '(b p) t c -> b (p t) c',
|
122 |
+
p=self._num_windows, t=self.window_size ** 2,
|
123 |
+
b=patches.shape[0] // self._num_windows,
|
124 |
+
)
|
125 |
+
|
126 |
+
if self.num_summary_tokens:
|
127 |
+
patches = torch.cat([
|
128 |
+
self._cls_patch,
|
129 |
+
patches,
|
130 |
+
], dim=1)
|
131 |
+
|
132 |
+
return (patches,) + input[1:]
|
133 |
+
|
134 |
+
def _exit_model(self, _, inputs: List[torch.Tensor], patches: torch.Tensor):
|
135 |
+
# Return patches to their original order
|
136 |
+
patch_order = self._order_cache[self._input_resolution][0]
|
137 |
+
patch_order = patch_order.reshape(1, -1, 1).expand_as(patches)
|
138 |
+
|
139 |
+
ret_patches = torch.empty_like(patches)
|
140 |
+
ret_patches = torch.scatter(
|
141 |
+
ret_patches,
|
142 |
+
dim=1,
|
143 |
+
index=patch_order,
|
144 |
+
src=patches,
|
145 |
+
)
|
146 |
+
|
147 |
+
return ret_patches
|
148 |
+
|
149 |
+
def _rearrange_patches(self, patches: torch.Tensor):
|
150 |
+
# We rearrange the patches so that we can efficiently
|
151 |
+
# switch between windowed and global mode by just
|
152 |
+
# reshaping the tensor
|
153 |
+
|
154 |
+
patch_order, self._num_windows = self._order_cache.get(self._input_resolution, (None, None))
|
155 |
+
if patch_order is None:
|
156 |
+
num_feat_patches = patches.shape[1] - self.num_summary_tokens
|
157 |
+
num_pixels = self._input_resolution[0] * self._input_resolution[1]
|
158 |
+
|
159 |
+
patch_size = int(round(math.sqrt(num_pixels / num_feat_patches)))
|
160 |
+
rows = self._input_resolution[-2] // patch_size
|
161 |
+
cols = self._input_resolution[-1] // patch_size
|
162 |
+
|
163 |
+
w_rows = rows // self.window_size
|
164 |
+
w_cols = cols // self.window_size
|
165 |
+
|
166 |
+
patch_order = torch.arange(0, num_feat_patches, device=patches.device)
|
167 |
+
|
168 |
+
patch_order = rearrange(
|
169 |
+
patch_order, '(wy py wx px) -> (wy wx py px)',
|
170 |
+
wy=w_rows, wx=w_cols,
|
171 |
+
py=self.window_size, px=self.window_size,
|
172 |
+
)
|
173 |
+
|
174 |
+
if self.num_summary_tokens:
|
175 |
+
patch_order = torch.cat([
|
176 |
+
torch.arange(self.num_summary_tokens, dtype=patch_order.dtype, device=patch_order.device),
|
177 |
+
patch_order + self.num_summary_tokens,
|
178 |
+
])
|
179 |
+
|
180 |
+
self._num_windows = w_rows * w_cols
|
181 |
+
self._order_cache[self._input_resolution] = (
|
182 |
+
patch_order,
|
183 |
+
self._num_windows,
|
184 |
+
)
|
185 |
+
|
186 |
+
patch_order = patch_order.reshape(1, -1, 1).expand_as(patches)
|
187 |
+
patches = torch.gather(patches, dim=1, index=patch_order)
|
188 |
+
return patches
|
tim/models/t2i/tim_model.py
ADDED
@@ -0,0 +1,493 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This source code is licensed under the license found in the
|
2 |
+
# LICENSE file in the root directory of this source tree.
|
3 |
+
# --------------------------------------------------------
|
4 |
+
# References:
|
5 |
+
# GLIDE: https://github.com/openai/glide-text2im
|
6 |
+
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
|
7 |
+
# --------------------------------------------------------
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import numpy as np
|
13 |
+
import math
|
14 |
+
from timm.layers.mlp import SwiGLU, Mlp
|
15 |
+
from timm.models.vision_transformer import PatchEmbed, Attention
|
16 |
+
from tim.models.utils.funcs import build_mlp, modulate, get_parameter_dtype
|
17 |
+
from tim.models.utils.rope import VisionRotaryEmbedding, rotate_half
|
18 |
+
from flash_attn import flash_attn_func
|
19 |
+
|
20 |
+
|
21 |
+
#################################################################################
|
22 |
+
# Embedding Layers for Timesteps and Class Labels #
|
23 |
+
#################################################################################
|
24 |
+
class TimestepEmbedder(nn.Module):
|
25 |
+
"""
|
26 |
+
Embeds scalar timesteps into vector representations.
|
27 |
+
"""
|
28 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
29 |
+
super().__init__()
|
30 |
+
self.mlp = nn.Sequential(
|
31 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
32 |
+
nn.SiLU(),
|
33 |
+
nn.Linear(hidden_size, hidden_size, bias=True),
|
34 |
+
)
|
35 |
+
self.frequency_embedding_size = frequency_embedding_size
|
36 |
+
|
37 |
+
@staticmethod
|
38 |
+
def positional_embedding(t, dim, max_period=10000):
|
39 |
+
"""
|
40 |
+
Create sinusoidal timestep embeddings.
|
41 |
+
:param t: a 1-D Tensor of N indices, one per batch element.
|
42 |
+
These may be fractional.
|
43 |
+
:param dim: the dimension of the output.
|
44 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
45 |
+
:return: an (N, D) Tensor of positional embeddings.
|
46 |
+
"""
|
47 |
+
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
48 |
+
half = dim // 2
|
49 |
+
freqs = torch.exp(
|
50 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
51 |
+
).to(device=t.device)
|
52 |
+
args = t[:, None].float() * freqs[None]
|
53 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
54 |
+
if dim % 2:
|
55 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
56 |
+
return embedding
|
57 |
+
|
58 |
+
def forward(self, t):
|
59 |
+
self.timestep_embedding = self.positional_embedding
|
60 |
+
t_freq = self.timestep_embedding(t, dim=self.frequency_embedding_size).to(t.dtype)
|
61 |
+
t_emb = self.mlp(t_freq)
|
62 |
+
return t_emb
|
63 |
+
|
64 |
+
|
65 |
+
class CaptionEmbedder(nn.Module):
|
66 |
+
"""
|
67 |
+
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
|
68 |
+
"""
|
69 |
+
def __init__(self, cap_feat_dim, hidden_size):
|
70 |
+
super().__init__()
|
71 |
+
self.norm = nn.LayerNorm(cap_feat_dim)
|
72 |
+
self.mlp = SwiGLU(in_features=cap_feat_dim, hidden_features=hidden_size*4, out_features=hidden_size)
|
73 |
+
|
74 |
+
|
75 |
+
def forward(self, cap_feats):
|
76 |
+
'''
|
77 |
+
cfg is also essential in text-to-image generation
|
78 |
+
'''
|
79 |
+
cap_feats = self.mlp(self.norm(cap_feats))
|
80 |
+
return cap_feats
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
#################################################################################
|
85 |
+
# Attention Block #
|
86 |
+
#################################################################################
|
87 |
+
|
88 |
+
class Attention(nn.Module):
|
89 |
+
def __init__(
|
90 |
+
self,
|
91 |
+
dim: int,
|
92 |
+
num_heads: int = 8,
|
93 |
+
qkv_bias: bool = False,
|
94 |
+
qk_norm: bool = False,
|
95 |
+
attn_drop: float = 0.,
|
96 |
+
proj_drop: float = 0.,
|
97 |
+
norm_layer: nn.Module = nn.LayerNorm,
|
98 |
+
distance_aware: bool = False,
|
99 |
+
) -> None:
|
100 |
+
super().__init__()
|
101 |
+
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
|
102 |
+
self.num_heads = num_heads
|
103 |
+
self.head_dim = dim // num_heads
|
104 |
+
self.scale = self.head_dim ** -0.5
|
105 |
+
|
106 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
107 |
+
self.distance_aware = distance_aware
|
108 |
+
if distance_aware:
|
109 |
+
self.qkv_d = nn.Linear(dim, dim * 3, bias=False)
|
110 |
+
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
111 |
+
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
112 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
113 |
+
self.proj = nn.Linear(dim, dim)
|
114 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
115 |
+
|
116 |
+
def forward(self, x: torch.Tensor, freqs_cos, freqs_sin, attn_type='fused_attn', delta_t=None) -> torch.Tensor:
|
117 |
+
B, N, C = x.shape
|
118 |
+
if self.distance_aware:
|
119 |
+
qkv = self.qkv(x) + self.qkv_d(delta_t)
|
120 |
+
else:
