Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import torchvision.models as models | |
from torchvision.models import EfficientNet_B0_Weights # Or the specific version used | |
from PIL import Image | |
from torchvision import transforms | |
import json | |
from huggingface_hub import hf_hub_download | |
import os | |
# --- Configuration --- | |
# This should be the ID of the repository where your MODEL is stored | |
MODEL_REPO_ID = "bhumong/fruit-classifier-efficientnet-b0" # <-- REPLACE if different | |
MODEL_FILENAME = "pytorch_model.bin" | |
CONFIG_FILENAME = "config.json" | |
# --- 1. Load Model and Config --- | |
# (Using the function defined previously to load from Hub) | |
def load_model_from_hf(repo_id, model_filename, config_filename): | |
"""Loads model state_dict and config from Hugging Face Hub.""" | |
try: | |
config_path = hf_hub_download(repo_id=repo_id, filename=config_filename) | |
with open(config_path, 'r') as f: | |
config = json.load(f) | |
print("Config loaded:", config) # Debug print | |
except Exception as e: | |
print(f"Error loading config from {repo_id}/{config_filename}: {e}") | |
raise # Re-raise error if config fails | |
num_labels = config.get('num_labels') | |
id2label = config.get('id2label') | |
if num_labels is None or id2label is None: | |
raise ValueError("Config file must contain 'num_labels' and 'id2label'") | |
# Instantiate the correct architecture (EfficientNet-B0) | |
model = models.efficientnet_b0(weights=None) # Load architecture only | |
# Modify the classifier head | |
try: | |
num_ftrs = model.classifier[1].in_features | |
model.classifier[1] = torch.nn.Linear(num_ftrs, num_labels) | |
except Exception as e: | |
print(f"Error modifying model classifier: {e}") | |
raise | |
# Download and load model weights | |
try: | |
model_path = hf_hub_download(repo_id=repo_id, filename=model_filename) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
state_dict = torch.load(model_path, map_location=device) | |
model.load_state_dict(state_dict) | |
model.to(device) # Move model to device | |
model.eval() # Set to evaluation mode | |
print(f"Model loaded successfully from {repo_id} to device {device}.") | |
return model, config, id2label, device | |
except Exception as e: | |
print(f"Error loading model weights from {repo_id}/{model_filename}: {e}") | |
raise | |
# Load the model globally when the script starts | |
try: | |
model, config, id2label, device = load_model_from_hf(MODEL_REPO_ID, MODEL_FILENAME, CONFIG_FILENAME) | |
except Exception as e: | |
print(f"FATAL: Could not load model or config. Gradio app cannot start. Error: {e}") | |
# Optionally, exit or raise a specific error for Gradio to catch if possible | |
model, config, id2label, device = None, None, None, None # Prevent further errors | |
# --- 2. Define Preprocessing --- | |
IMG_SIZE = (224, 224) | |
mean=[0.485, 0.456, 0.406] | |
std=[0.229, 0.224, 0.225] | |
preprocess = transforms.Compose([ | |
transforms.Resize(IMG_SIZE), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=mean, std=std), | |
]) | |
# --- 3. Define Prediction Function --- | |
def predict(inp_image): | |
"""Takes a PIL image, preprocesses, predicts, and returns label confidences.""" | |
if model is None or id2label is None: | |
return {"Error": 1.0, "Message": "Model not loaded"} # Handle model load failure | |
if inp_image is None: | |
return {"Error": 1.0, "Message": "No image provided"} | |
try: | |
# Ensure image is RGB | |
img = inp_image.convert("RGB") | |
input_tensor = preprocess(img) | |
input_batch = input_tensor.unsqueeze(0) # Add batch dimension | |
input_batch = input_batch.to(device) # Move tensor to the correct device | |
with torch.no_grad(): | |
output = model(input_batch) | |
probabilities = torch.nn.functional.softmax(output[0], dim=0) | |
# Prepare output for Gradio Label component (dictionary {label: probability}) | |
confidences = {id2label[str(i)]: float(probabilities[i]) for i in range(len(id2label))} | |
return confidences | |
except Exception as e: | |
print(f"Error during prediction: {e}") | |
return {"Error": 1.0, "Message": f"Prediction failed: {e}"} | |
# --- 4. Create Gradio Interface --- | |
# Add example images (Make sure these paths exist within your Space repo!) | |
# Create an 'images' folder in your Space and upload some examples. | |
example_list = [ | |
["images/example_apple.jpg"], # <-- REPLACE with actual paths in your Space repo | |
["images/example_banana.jpg"], # <-- REPLACE with actual paths in your Space repo | |
["images/example_strawberry.jpg"] # <-- REPLACE with actual paths in your Space repo | |
] | |
# Check if example files exist, otherwise provide empty list | |
if not all(os.path.exists(ex[0]) for ex in example_list): | |
print("Warning: Example image paths not found. Clearing examples.") | |
example_list = [] | |
# Define Title, Description, and Article for the Gradio app | |
title = "Fruit Classifier πππ" | |
description = """ | |
Upload an image of a fruit or use one of the examples below. | |
This demo uses an EfficientNet-B0 model fine-tuned on the Fruits-360 dataset | |
(with merged classes) to predict the fruit type. | |
Model hosted on Hugging Face Hub: [{MODEL_REPO_ID}](https://huggingface.co/{MODEL_REPO_ID}) | |
""".format(MODEL_REPO_ID=MODEL_REPO_ID) # Format description with repo ID | |
article = """ | |
<div style='text-align: center;'> | |
Model trained using PyTorch and tracked with Neptune.ai. | | |
<a href='https://huggingface.co/{MODEL_REPO_ID}' target='_blank'>Model Repository</a> | | |
Built with Gradio | |
</div> | |
""".format(MODEL_REPO_ID=MODEL_REPO_ID) | |
# Create and launch the interface | |
if model is not None: # Only launch if model loaded successfully | |
iface = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil", label="Upload Fruit Image"), | |
outputs=gr.Label(num_top_classes=5, label="Predictions"), # Show top 5 predictions | |
title=title, | |
description=description, | |
article=article, | |
examples=example_list, | |
allow_flagging="never" # Optional: disable flagging | |
) | |
iface.launch() | |
else: | |
print("Gradio interface not launched due to model loading failure.") | |