bhumong's picture
Create app.py
eaf1c02 verified
import gradio as gr
import torch
import torchvision.models as models
from torchvision.models import EfficientNet_B0_Weights # Or the specific version used
from PIL import Image
from torchvision import transforms
import json
from huggingface_hub import hf_hub_download
import os
# --- Configuration ---
# This should be the ID of the repository where your MODEL is stored
MODEL_REPO_ID = "bhumong/fruit-classifier-efficientnet-b0" # <-- REPLACE if different
MODEL_FILENAME = "pytorch_model.bin"
CONFIG_FILENAME = "config.json"
# --- 1. Load Model and Config ---
# (Using the function defined previously to load from Hub)
def load_model_from_hf(repo_id, model_filename, config_filename):
"""Loads model state_dict and config from Hugging Face Hub."""
try:
config_path = hf_hub_download(repo_id=repo_id, filename=config_filename)
with open(config_path, 'r') as f:
config = json.load(f)
print("Config loaded:", config) # Debug print
except Exception as e:
print(f"Error loading config from {repo_id}/{config_filename}: {e}")
raise # Re-raise error if config fails
num_labels = config.get('num_labels')
id2label = config.get('id2label')
if num_labels is None or id2label is None:
raise ValueError("Config file must contain 'num_labels' and 'id2label'")
# Instantiate the correct architecture (EfficientNet-B0)
model = models.efficientnet_b0(weights=None) # Load architecture only
# Modify the classifier head
try:
num_ftrs = model.classifier[1].in_features
model.classifier[1] = torch.nn.Linear(num_ftrs, num_labels)
except Exception as e:
print(f"Error modifying model classifier: {e}")
raise
# Download and load model weights
try:
model_path = hf_hub_download(repo_id=repo_id, filename=model_filename)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
state_dict = torch.load(model_path, map_location=device)
model.load_state_dict(state_dict)
model.to(device) # Move model to device
model.eval() # Set to evaluation mode
print(f"Model loaded successfully from {repo_id} to device {device}.")
return model, config, id2label, device
except Exception as e:
print(f"Error loading model weights from {repo_id}/{model_filename}: {e}")
raise
# Load the model globally when the script starts
try:
model, config, id2label, device = load_model_from_hf(MODEL_REPO_ID, MODEL_FILENAME, CONFIG_FILENAME)
except Exception as e:
print(f"FATAL: Could not load model or config. Gradio app cannot start. Error: {e}")
# Optionally, exit or raise a specific error for Gradio to catch if possible
model, config, id2label, device = None, None, None, None # Prevent further errors
# --- 2. Define Preprocessing ---
IMG_SIZE = (224, 224)
mean=[0.485, 0.456, 0.406]
std=[0.229, 0.224, 0.225]
preprocess = transforms.Compose([
transforms.Resize(IMG_SIZE),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std),
])
# --- 3. Define Prediction Function ---
def predict(inp_image):
"""Takes a PIL image, preprocesses, predicts, and returns label confidences."""
if model is None or id2label is None:
return {"Error": 1.0, "Message": "Model not loaded"} # Handle model load failure
if inp_image is None:
return {"Error": 1.0, "Message": "No image provided"}
try:
# Ensure image is RGB
img = inp_image.convert("RGB")
input_tensor = preprocess(img)
input_batch = input_tensor.unsqueeze(0) # Add batch dimension
input_batch = input_batch.to(device) # Move tensor to the correct device
with torch.no_grad():
output = model(input_batch)
probabilities = torch.nn.functional.softmax(output[0], dim=0)
# Prepare output for Gradio Label component (dictionary {label: probability})
confidences = {id2label[str(i)]: float(probabilities[i]) for i in range(len(id2label))}
return confidences
except Exception as e:
print(f"Error during prediction: {e}")
return {"Error": 1.0, "Message": f"Prediction failed: {e}"}
# --- 4. Create Gradio Interface ---
# Add example images (Make sure these paths exist within your Space repo!)
# Create an 'images' folder in your Space and upload some examples.
example_list = [
["images/example_apple.jpg"], # <-- REPLACE with actual paths in your Space repo
["images/example_banana.jpg"], # <-- REPLACE with actual paths in your Space repo
["images/example_strawberry.jpg"] # <-- REPLACE with actual paths in your Space repo
]
# Check if example files exist, otherwise provide empty list
if not all(os.path.exists(ex[0]) for ex in example_list):
print("Warning: Example image paths not found. Clearing examples.")
example_list = []
# Define Title, Description, and Article for the Gradio app
title = "Fruit Classifier πŸŽπŸŒπŸ“"
description = """
Upload an image of a fruit or use one of the examples below.
This demo uses an EfficientNet-B0 model fine-tuned on the Fruits-360 dataset
(with merged classes) to predict the fruit type.
Model hosted on Hugging Face Hub: [{MODEL_REPO_ID}](https://huggingface.co/{MODEL_REPO_ID})
""".format(MODEL_REPO_ID=MODEL_REPO_ID) # Format description with repo ID
article = """
<div style='text-align: center;'>
Model trained using PyTorch and tracked with Neptune.ai. |
<a href='https://huggingface.co/{MODEL_REPO_ID}' target='_blank'>Model Repository</a> |
Built with Gradio
</div>
""".format(MODEL_REPO_ID=MODEL_REPO_ID)
# Create and launch the interface
if model is not None: # Only launch if model loaded successfully
iface = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil", label="Upload Fruit Image"),
outputs=gr.Label(num_top_classes=5, label="Predictions"), # Show top 5 predictions
title=title,
description=description,
article=article,
examples=example_list,
allow_flagging="never" # Optional: disable flagging
)
iface.launch()
else:
print("Gradio interface not launched due to model loading failure.")