|
121 |
+
qkv = self.qkv(x)
|
122 |
+
if attn_type == 'flash_attn': # q, k, v: (B, N, n_head, d_head)
|
123 |
+
qkv = qkv.reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 1, 3, 4)
|
124 |
+
else: # q, k, v: (B, n_head, N, d_head)
|
125 |
+
qkv = qkv.reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
126 |
+
ori_dtype = qkv.dtype
|
127 |
+
q, k, v = qkv.unbind(0)
|
128 |
+
q, k = self.q_norm(q), self.k_norm(k)
|
129 |
+
|
130 |
+
q = q * freqs_cos + rotate_half(q) * freqs_sin
|
131 |
+
k = k * freqs_cos + rotate_half(k) * freqs_sin
|
132 |
+
q, k = q.to(ori_dtype), k.to(ori_dtype)
|
133 |
+
|
134 |
+
if attn_type == 'flash_attn':
|
135 |
+
x = flash_attn_func(
|
136 |
+
q, k, v,
|
137 |
+
dropout_p=self.attn_drop.p if self.training else 0.,
|
138 |
+
)
|
139 |
+
x = x.reshape(B, N, C)
|
140 |
+
elif attn_type == 'fused_attn':
|
141 |
+
x = F.scaled_dot_product_attention(
|
142 |
+
q, k, v,
|
143 |
+
dropout_p=self.attn_drop.p if self.training else 0.,
|
144 |
+
)
|
145 |
+
x = x.transpose(1, 2).reshape(B, N, C)
|
146 |
+
else:
|
147 |
+
q = q * self.scale
|
148 |
+
attn = q @ k.transpose(-2, -1)
|
149 |
+
attn = attn.softmax(dim=-1)
|
150 |
+
attn = self.attn_drop(attn)
|
151 |
+
x = attn @ v
|
152 |
+
x = x.transpose(1, 2).reshape(B, N, C)
|
153 |
+
|
154 |
+
x = self.proj(x)
|
155 |
+
x = self.proj_drop(x)
|
156 |
+
return x
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
|
163 |
+
#################################################################################
|
164 |
+
# Cross Attention Block #
|
165 |
+
#################################################################################
|
166 |
+
|
167 |
+
class CrossAttention(nn.Module):
|
168 |
+
def __init__(
|
169 |
+
self,
|
170 |
+
dim: int,
|
171 |
+
num_heads: int = 8,
|
172 |
+
qkv_bias: bool = False,
|
173 |
+
qk_norm: bool = False,
|
174 |
+
attn_drop: float = 0.,
|
175 |
+
proj_drop: float = 0.,
|
176 |
+
norm_layer: nn.Module = nn.LayerNorm,
|
177 |
+
) -> None:
|
178 |
+
super().__init__()
|
179 |
+
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
|
180 |
+
self.num_heads = num_heads
|
181 |
+
self.head_dim = dim // num_heads
|
182 |
+
self.scale = self.head_dim ** -0.5
|
183 |
+
|
184 |
+
self.q = nn.Linear(dim, dim, bias=qkv_bias)
|
185 |
+
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
|
186 |
+
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
187 |
+
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
188 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
189 |
+
self.proj = nn.Linear(dim, dim)
|
190 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
191 |
+
|
192 |
+
def forward(self, x: torch.Tensor, y: torch.Tensor, freqs_cos, freqs_sin, attn_type='fused_attn') -> torch.Tensor:
|
193 |
+
B, N, C = x.shape
|
194 |
+
_, M, _ = y.shape
|
195 |
+
if attn_type == 'flash_attn': # q, k, v: (B, N, n_head, d_head)
|
196 |
+
q = self.q(x).reshape(B, N, self.num_heads, self.head_dim)
|
197 |
+
kv = self.kv(y).reshape(B, M, 2, self.num_heads, self.head_dim).permute(2, 0, 1, 3, 4)
|
198 |
+
else: # q, k, v: (B, n_head, N, d_head)
|
199 |
+
q = self.q(x).reshape(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
|
200 |
+
kv = self.kv(y).reshape(B, M, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
201 |
+
ori_dtype = q.dtype
|
202 |
+
k, v = kv.unbind(0)
|
203 |
+
q, k = self.q_norm(q), self.k_norm(k)
|
204 |
+
q = q * freqs_cos + rotate_half(q) * freqs_sin
|
205 |
+
q, k = q.to(ori_dtype), k.to(ori_dtype)
|
206 |
+
|
207 |
+
if attn_type == 'flash_attn':
|
208 |
+
x = flash_attn_func(
|
209 |
+
q, k, v,
|
210 |
+
dropout_p=self.attn_drop.p if self.training else 0.,
|
211 |
+
)
|
212 |
+
x = x.reshape(B, N, C)
|
213 |
+
elif attn_type == 'fused_attn':
|
214 |
+
x = F.scaled_dot_product_attention(
|
215 |
+
q, k, v,
|
216 |
+
dropout_p=self.attn_drop.p if self.training else 0.,
|
217 |
+
)
|
218 |
+
x = x.transpose(1, 2).reshape(B, N, C)
|
219 |
+
else:
|
220 |
+
q = q * self.scale
|
221 |
+
attn = q @ k.transpose(-2, -1)
|
222 |
+
attn = attn.softmax(dim=-1)
|
223 |
+
attn = self.attn_drop(attn)
|
224 |
+
x = attn @ v
|
225 |
+
x = x.transpose(1, 2).reshape(B, N, C)
|
226 |
+
|
227 |
+
x = self.proj(x)
|
228 |
+
x = self.proj_drop(x)
|
229 |
+
return x
|
230 |
+
|
231 |
+
|
232 |
+
|
233 |
+
|
234 |
+
|
235 |
+
|
236 |
+
#################################################################################
|
237 |
+
# Core TiM Model #
|
238 |
+
#################################################################################
|
239 |
+
|
240 |
+
class TiMBlock(nn.Module):
|
241 |
+
"""
|
242 |
+
A TiM block with adaptive layer norm zero (adaLN-Zero) conditioning.
|
243 |
+
"""
|
244 |
+
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs):
|
245 |
+
super().__init__()
|
246 |
+
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
247 |
+
distance_aware = block_kwargs.get('distance_aware', False)
|
248 |
+
self.attn = Attention(
|
249 |
+
hidden_size, num_heads=num_heads, qkv_bias=True, qk_norm=block_kwargs["qk_norm"],
|
250 |
+
distance_aware=distance_aware
|
251 |
+
)
|
252 |
+
self.norm2_i = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
253 |
+
self.norm2_t = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
254 |
+
self.cross_attn = CrossAttention(
|
255 |
+
hidden_size, num_heads=num_heads, qkv_bias=True, qk_norm=block_kwargs["qk_norm"]
|
256 |
+
)
|
257 |
+
self.norm3 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
258 |
+
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
259 |
+
self.mlp = SwiGLU(
|
260 |
+
in_features=hidden_size, hidden_features=(mlp_hidden_dim*2)//3, bias=True
|
261 |
+
)
|
262 |
+
if block_kwargs.get('lora_hidden_size', None) != None:
|
263 |
+
lora_hidden_size = block_kwargs['lora_hidden_size']
|
264 |
+
else:
|
265 |
+
lora_hidden_size = (hidden_size//4)*3
|
266 |
+
self.adaLN_modulation = SwiGLU(
|
267 |
+
in_features=hidden_size, hidden_features=lora_hidden_size, out_features=9*hidden_size, bias=True
|
268 |
+
)
|
269 |
+
|
270 |
+
|
271 |
+
|
272 |
+
def forward(self, x, y, c, freqs_cos, freqs_sin, attn_type, delta_t=None):
|
273 |
+
(
|
274 |
+
shift_msa, scale_msa, gate_msa,
|
275 |
+
shift_msc, scale_msc, gate_msc,
|
276 |
+
shift_mlp, scale_mlp, gate_mlp
|
277 |
+
) = self.adaLN_modulation(c).chunk(9, dim=-1)
|
278 |
+
x = x + gate_msa * self.attn(modulate(self.norm1(x), shift_msa, scale_msa), freqs_cos, freqs_sin, attn_type, delta_t)
|
279 |
+
x = x + gate_msc * self.cross_attn(modulate(self.norm2_i(x), shift_msc, scale_msc), self.norm2_t(y), freqs_cos, freqs_sin, attn_type)
|
280 |
+
x = x + gate_mlp * self.mlp(modulate(self.norm3(x), shift_mlp, scale_mlp))
|
281 |
+
|
282 |
+
return x
|
283 |
+
|
284 |
+
|
285 |
+
class FinalLayer(nn.Module):
|
286 |
+
"""
|
287 |
+
The final layer of TiM.
|
288 |
+
"""
|
289 |
+
def __init__(self, hidden_size, patch_size, out_channels):
|
290 |
+
super().__init__()
|
291 |
+
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
292 |
+
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
|
293 |
+
self.adaLN_modulation = SwiGLU(
|
294 |
+
in_features=hidden_size, hidden_features=hidden_size//2, out_features=2*hidden_size, bias=True
|
295 |
+
)
|
296 |
+
|
297 |
+
|
298 |
+
def forward(self, x, c):
|
299 |
+
shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1)
|
300 |
+
x = modulate(self.norm_final(x), shift, scale)
|
301 |
+
x = self.linear(x)
|
302 |
+
|
303 |
+
return x
|
304 |
+
|
305 |
+
|
306 |
+
class TiM(nn.Module):
|
307 |
+
"""
|
308 |
+
Diffusion model with a Transformer backbone.
|
309 |
+
"""
|
310 |
+
def __init__(
|
311 |
+
self,
|
312 |
+
input_size=32,
|
313 |
+
patch_size=2,
|
314 |
+
in_channels=4,
|
315 |
+
hidden_size=1152,
|
316 |
+
encoder_depth=8,
|
317 |
+
depth=28,
|
318 |
+
num_heads=16,
|
319 |
+
mlp_ratio=4.0,
|
320 |
+
cap_feat_dim=2048,
|
321 |
+
z_dim=768,
|
322 |
+
projector_dim=2048,
|
323 |
+
use_checkpoint: bool = False,
|
324 |
+
new_condition: str = 't-r',
|
325 |
+
use_new_embed: bool = False,
|
326 |
+
**block_kwargs # qk_norm
|
327 |
+
):
|
328 |
+
super().__init__()
|
329 |
+
self.in_channels = in_channels
|
330 |
+
self.out_channels = in_channels
|
331 |
+
self.patch_size = patch_size
|
332 |
+
self.num_heads = num_heads
|
333 |
+
self.cap_feat_dim = cap_feat_dim
|
334 |
+
self.encoder_depth = encoder_depth
|
335 |
+
self.use_checkpoint = use_checkpoint
|
336 |
+
self.new_condition = new_condition
|
337 |
+
self.use_new_embed = use_new_embed
|
338 |
+
|
339 |
+
self.x_embedder = PatchEmbed(
|
340 |
+
input_size, patch_size, in_channels, hidden_size, bias=True, strict_img_size=False
|
341 |
+
)
|
342 |
+
self.t_embedder = TimestepEmbedder(hidden_size) # timestep embedding type
|
343 |
+
if use_new_embed:
|
344 |
+
self.delta_embedder = TimestepEmbedder(hidden_size)
|
345 |
+
self.y_embedder = CaptionEmbedder(cap_feat_dim, hidden_size)
|
346 |
+
# Will use fixed sin-cos embedding:
|
347 |
+
self.rope = VisionRotaryEmbedding(head_dim=hidden_size//num_heads)
|
348 |
+
|
349 |
+
self.blocks = nn.ModuleList([
|
350 |
+
TiMBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, **block_kwargs) for _ in range(depth)
|
351 |
+
])
|
352 |
+
self.projector = build_mlp(hidden_size, projector_dim, z_dim)
|
353 |
+
self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels)
|
354 |
+
self.initialize_weights()
|
355 |
+
|
356 |
+
def initialize_weights(self):
|
357 |
+
# Initialize transformer layers:
|
358 |
+
def _basic_init(module):
|
359 |
+
if isinstance(module, nn.Linear):
|
360 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
361 |
+
if module.bias is not None:
|
362 |
+
nn.init.constant_(module.bias, 0)
|
363 |
+
self.apply(_basic_init)
|
364 |
+
|
365 |
+
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
|
366 |
+
w = self.x_embedder.proj.weight.data
|
367 |
+
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
|
368 |
+
nn.init.constant_(self.x_embedder.proj.bias, 0)
|
369 |
+
|
370 |
+
# Initialize label embedding table:
|
371 |
+
nn.init.normal_(self.y_embedder.mlp.fc1_g.weight, std=0.02)
|
372 |
+
nn.init.normal_(self.y_embedder.mlp.fc1_x.weight, std=0.02)
|
373 |
+
nn.init.normal_(self.y_embedder.mlp.fc2.weight, std=0.02)
|
374 |
+
|
375 |
+
# Initialize timestep embedding MLP:
|
376 |
+
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
|
377 |
+
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
|
378 |
+
|
379 |
+
# Zero-out adaLN modulation layers in TiM blocks:
|
380 |
+
for block in self.blocks:
|
381 |
+
nn.init.constant_(block.adaLN_modulation.fc2.weight, 0)
|
382 |
+
nn.init.constant_(block.adaLN_modulation.fc2.bias, 0)
|
383 |
+
|
384 |
+
|
385 |
+
# Zero-out output layers:
|
386 |
+
nn.init.constant_(self.final_layer.adaLN_modulation.fc2.weight, 0)
|
387 |
+
nn.init.constant_(self.final_layer.adaLN_modulation.fc2.bias, 0)
|
388 |
+
nn.init.constant_(self.final_layer.linear.weight, 0)
|
389 |
+
nn.init.constant_(self.final_layer.linear.bias, 0)
|
390 |
+
|
391 |
+
def unpatchify(self, x, H, W):
|
392 |
+
"""
|
393 |
+
x: (N, T, patch_size**2 * C)
|
394 |
+
imgs: (N, H, W, C)
|
395 |
+
"""
|
396 |
+
c = self.out_channels
|
397 |
+
p = self.patch_size
|
398 |
+
h, w = int(H/p), int(W/p)
|
399 |
+
|
400 |
+
|
401 |
+
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
|
402 |
+
x = torch.einsum('nhwpqc->nchpwq', x)
|
403 |
+
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
|
404 |
+
return imgs
|
405 |
+
|
406 |
+
def get_rope(self, h, w, attn_type):
|
407 |
+
grid_h = torch.arange(h)
|
408 |
+
grid_w = torch.arange(w)
|
409 |
+
grid = torch.meshgrid(grid_h, grid_w, indexing='xy')
|
410 |
+
grid = torch.stack(grid, dim=0).reshape(2, -1).unsqueeze(0)
|
411 |
+
freqs_cos, freqs_sin = self.rope.get_cached_2d_rope_from_grid(grid)
|
412 |
+
if attn_type == 'flash_attn': # (1, N, 1, d_head)
|
413 |
+
return freqs_cos.unsqueeze(2), freqs_sin.unsqueeze(2)
|
414 |
+
else: # (1, 1, N, d_head)
|
415 |
+
return freqs_cos.unsqueeze(1), freqs_sin.unsqueeze(1)
|
416 |
+
|
417 |
+
|
418 |
+
def forward(self, x, t, r, y, attn_type='flash_attn', return_zs=False, jvp=False):
|
419 |
+
"""
|
420 |
+
Forward pass of TiM.
|
421 |
+
x: (B, C, H, W) tensor of spatial inputs (images or latent representations of images)
|
422 |
+
t: (B,) tensor of diffusion timesteps
|
423 |
+
y: (B,) tensor of class labels
|
424 |
+
"""
|
425 |
+
B, C, H, W = x.shape
|
426 |
+
x = self.x_embedder(x) # (N, N, D), where T = H * W / patch_size ** 2
|
427 |
+
|
428 |
+
# timestep and class embedding
|
429 |
+
t_embed = self.t_embedder(t).unsqueeze(1) # (B, 1, D)
|
430 |
+
delta_embed = self.get_delta_embed(t, r).unsqueeze(1) # (B, 1, D)
|
431 |
+
y = self.y_embedder(y) # (B, M, D)
|
432 |
+
c = t_embed + delta_embed # (B, 1, D)
|
433 |
+
|
434 |
+
|
435 |
+
freqs_cos, freqs_sin = self.get_rope(
|
436 |
+
int(H/self.patch_size), int(W/self.patch_size), attn_type
|
437 |
+
)
|
438 |
+
|
439 |
+
for i, block in enumerate(self.blocks):
|
440 |
+
if not self.use_checkpoint or jvp:
|
441 |
+
x = block(x, y, c, freqs_cos, freqs_sin, attn_type, delta_embed) # (B, N, D)
|
442 |
+
else:
|
443 |
+
x = torch.utils.checkpoint.checkpoint(
|
444 |
+
self.ckpt_wrapper(block), x, y, c, freqs_cos, freqs_sin, attn_type, delta_embed
|
445 |
+
)
|
446 |
+
if (i + 1) == self.encoder_depth:
|
447 |
+
h_proj = self.projector(x)
|
448 |
+
x = self.final_layer(x, c) # (B, N, patch_size ** 2 * out_channels)
|
449 |
+
x = self.unpatchify(x, H, W) # (b, out_channels, H, W)
|
450 |
+
|
451 |
+
if return_zs:
|
452 |
+
return x, h_proj
|
453 |
+
else:
|
454 |
+
return x
|
455 |
+
|
456 |
+
def get_delta_embed(self, t, r):
|
457 |
+
if self.use_new_embed:
|
458 |
+
delta_embedder = self.delta_embedder
|
459 |
+
else:
|
460 |
+
delta_embedder = self.t_embedder
|
461 |
+
if self.new_condition == 't-r':
|
462 |
+
delta_embed = delta_embedder(t-r)
|
463 |
+
elif self.new_condition == 'r':
|
464 |
+
delta_embed = delta_embedder(r)
|
465 |
+
elif self.new_condition == 't,r':
|
466 |
+
delta_embed = self.t_embedder(t) + delta_embedder(r)
|
467 |
+
elif self.new_condition == 't,t-r':
|
468 |
+
delta_embed = self.t_embedder(t) + delta_embedder(t-r)
|
469 |
+
elif self.new_condition == 'r,t-r':
|
470 |
+
delta_embed = self.t_embedder(r) + delta_embedder(t-r)
|
471 |
+
elif self.new_condition == 't,r,t-r':
|
472 |
+
delta_embed = self.t_embedder(t) + self.t_embedder(r) + delta_embedder(t-r)
|
473 |
+
else:
|
474 |
+
raise NotImplementedError
|
475 |
+
return delta_embed
|
476 |
+
|
477 |
+
def ckpt_wrapper(self, module):
|
478 |
+
def ckpt_forward(*inputs):
|
479 |
+
outputs = module(*inputs)
|
480 |
+
return outputs
|
481 |
+
return ckpt_forward
|
482 |
+
|
483 |
+
|
484 |
+
@property
|
485 |
+
def dtype(self) -> torch.dtype:
|
486 |
+
"""
|
487 |
+
`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
|
488 |
+
"""
|
489 |
+
return get_parameter_dtype(self)
|
490 |
+
|
491 |
+
|
492 |
+
|
493 |
+
|
tim/models/utils/funcs.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from torch import Tensor
|
5 |
+
from typing import List, Tuple
|
6 |
+
from itertools import chain
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
def expand_t_like_x(t, x):
|
11 |
+
"""Function to reshape time t to broadcastable dimension of x
|
12 |
+
Args:
|
13 |
+
t: [batch_dim,], time vector
|
14 |
+
x: [batch_dim,...], data point
|
15 |
+
"""
|
16 |
+
dims = [1] * (len(x.size()) - 1)
|
17 |
+
t = t.view(t.size(0), *dims)
|
18 |
+
return t
|
19 |
+
|
20 |
+
|
21 |
+
def build_mlp(hidden_size, projector_dim, z_dim):
|
22 |
+
return nn.Sequential(
|
23 |
+
nn.Linear(hidden_size, projector_dim),
|
24 |
+
nn.SiLU(),
|
25 |
+
nn.Linear(projector_dim, projector_dim),
|
26 |
+
nn.SiLU(),
|
27 |
+
nn.Linear(projector_dim, z_dim),
|
28 |
+
)
|
29 |
+
|
30 |
+
def modulate(x, shift, scale):
|
31 |
+
return x * (1 + scale) + shift
|
32 |
+
|
33 |
+
|
34 |
+
def get_parameter_dtype(parameter: torch.nn.Module):
|
35 |
+
try:
|
36 |
+
params = tuple(parameter.parameters())
|
37 |
+
if len(params) > 0:
|
38 |
+
return params[0].dtype
|
39 |
+
|
40 |
+
buffers = tuple(parameter.buffers())
|
41 |
+
if len(buffers) > 0:
|
42 |
+
return buffers[0].dtype
|
43 |
+
|
44 |
+
except StopIteration:
|
45 |
+
# For torch.nn.DataParallel compatibility in PyTorch 1.5
|
46 |
+
|
47 |
+
def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
|
48 |
+
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
|
49 |
+
return tuples
|
50 |
+
|
51 |
+
gen = parameter._named_members(get_members_fn=find_tensor_attributes)
|
52 |
+
first_tuple = next(gen)
|
53 |
+
return first_tuple[1].dtype
|
tim/models/utils/norms.py
ADDED
@@ -0,0 +1,403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the BSD-style license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import math
|
8 |
+
|
9 |
+
from functools import partial
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
|
14 |
+
import triton
|
15 |
+
import triton.language as tl
|
16 |
+
import torch.nn.functional as F
|
17 |
+
|
18 |
+
|
19 |
+
def create_norm(norm_type: str, dim: int, eps: float = 1e-6):
|
20 |
+
"""
|
21 |
+
Creates the specified normalization layer based on the norm_type.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
norm_type (str): The type of normalization layer to create.
|
25 |
+
Supported types: 1. rmsnorm 2. fused_rmsnorm 3. layernorm 4. np_layernorm
|
26 |
+
dim (int): The dimension of the normalization layer.
|
27 |
+
eps (float, optional): The epsilon value for numerical stability. Defaults to 1e-6.
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
The created normalization layer.
|
31 |
+
|
32 |
+
Raises:
|
33 |
+
NotImplementedError: If an unknown norm_type is provided.
|
34 |
+
"""
|
35 |
+
if norm_type == None or norm_type == "":
|
36 |
+
return nn.Identity()
|
37 |
+
norm_type = norm_type.lower() # Normalize to lowercase
|
38 |
+
|
39 |
+
if norm_type == "layernorm":
|
40 |
+
return nn.LayerNorm(dim, eps=eps, bias=False)
|
41 |
+
elif norm_type == "np_layernorm":
|
42 |
+
return nn.LayerNorm(dim, eps=eps, elementwise_affine=False, bias=False)
|
43 |
+
elif norm_type == "np_layernorm_32":
|
44 |
+
return FP32_Layernorm(dim, eps=eps, elementwise_affine=False, bias=True)
|
45 |
+
elif norm_type == "layernorm_32":
|
46 |
+
return FP32_Layernorm(dim, eps=eps, bias=True)
|
47 |
+
elif norm_type == "rmsnorm":
|
48 |
+
return RMSNorm(dim, include_weight=True, eps=eps)
|
49 |
+
elif norm_type == "np_rmsnorm":
|
50 |
+
return RMSNorm(dim, include_weight=False, eps=1e-6)
|
51 |
+
elif norm_type == "fused_rmsnorm":
|
52 |
+
return FusedRMSNorm(dim, eps=1/65536)
|
53 |
+
elif norm_type == "fused_rmsnorm_32":
|
54 |
+
return FusedRMSNorm32(dim, eps=1e-6)
|
55 |
+
elif norm_type == 'none':
|
56 |
+
return nn.Identity()
|
57 |
+
else:
|
58 |
+
return nn.Identity()
|
59 |
+
|
60 |
+
class FP32_Layernorm(nn.LayerNorm):
|
61 |
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
62 |
+
origin_dtype = inputs.dtype
|
63 |
+
if self.bias == None and self.weight == None:
|
64 |
+
return F.layer_norm(
|
65 |
+
input=inputs.float(),
|
66 |
+
normalized_shape=self.normalized_shape,
|
67 |
+
eps=self.eps
|
68 |
+
).to(origin_dtype)
|
69 |
+
elif self.bias == None:
|
70 |
+
return F.layer_norm(
|
71 |
+
input=inputs.float(),
|
72 |
+
normalized_shape=self.normalized_shape,
|
73 |
+
weight=self.weight.float(),
|
74 |
+
eps=self.eps
|
75 |
+
).to(origin_dtype)
|
76 |
+
else:
|
77 |
+
return F.layer_norm(
|
78 |
+
input=inputs.float(),
|
79 |
+
normalized_shape=self.normalized_shape,
|
80 |
+
weight=self.weight.float(),
|
81 |
+
bias=self.bias.float(),
|
82 |
+
eps=self.eps
|
83 |
+
).to(origin_dtype)
|
84 |
+
|
85 |
+
class FusedRMSNorm(nn.Module):
|
86 |
+
"""Fused RMS Norm, wraps a fused Triton Kernel"""
|
87 |
+
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
dim: int,
|
91 |
+
eps: float = 1e-6,
|
92 |
+
):
|
93 |
+
super().__init__()
|
94 |
+
self.eps = eps
|
95 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
96 |
+
self.fused_rms_norm_fn = fused_rms_norm_fn
|
97 |
+
|
98 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
99 |
+
"""leverages Triton Fused RMS Norm kernel"""
|
100 |
+
return self.fused_rms_norm_fn(
|
101 |
+
x,
|
102 |
+
self.weight,
|
103 |
+
eps=self.eps,
|
104 |
+
)
|
105 |
+
|
106 |
+
def reset_parameters(self):
|
107 |
+
torch.nn.init.ones_(self.weight) # type: ignore
|
108 |
+
|
109 |
+
class FusedRMSNorm32(nn.Module):
|
110 |
+
"""Fused RMS Norm, wraps a fused Triton Kernel"""
|
111 |
+
|
112 |
+
def __init__(
|
113 |
+
self,
|
114 |
+
dim: int,
|
115 |
+
eps: float = 1e-6,
|
116 |
+
):
|
117 |
+
super().__init__()
|
118 |
+
self.eps = eps
|
119 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
120 |
+
self.fused_rms_norm_fn = fused_rms_norm_fn
|
121 |
+
|
122 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
123 |
+
"""leverages Triton Fused RMS Norm kernel"""
|
124 |
+
dtype = x.dtype
|
125 |
+
return self.fused_rms_norm_fn(
|
126 |
+
x.to(torch.float32),
|
127 |
+
self.weight,
|
128 |
+
eps=self.eps,
|
129 |
+
).to(dtype)
|
130 |
+
|
131 |
+
def reset_parameters(self):
|
132 |
+
torch.nn.init.ones_(self.weight) # type: ignore
|
133 |
+
|
134 |
+
class RMSNorm(nn.Module):
|
135 |
+
def __init__(self, dim: int, include_weight: bool = True, eps: float = 1e-6, **block_kwargs):
|
136 |
+
"""
|
137 |
+
Initialize the RMSNorm normalization layer.
|
138 |
+
|
139 |
+
Args:
|
140 |
+
dim (int): The dimension of the input tensor.
|
141 |
+
include_weight: bool: Whether include weight in the normalization
|
142 |
+
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
|
143 |
+
|
144 |
+
Attributes:
|
145 |
+
eps (float): A small value added to the denominator for numerical stability.
|
146 |
+
weight (nn.Parameter): Learnable scaling parameter.
|
147 |
+
|
148 |
+
"""
|
149 |
+
super().__init__()
|
150 |
+
self.eps = eps
|
151 |
+
if include_weight:
|
152 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
153 |
+
else:
|
154 |
+
self.weight = None
|
155 |
+
|
156 |
+
def _norm(self, x):
|
157 |
+
"""
|
158 |
+
Apply the RMSNorm normalization to the input tensor.
|
159 |
+
|
160 |
+
Args:
|
161 |
+
x (torch.Tensor): The input tensor.
|
162 |
+
|
163 |
+
Returns:
|
164 |
+
torch.Tensor: The normalized tensor.
|
165 |
+
|
166 |
+
"""
|
167 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
168 |
+
|
169 |
+
def forward(self, x):
|
170 |
+
"""
|
171 |
+
Forward pass through the RMSNorm layer.
|
172 |
+
|
173 |
+
Args:
|
174 |
+
x (torch.Tensor): The input tensor.
|
175 |
+
|
176 |
+
Returns:
|
177 |
+
torch.Tensor: The output tensor after applying RMSNorm.
|
178 |
+
|
179 |
+
"""
|
180 |
+
output = self._norm(x.float()).type_as(x)
|
181 |
+
if self.weight == None:
|
182 |
+
return output
|
183 |
+
else:
|
184 |
+
return output * self.weight
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
# FusedRMSNorm in Triton
|
189 |
+
|
190 |
+
# Credit
|
191 |
+
# Tri Dao's Triton LayerNorm: https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/ops/triton/layer_norm.py
|
192 |
+
# Triton LayerNorm tutorial: https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
|
193 |
+
|
194 |
+
|
195 |
+
@triton.autotune(
|
196 |
+
configs=[
|
197 |
+
triton.Config({}, num_warps=1),
|
198 |
+
triton.Config({}, num_warps=2),
|
199 |
+
triton.Config({}, num_warps=4),
|
200 |
+
triton.Config({}, num_warps=8),
|
201 |
+
triton.Config({}, num_warps=16),
|
202 |
+
triton.Config({}, num_warps=32),
|
203 |
+
],
|
204 |
+
key=["N"],
|
205 |
+
)
|
206 |
+
@triton.jit
|
207 |
+
def _rms_norm_fwd_kernel(
|
208 |
+
X,
|
209 |
+
stride_x,
|
210 |
+
Y,
|
211 |
+
stride_y,
|
212 |
+
W,
|
213 |
+
Rstd,
|
214 |
+
eps,
|
215 |
+
M, # num rows
|
216 |
+
N, # num cols
|
217 |
+
block_N: tl.constexpr,
|
218 |
+
):
|
219 |
+
row = tl.program_id(0)
|
220 |
+
cols = tl.arange(0, block_N)
|
221 |
+
|
222 |
+
# Load input data and weights
|
223 |
+
mask = cols < N
|
224 |
+
x = tl.load(X + row * stride_x + cols, mask=mask, other=0.0).to(tl.float32)
|
225 |
+
w = tl.load(W + cols, mask=mask, other=0.0).to(tl.float32)
|
226 |
+
|
227 |
+
# Compute mean and variance
|
228 |
+
xbar = tl.where(cols < N, x, 0.0)
|
229 |
+
var = tl.sum(xbar * xbar, axis=0) / N
|
230 |
+
rstd = 1 / tl.sqrt(var + eps)
|
231 |
+
|
232 |
+
# Store the reciprocal standard deviation
|
233 |
+
tl.store(Rstd + row, rstd)
|
234 |
+
|
235 |
+
# Normalize and apply linear transformation
|
236 |
+
x_hat = x * rstd
|
237 |
+
y = x_hat * w
|
238 |
+
|
239 |
+
# Write output
|
240 |
+
tl.store(Y + row * stride_y + cols, y, mask=mask)
|
241 |
+
|
242 |
+
|
243 |
+
@triton.autotune(
|
244 |
+
configs=[
|
245 |
+
triton.Config({}, num_warps=1),
|
246 |
+
triton.Config({}, num_warps=2),
|
247 |
+
triton.Config({}, num_warps=4),
|
248 |
+
triton.Config({}, num_warps=8),
|
249 |
+
triton.Config({}, num_warps=16),
|
250 |
+
triton.Config({}, num_warps=32),
|
251 |
+
],
|
252 |
+
key=["N"],
|
253 |
+
)
|
254 |
+
@triton.jit
|
255 |
+
def _rms_norm_bwd_kernel_sm(
|
256 |
+
X,
|
257 |
+
stride_x,
|
258 |
+
W,
|
259 |
+
DY,
|
260 |
+
stride_dy,
|
261 |
+
DX,
|
262 |
+
stride_dx,
|
263 |
+
Rstd,
|
264 |
+
DW,
|
265 |
+
eps,
|
266 |
+
M, # num rows
|
267 |
+
N, # num cols
|
268 |
+
rows_per_program,
|
269 |
+
block_N: tl.constexpr,
|
270 |
+
):
|
271 |
+
row_block_id = tl.program_id(0)
|
272 |
+
row_start = row_block_id * rows_per_program
|
273 |
+
cols = tl.arange(0, block_N)
|
274 |
+
mask = cols < N
|
275 |
+
|
276 |
+
# Load weights
|
277 |
+
w = tl.load(W + cols, mask=mask, other=0.0).to(tl.float32)
|
278 |
+
|
279 |
+
# Accumulate gradients for weights
|
280 |
+
dw = tl.zeros((block_N,), dtype=tl.float32)
|
281 |
+
|
282 |
+
row_end = min(row_start + rows_per_program, M)
|
283 |
+
for row in range(row_start, row_end):
|
284 |
+
# Load input, output gradient, and reciprocal standard deviation
|
285 |
+
x = tl.load(X + row * stride_x + cols, mask=mask, other=0.0).to(tl.float32)
|
286 |
+
dy = tl.load(DY + row * stride_dy + cols, mask=mask, other=0.0).to(tl.float32)
|
287 |
+
rstd = tl.load(Rstd + row)
|
288 |
+
|
289 |
+
# Compute normalized input and gradients
|
290 |
+
x_hat = x * rstd
|
291 |
+
wdy = w * dy
|
292 |
+
dw += dy * x_hat
|
293 |
+
c1 = tl.sum(x_hat * wdy, axis=0) / N
|
294 |
+
dx = (wdy - x_hat * c1) * rstd
|
295 |
+
|
296 |
+
# Store input gradient
|
297 |
+
tl.store(DX + row * stride_dx + cols, dx, mask=mask)
|
298 |
+
|
299 |
+
# Store weight gradients
|
300 |
+
tl.store(DW + row_block_id * N + cols, dw, mask=mask)
|
301 |
+
|
302 |
+
|
303 |
+
class TritonFusedRMSNorm(torch.autograd.Function):
|
304 |
+
@staticmethod
|
305 |
+
def forward(ctx, x, weight, eps):
|
306 |
+
x_shape_start = x.shape
|
307 |
+
|
308 |
+
# Flatten input
|
309 |
+
x = x.view(-1, x.shape[-1])
|
310 |
+
if x.stride(-1) != 1:
|
311 |
+
x = x.contiguous()
|
312 |
+
if weight.stride(-1) != 1:
|
313 |
+
weight = weight.contiguous()
|
314 |
+
|
315 |
+
M, N = x.shape
|
316 |
+
y = torch.empty_like(x)
|
317 |
+
rstd = torch.empty((M,), dtype=torch.float32, device=x.device)
|
318 |
+
|
319 |
+
max_size = 65536 // x.element_size()
|
320 |
+
block_N = min(max_size, triton.next_power_of_2(N))
|
321 |
+
|
322 |
+
if N > block_N:
|
323 |
+
raise ValueError(f"N {N} must be <= {block_N=}")
|
324 |
+
|
325 |
+
grid = lambda meta: (M,)
|
326 |
+
_rms_norm_fwd_kernel[grid](
|
327 |
+
x,
|
328 |
+
x.stride(0),
|
329 |
+
y,
|
330 |
+
y.stride(0),
|
331 |
+
weight,
|
332 |
+
rstd,
|
333 |
+
eps,
|
334 |
+
M,
|
335 |
+
N,
|
336 |
+
block_N,
|
337 |
+
)
|
338 |
+
|
339 |
+
ctx.eps = eps
|
340 |
+
ctx.save_for_backward(x, weight, rstd)
|
341 |
+
ctx.x_shape_start = x_shape_start
|
342 |
+
|
343 |
+
y = y.reshape(x_shape_start)
|
344 |
+
return y
|
345 |
+
|
346 |
+
@staticmethod
|
347 |
+
def backward(ctx, dy):
|
348 |
+
x, weight, rstd = ctx.saved_tensors
|
349 |
+
eps = ctx.eps
|
350 |
+
x_shape_start = ctx.x_shape_start
|
351 |
+
|
352 |
+
# Flatten input and output gradients
|
353 |
+
dy = dy.view(-1, dy.shape[-1])
|
354 |
+
if dy.stride(-1) != 1:
|
355 |
+
dy = dy.contiguous()
|
356 |
+
|
357 |
+
M, N = dy.shape
|
358 |
+
dx = torch.empty_like(x)
|
359 |
+
dw = torch.empty_like(weight)
|
360 |
+
|
361 |
+
sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count
|
362 |
+
_dw = torch.empty((sm_count, N), dtype=torch.float32, device=weight.device)
|
363 |
+
|
364 |
+
max_size = 65536 // x.element_size()
|
365 |
+
block_N = min(max_size, triton.next_power_of_2(N))
|
366 |
+
rows_per_sm = math.ceil(M / sm_count)
|
367 |
+
|
368 |
+
if N > block_N:
|
369 |
+
raise ValueError(f"N {N} must be <= {block_N=}")
|
370 |
+
|
371 |
+
grid = lambda meta: (sm_count,)
|
372 |
+
_rms_norm_bwd_kernel_sm[grid](
|
373 |
+
x,
|
374 |
+
x.stride(0),
|
375 |
+
weight,
|
376 |
+
dy,
|
377 |
+
dy.stride(0),
|
378 |
+
dx,
|
379 |
+
dx.stride(0),
|
380 |
+
rstd,
|
381 |
+
_dw,
|
382 |
+
eps,
|
383 |
+
M,
|
384 |
+
N,
|
385 |
+
rows_per_sm,
|
386 |
+
block_N,
|
387 |
+
)
|
388 |
+
dw = _dw.sum(0).to(weight.dtype)
|
389 |
+
dx = dx.view(x_shape_start)
|
390 |
+
return dx, dw, None
|
391 |
+
|
392 |
+
|
393 |
+
# expose fusedRMSNorm as a function
|
394 |
+
def fused_rms_norm_fn(
|
395 |
+
x,
|
396 |
+
weight,
|
397 |
+
eps=1e-6,
|
398 |
+
):
|
399 |
+
return TritonFusedRMSNorm.apply(
|
400 |
+
x,
|
401 |
+
weight,
|
402 |
+
eps,
|
403 |
+
)
|
tim/models/utils/rope.py
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# FiT: A Flexible Vision Transformer for Image Generation
|
3 |
+
#
|
4 |
+
# Based on the following repository
|
5 |
+
# https://github.com/lucidrains/rotary-embedding-torch
|
6 |
+
# https://github.com/jquesnelle/yarn/blob/HEAD/scaled_rope
|
7 |
+
# https://colab.research.google.com/drive/1VI2nhlyKvd5cw4-zHvAIk00cAVj2lCCC#scrollTo=b80b3f37
|
8 |
+
# --------------------------------------------------------
|
9 |
+
|
10 |
+
import math
|
11 |
+
from math import pi
|
12 |
+
from typing import Optional, Any, Union, Tuple
|
13 |
+
import torch
|
14 |
+
from torch import nn
|
15 |
+
|
16 |
+
from einops import rearrange, repeat
|
17 |
+
from functools import lru_cache
|
18 |
+
|
19 |
+
#################################################################################
|
20 |
+
# NTK Operations #
|
21 |
+
#################################################################################
|
22 |
+
|
23 |
+
def find_correction_factor(num_rotations, dim, base=10000, max_position_embeddings=2048):
|
24 |
+
return (dim * math.log(max_position_embeddings/(num_rotations * 2 * math.pi)))/(2 * math.log(base)) #Inverse dim formula to find number of rotations
|
25 |
+
|
26 |
+
def find_correction_range(low_rot, high_rot, dim, base=10000, max_position_embeddings=2048):
|
27 |
+
low = math.floor(find_correction_factor(low_rot, dim, base, max_position_embeddings))
|
28 |
+
high = math.ceil(find_correction_factor(high_rot, dim, base, max_position_embeddings))
|
29 |
+
return max(low, 0), min(high, dim-1) #Clamp values just in case
|
30 |
+
|
31 |
+
def linear_ramp_mask(min, max, dim):
|
32 |
+
if min == max:
|
33 |
+
max += 0.001 #Prevent singularity
|
34 |
+
|
35 |
+
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
|
36 |
+
ramp_func = torch.clamp(linear_func, 0, 1)
|
37 |
+
return ramp_func
|
38 |
+
|
39 |
+
def find_newbase_ntk(dim, base=10000, scale=1):
|
40 |
+
# Base change formula
|
41 |
+
return base * scale ** (dim / (dim-2))
|
42 |
+
|
43 |
+
def get_mscale(scale=torch.Tensor):
|
44 |
+
# if scale <= 1:
|
45 |
+
# return 1.0
|
46 |
+
# return 0.1 * math.log(scale) + 1.0
|
47 |
+
return torch.where(scale <= 1., torch.tensor(1.0), 0.1 * torch.log(scale) + 1.0)
|
48 |
+
|
49 |
+
def get_proportion(L_test, L_train):
|
50 |
+
L_test = L_test * 2
|
51 |
+
return torch.where(torch.tensor(L_test/L_train) <= 1., torch.tensor(1.0), torch.sqrt(torch.log(torch.tensor(L_test))/torch.log(torch.tensor(L_train))))
|
52 |
+
# return torch.sqrt(torch.log(torch.tensor(L_test))/torch.log(torch.tensor(L_train)))
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
#################################################################################
|
57 |
+
# Rotate Q or K #
|
58 |
+
#################################################################################
|
59 |
+
|
60 |
+
def rotate_half(x):
|
61 |
+
x = rearrange(x, '... (d r) -> ... d r', r = 2)
|
62 |
+
x1, x2 = x.unbind(dim = -1)
|
63 |
+
x = torch.stack((-x2, x1), dim = -1)
|
64 |
+
return rearrange(x, '... d r -> ... (d r)')
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
#################################################################################
|
69 |
+
# Core Vision RoPE #
|
70 |
+
#################################################################################
|
71 |
+
|
72 |
+
class VisionRotaryEmbedding(nn.Module):
|
73 |
+
def __init__(
|
74 |
+
self,
|
75 |
+
head_dim: int, # embed dimension for each head
|
76 |
+
custom_freqs: str = 'normal',
|
77 |
+
theta: int = 10000,
|
78 |
+
online_rope: bool = False,
|
79 |
+
max_cached_len: int = 1024,
|
80 |
+
max_pe_len_h: Optional[int] = None,
|
81 |
+
max_pe_len_w: Optional[int] = None,
|
82 |
+
decouple: bool = False,
|
83 |
+
ori_max_pe_len: Optional[int] = None,
|
84 |
+
):
|
85 |
+
super().__init__()
|
86 |
+
|
87 |
+
dim = head_dim // 2
|
88 |
+
assert dim % 2 == 0 # accually, this is important
|
89 |
+
self.dim = dim
|
90 |
+
self.custom_freqs = custom_freqs.lower()
|
91 |
+
self.theta = theta
|
92 |
+
self.decouple = decouple
|
93 |
+
self.ori_max_pe_len = ori_max_pe_len
|
94 |
+
|
95 |
+
self.custom_freqs = custom_freqs.lower()
|
96 |
+
if not online_rope:
|
97 |
+
if self.custom_freqs in ['normal', 'scale1', 'scale2']:
|
98 |
+
freqs_h = 1. / (theta ** (torch.arange(0, dim, 2).float() / dim))
|
99 |
+
freqs_w = 1. / (theta ** (torch.arange(0, dim, 2).float() / dim))
|
100 |
+
else:
|
101 |
+
if decouple:
|
102 |
+
freqs_h = self.get_1d_rope_freqs(theta, dim, max_pe_len_h, ori_max_pe_len)
|
103 |
+
freqs_w = self.get_1d_rope_freqs(theta, dim, max_pe_len_w, ori_max_pe_len)
|
104 |
+
else:
|
105 |
+
max_pe_len = max(max_pe_len_h, max_pe_len_w)
|
106 |
+
freqs_h = self.get_1d_rope_freqs(theta, dim, max_pe_len, ori_max_pe_len)
|
107 |
+
freqs_w = self.get_1d_rope_freqs(theta, dim, max_pe_len, ori_max_pe_len)
|
108 |
+
|
109 |
+
self.register_buffer('freqs_h', freqs_h, persistent=False)
|
110 |
+
self.register_buffer('freqs_w', freqs_w, persistent=False)
|
111 |
+
|
112 |
+
if max_pe_len_h != None and max_pe_len_w != None and ori_max_pe_len != None:
|
113 |
+
attn_factor = 1.0
|
114 |
+
scale = torch.clamp_min(torch.tensor(max(max_pe_len_h, max_pe_len_w)) / ori_max_pe_len, 1.0) # dynamic scale
|
115 |
+
self.mscale = get_mscale(scale).to(scale) * attn_factor # Get n-d magnitude scaling corrected for interpolation
|
116 |
+
self.proportion1 = get_proportion(max(max_pe_len_h, max_pe_len_w), ori_max_pe_len)
|
117 |
+
self.proportion2 = get_proportion(max_pe_len_h * max_pe_len_w, ori_max_pe_len ** 2)
|
118 |
+
|
119 |
+
|
120 |
+
freqs_h_cached = torch.einsum('..., f -> ... f', torch.arange(max_cached_len), self.freqs_h)
|
121 |
+
freqs_h_cached = repeat(freqs_h_cached, '... n -> ... (n r)', r = 2)
|
122 |
+
self.register_buffer('freqs_h_cached', freqs_h_cached, persistent=False)
|
123 |
+
freqs_w_cached = torch.einsum('..., f -> ... f', torch.arange(max_cached_len), self.freqs_w)
|
124 |
+
freqs_w_cached = repeat(freqs_w_cached, '... n -> ... (n r)', r = 2)
|
125 |
+
self.register_buffer('freqs_w_cached', freqs_w_cached, persistent=False)
|
126 |
+
|
127 |
+
|
128 |
+
def get_1d_rope_freqs(self, theta, dim, max_pe_len, ori_max_pe_len):
|
129 |
+
# scaling operations for extrapolation
|
130 |
+
assert isinstance(ori_max_pe_len, int)
|
131 |
+
# scale = max_pe_len / ori_max_pe_len
|
132 |
+
if not isinstance(max_pe_len, torch.Tensor):
|
133 |
+
max_pe_len = torch.tensor(max_pe_len)
|
134 |
+
scale = torch.clamp_min(max_pe_len / ori_max_pe_len, 1.0) # dynamic scale
|
135 |
+
|
136 |
+
if self.custom_freqs == 'linear': # equal to position interpolation
|
137 |
+
freqs = 1. / torch.einsum('..., f -> ... f', scale, theta ** (torch.arange(0, dim, 2).float() / dim))
|
138 |
+
elif self.custom_freqs == 'ntk-aware' or self.custom_freqs == 'ntk-aware-pro1' or self.custom_freqs == 'ntk-aware-pro2':
|
139 |
+
freqs = 1. / torch.pow(
|
140 |
+
find_newbase_ntk(dim, theta, scale).view(-1, 1),
|
141 |
+
(torch.arange(0, dim, 2).to(scale).float() / dim)
|
142 |
+
).squeeze()
|
143 |
+
elif self.custom_freqs == 'ntk-by-parts':
|
144 |
+
#Interpolation constants found experimentally for LLaMA (might not be totally optimal though)
|
145 |
+
#Do not change unless there is a good reason for doing so!
|
146 |
+
beta_0 = 1.25
|
147 |
+
beta_1 = 0.75
|
148 |
+
gamma_0 = 16
|
149 |
+
gamma_1 = 2
|
150 |
+
ntk_factor = 1
|
151 |
+
extrapolation_factor = 1
|
152 |
+
|
153 |
+
#Three RoPE extrapolation/interpolation methods
|
154 |
+
freqs_base = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim))
|
155 |
+
freqs_linear = 1.0 / torch.einsum('..., f -> ... f', scale, (theta ** (torch.arange(0, dim, 2).to(scale).float() / dim)))
|
156 |
+
freqs_ntk = 1. / torch.pow(
|
157 |
+
find_newbase_ntk(dim, theta, scale).view(-1, 1),
|
158 |
+
(torch.arange(0, dim, 2).to(scale).float() / dim)
|
159 |
+
).squeeze()
|
160 |
+
|
161 |
+
#Combine NTK and Linear
|
162 |
+
low, high = find_correction_range(beta_0, beta_1, dim, theta, ori_max_pe_len)
|
163 |
+
freqs_mask = (1 - linear_ramp_mask(low, high, dim // 2).to(scale)) * ntk_factor
|
164 |
+
freqs = freqs_linear * (1 - freqs_mask) + freqs_ntk * freqs_mask
|
165 |
+
|
166 |
+
#Combine Extrapolation and NTK and Linear
|
167 |
+
low, high = find_correction_range(gamma_0, gamma_1, dim, theta, ori_max_pe_len)
|
168 |
+
freqs_mask = (1 - linear_ramp_mask(low, high, dim // 2).to(scale)) * extrapolation_factor
|
169 |
+
freqs = freqs * (1 - freqs_mask) + freqs_base * freqs_mask
|
170 |
+
|
171 |
+
elif self.custom_freqs == 'yarn':
|
172 |
+
#Interpolation constants found experimentally for LLaMA (might not be totally optimal though)
|
173 |
+
#Do not change unless there is a good reason for doing so!
|
174 |
+
beta_fast = 32
|
175 |
+
beta_slow = 1
|
176 |
+
extrapolation_factor = 1
|
177 |
+
|
178 |
+
freqs_extrapolation = 1.0 / (theta ** (torch.arange(0, dim, 2).to(scale).float() / dim))
|
179 |
+
freqs_interpolation = 1.0 / torch.einsum('..., f -> ... f', scale, (theta ** (torch.arange(0, dim, 2).to(scale).float() / dim)))
|
180 |
+
|
181 |
+
low, high = find_correction_range(beta_fast, beta_slow, dim, theta, ori_max_pe_len)
|
182 |
+
freqs_mask = (1 - linear_ramp_mask(low, high, dim // 2).to(scale).float()) * extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
|
183 |
+
freqs = freqs_interpolation * (1 - freqs_mask) + freqs_extrapolation * freqs_mask
|
184 |
+
else:
|
185 |
+
raise ValueError(f'Unknown modality {self.custom_freqs}. Only support normal, linear, ntk-aware, ntk-by-parts, yarn!')
|
186 |
+
return freqs
|
187 |
+
|
188 |
+
|
189 |
+
def online_get_2d_rope_from_grid(self, grid, size):
|
190 |
+
'''
|
191 |
+
grid: (B, 2, N)
|
192 |
+
N = H * W
|
193 |
+
the first dimension represents width, and the second reprensents height
|
194 |
+
e.g., [0. 1. 2. 3. 0. 1. 2. 3. 0. 1. 2. 3.]
|
195 |
+
[0. 0. 0. 0. 1. 1. 1. 1. 2. 2. 2. 2.]
|
196 |
+
size: (B, 1, 2), h goes first and w goes last
|
197 |
+
'''
|
198 |
+
size = size.squeeze() # (B, 1, 2) -> (B, 2)
|
199 |
+
if self.decouple:
|
200 |
+
size_h = size[:, 0]
|
201 |
+
size_w = size[:, 1]
|
202 |
+
freqs_h = self.get_1d_rope_freqs(self.theta, self.dim, size_h, self.ori_max_pe_len)
|
203 |
+
freqs_w = self.get_1d_rope_freqs(self.theta, self.dim, size_w, self.ori_max_pe_len)
|
204 |
+
else:
|
205 |
+
size_max = torch.max(size[:, 0], size[:, 1])
|
206 |
+
freqs_h = self.get_1d_rope_freqs(self.theta, self.dim, size_max, self.ori_max_pe_len)
|
207 |
+
freqs_w = self.get_1d_rope_freqs(self.theta, self.dim, size_max, self.ori_max_pe_len)
|
208 |
+
freqs_w = grid[:, 0][..., None] * freqs_w[:, None, :]
|
209 |
+
freqs_w = repeat(freqs_w, '... n -> ... (n r)', r = 2)
|
210 |
+
|
211 |
+
freqs_h = grid[:, 1][..., None] * freqs_h[:, None, :]
|
212 |
+
freqs_h = repeat(freqs_h, '... n -> ... (n r)', r = 2)
|
213 |
+
|
214 |
+
freqs = torch.cat([freqs_h, freqs_w], dim=-1) # (B, N, D)
|
215 |
+
|
216 |
+
if self.custom_freqs == 'yarn':
|
217 |
+
freqs_cos = freqs.cos() * self.mscale[:, None, None]
|
218 |
+
freqs_sin = freqs.sin() * self.mscale[:, None, None]
|
219 |
+
elif self.custom_freqs == 'ntk-aware-pro1':
|
220 |
+
freqs_cos = freqs.cos() * self.proportion1[:, None, None]
|
221 |
+
freqs_sin = freqs.sin() * self.proportion1[:, None, None]
|
222 |
+
elif self.custom_freqs == 'ntk-aware-pro2':
|
223 |
+
freqs_cos = freqs.cos() * self.proportion2[:, None, None]
|
224 |
+
freqs_sin = freqs.sin() * self.proportion2[:, None, None]
|
225 |
+
else:
|
226 |
+
freqs_cos = freqs.cos()
|
227 |
+
freqs_sin = freqs.sin()
|
228 |
+
|
229 |
+
return freqs_cos, freqs_sin
|
230 |
+
|
231 |
+
@lru_cache()
|
232 |
+
def get_2d_rope_from_grid(self, grid):
|
233 |
+
'''
|
234 |
+
grid: (B, 2, N)
|
235 |
+
N = H * W
|
236 |
+
the first dimension represents width, and the second reprensents height
|
237 |
+
e.g., [0. 1. 2. 3. 0. 1. 2. 3. 0. 1. 2. 3.]
|
238 |
+
[0. 0. 0. 0. 1. 1. 1. 1. 2. 2. 2. 2.]
|
239 |
+
'''
|
240 |
+
freqs_h = torch.einsum('..., f -> ... f', grid[:, 0], self.freqs_h)
|
241 |
+
freqs_h = repeat(freqs_h, '... n -> ... (n r)', r = 2)
|
242 |
+
freqs_w = torch.einsum('..., f -> ... f', grid[:, 1], self.freqs_w)
|
243 |
+
freqs_w = repeat(freqs_w, '... n -> ... (n r)', r = 2)
|
244 |
+
|
245 |
+
freqs = torch.cat([freqs_h, freqs_w], dim=-1) # (B, N, D)
|
246 |
+
|
247 |
+
if self.custom_freqs == 'yarn':
|
248 |
+
freqs_cos = freqs.cos() * self.mscale
|
249 |
+
freqs_sin = freqs.sin() * self.mscale
|
250 |
+
elif self.custom_freqs in ['ntk-aware-pro1', 'scale1']:
|
251 |
+
freqs_cos = freqs.cos() * self.proportion1
|
252 |
+
freqs_sin = freqs.sin() * self.proportion1
|
253 |
+
elif self.custom_freqs in ['ntk-aware-pro2', 'scale2']:
|
254 |
+
freqs_cos = freqs.cos() * self.proportion2
|
255 |
+
freqs_sin = freqs.sin() * self.proportion2
|
256 |
+
else:
|
257 |
+
freqs_cos = freqs.cos()
|
258 |
+
freqs_sin = freqs.sin()
|
259 |
+
|
260 |
+
return freqs_cos, freqs_sin
|
261 |
+
|
262 |
+
@lru_cache()
|
263 |
+
def get_cached_2d_rope_from_grid(self, grid: torch.Tensor):
|
264 |
+
'''
|
265 |
+
grid: (B, 2, N)
|
266 |
+
N = H * W
|
267 |
+
the first dimension represents width, and the second reprensents height
|
268 |
+
e.g., [0. 1. 2. 3. 0. 1. 2. 3. 0. 1. 2. 3.]
|
269 |
+
[0. 0. 0. 0. 1. 1. 1. 1. 2. 2. 2. 2.]
|
270 |
+
'''
|
271 |
+
if len(grid.shape) == 3: # (B, 2, N)
|
272 |
+
freqs_h, freqs_w = self.freqs_h_cached[grid[:, 0]], self.freqs_w_cached[grid[:, 1]]
|
273 |
+
elif len(grid.shape) == 2: # (2, N)
|
274 |
+
freqs_h, freqs_w = self.freqs_h_cached[grid[0]], self.freqs_w_cached[grid[1]]
|
275 |
+
freqs = torch.cat([freqs_h, freqs_w], dim=-1) # (B, N, D)
|
276 |
+
|
277 |
+
if self.custom_freqs == 'yarn':
|
278 |
+
freqs_cos = freqs.cos() * self.mscale
|
279 |
+
freqs_sin = freqs.sin() * self.mscale
|
280 |
+
elif self.custom_freqs in ['ntk-aware-pro1', 'scale1']:
|
281 |
+
freqs_cos = freqs.cos() * self.proportion1
|
282 |
+
freqs_sin = freqs.sin() * self.proportion1
|
283 |
+
elif self.custom_freqs in ['ntk-aware-pro2', 'scale2']:
|
284 |
+
freqs_cos = freqs.cos() * self.proportion2
|
285 |
+
freqs_sin = freqs.sin() * self.proportion2
|
286 |
+
else:
|
287 |
+
freqs_cos = freqs.cos()
|
288 |
+
freqs_sin = freqs.sin()
|
289 |
+
|
290 |
+
return freqs_cos, freqs_sin
|
291 |
+
|
292 |
+
|
293 |
+
def forward(self, x, grid):
|
294 |
+
'''
|
295 |
+
x: (B, n_head, N, D)
|
296 |
+
grid: (B, 2, N)
|
297 |
+
'''
|
298 |
+
# freqs_cos, freqs_sin = self.get_2d_rope_from_grid(grid)
|
299 |
+
# freqs_cos, freqs_sin = freqs_cos.unsqueeze(1), freqs_sin.unsqueeze(1)
|
300 |
+
# using cache to accelerate, this is the same with the above codes:
|
301 |
+
freqs_cos, freqs_sin = self.get_cached_2d_rope_from_grid(grid)
|
302 |
+
freqs_cos, freqs_sin = freqs_cos.unsqueeze(1), freqs_sin.unsqueeze(1)
|
303 |
+
return x * freqs_cos + rotate_half(x) * freqs_sin
|
304 |
+
|
305 |
+
|
tim/models/utils/text_encoders.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from transformers import T5EncoderModel, AutoModelForCausalLM, AutoTokenizer
|
4 |
+
|
5 |
+
|
6 |
+
# load text-encoder
|
7 |
+
def load_text_encoder(text_encoder_dir, device, weight_dtype):
|
8 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "true"
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(text_encoder_dir)
|
10 |
+
if "gemma" in text_encoder_dir:
|
11 |
+
tokenizer.padding_side = "right"
|
12 |
+
text_encoder = AutoModelForCausalLM.from_pretrained(
|
13 |
+
text_encoder_dir,
|
14 |
+
attn_implementation="flash_attention_2",
|
15 |
+
device_map="cpu",
|
16 |
+
torch_dtype=weight_dtype,
|
17 |
+
).model
|
18 |
+
elif "t5" in text_encoder_dir:
|
19 |
+
text_encoder = T5EncoderModel.from_pretrained(
|
20 |
+
text_encoder_dir,
|
21 |
+
attn_implementation="sdpa",
|
22 |
+
device_map="cpu",
|
23 |
+
torch_dtype=weight_dtype,
|
24 |
+
)
|
25 |
+
else:
|
26 |
+
raise NotImplementedError
|
27 |
+
text_encoder.requires_grad_(False)
|
28 |
+
text_encoder = text_encoder.eval().to(device=device, dtype=weight_dtype)
|
29 |
+
|
30 |
+
return text_encoder, tokenizer
|
31 |
+
|
32 |
+
|
33 |
+
def encode_prompt(
|
34 |
+
tokenizer,
|
35 |
+
text_encoder,
|
36 |
+
device,
|
37 |
+
weight_dtype,
|
38 |
+
captions,
|
39 |
+
use_last_hidden_state,
|
40 |
+
max_seq_length=256,
|
41 |
+
):
|
42 |
+
text_inputs = tokenizer(
|
43 |
+
captions,
|
44 |
+
padding="max_length",
|
45 |
+
max_length=max_seq_length,
|
46 |
+
truncation=True,
|
47 |
+
return_tensors="pt",
|
48 |
+
)
|
49 |
+
text_input_ids = text_inputs.input_ids.to(device)
|
50 |
+
prompt_masks = text_inputs.attention_mask.to(device)
|
51 |
+
with torch.no_grad(), torch.autocast("cuda", dtype=weight_dtype):
|
52 |
+
results = text_encoder(
|
53 |
+
input_ids=text_input_ids,
|
54 |
+
attention_mask=prompt_masks,
|
55 |
+
output_hidden_states=True,
|
56 |
+
)
|
57 |
+
|
58 |
+
if use_last_hidden_state:
|
59 |
+
prompt_embeds = results.last_hidden_state
|
60 |
+
else: # from Imagen paper
|
61 |
+
prompt_embeds = results.hidden_states[-2]
|
62 |
+
|
63 |
+
return prompt_embeds, prompt_masks
|