bhumong commited on
Commit
eaf1c02
Β·
verified Β·
1 Parent(s): ce1a7af

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +157 -0
app.py ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import torchvision.models as models
4
+ from torchvision.models import EfficientNet_B0_Weights # Or the specific version used
5
+ from PIL import Image
6
+ from torchvision import transforms
7
+ import json
8
+ from huggingface_hub import hf_hub_download
9
+ import os
10
+
11
+ # --- Configuration ---
12
+ # This should be the ID of the repository where your MODEL is stored
13
+ MODEL_REPO_ID = "bhumong/fruit-classifier-efficientnet-b0" # <-- REPLACE if different
14
+ MODEL_FILENAME = "pytorch_model.bin"
15
+ CONFIG_FILENAME = "config.json"
16
+
17
+ # --- 1. Load Model and Config ---
18
+ # (Using the function defined previously to load from Hub)
19
+ def load_model_from_hf(repo_id, model_filename, config_filename):
20
+ """Loads model state_dict and config from Hugging Face Hub."""
21
+ try:
22
+ config_path = hf_hub_download(repo_id=repo_id, filename=config_filename)
23
+ with open(config_path, 'r') as f:
24
+ config = json.load(f)
25
+ print("Config loaded:", config) # Debug print
26
+ except Exception as e:
27
+ print(f"Error loading config from {repo_id}/{config_filename}: {e}")
28
+ raise # Re-raise error if config fails
29
+
30
+ num_labels = config.get('num_labels')
31
+ id2label = config.get('id2label')
32
+
33
+ if num_labels is None or id2label is None:
34
+ raise ValueError("Config file must contain 'num_labels' and 'id2label'")
35
+
36
+ # Instantiate the correct architecture (EfficientNet-B0)
37
+ model = models.efficientnet_b0(weights=None) # Load architecture only
38
+
39
+ # Modify the classifier head
40
+ try:
41
+ num_ftrs = model.classifier[1].in_features
42
+ model.classifier[1] = torch.nn.Linear(num_ftrs, num_labels)
43
+ except Exception as e:
44
+ print(f"Error modifying model classifier: {e}")
45
+ raise
46
+
47
+ # Download and load model weights
48
+ try:
49
+ model_path = hf_hub_download(repo_id=repo_id, filename=model_filename)
50
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
51
+ state_dict = torch.load(model_path, map_location=device)
52
+ model.load_state_dict(state_dict)
53
+ model.to(device) # Move model to device
54
+ model.eval() # Set to evaluation mode
55
+ print(f"Model loaded successfully from {repo_id} to device {device}.")
56
+ return model, config, id2label, device
57
+ except Exception as e:
58
+ print(f"Error loading model weights from {repo_id}/{model_filename}: {e}")
59
+ raise
60
+
61
+ # Load the model globally when the script starts
62
+ try:
63
+ model, config, id2label, device = load_model_from_hf(MODEL_REPO_ID, MODEL_FILENAME, CONFIG_FILENAME)
64
+ except Exception as e:
65
+ print(f"FATAL: Could not load model or config. Gradio app cannot start. Error: {e}")
66
+ # Optionally, exit or raise a specific error for Gradio to catch if possible
67
+ model, config, id2label, device = None, None, None, None # Prevent further errors
68
+
69
+
70
+ # --- 2. Define Preprocessing ---
71
+ IMG_SIZE = (224, 224)
72
+ mean=[0.485, 0.456, 0.406]
73
+ std=[0.229, 0.224, 0.225]
74
+
75
+ preprocess = transforms.Compose([
76
+ transforms.Resize(IMG_SIZE),
77
+ transforms.ToTensor(),
78
+ transforms.Normalize(mean=mean, std=std),
79
+ ])
80
+
81
+ # --- 3. Define Prediction Function ---
82
+ def predict(inp_image):
83
+ """Takes a PIL image, preprocesses, predicts, and returns label confidences."""
84
+ if model is None or id2label is None:
85
+ return {"Error": 1.0, "Message": "Model not loaded"} # Handle model load failure
86
+
87
+ if inp_image is None:
88
+ return {"Error": 1.0, "Message": "No image provided"}
89
+
90
+ try:
91
+ # Ensure image is RGB
92
+ img = inp_image.convert("RGB")
93
+ input_tensor = preprocess(img)
94
+ input_batch = input_tensor.unsqueeze(0) # Add batch dimension
95
+ input_batch = input_batch.to(device) # Move tensor to the correct device
96
+
97
+ with torch.no_grad():
98
+ output = model(input_batch)
99
+ probabilities = torch.nn.functional.softmax(output[0], dim=0)
100
+
101
+ # Prepare output for Gradio Label component (dictionary {label: probability})
102
+ confidences = {id2label[str(i)]: float(probabilities[i]) for i in range(len(id2label))}
103
+ return confidences
104
+
105
+ except Exception as e:
106
+ print(f"Error during prediction: {e}")
107
+ return {"Error": 1.0, "Message": f"Prediction failed: {e}"}
108
+
109
+
110
+ # --- 4. Create Gradio Interface ---
111
+
112
+ # Add example images (Make sure these paths exist within your Space repo!)
113
+ # Create an 'images' folder in your Space and upload some examples.
114
+ example_list = [
115
+ ["images/example_apple.jpg"], # <-- REPLACE with actual paths in your Space repo
116
+ ["images/example_banana.jpg"], # <-- REPLACE with actual paths in your Space repo
117
+ ["images/example_strawberry.jpg"] # <-- REPLACE with actual paths in your Space repo
118
+ ]
119
+ # Check if example files exist, otherwise provide empty list
120
+ if not all(os.path.exists(ex[0]) for ex in example_list):
121
+ print("Warning: Example image paths not found. Clearing examples.")
122
+ example_list = []
123
+
124
+
125
+ # Define Title, Description, and Article for the Gradio app
126
+ title = "Fruit Classifier πŸŽπŸŒπŸ“"
127
+ description = """
128
+ Upload an image of a fruit or use one of the examples below.
129
+ This demo uses an EfficientNet-B0 model fine-tuned on the Fruits-360 dataset
130
+ (with merged classes) to predict the fruit type.
131
+ Model hosted on Hugging Face Hub: [{MODEL_REPO_ID}](https://huggingface.co/{MODEL_REPO_ID})
132
+ """.format(MODEL_REPO_ID=MODEL_REPO_ID) # Format description with repo ID
133
+ article = """
134
+ <div style='text-align: center;'>
135
+ Model trained using PyTorch and tracked with Neptune.ai. |
136
+ <a href='https://huggingface.co/{MODEL_REPO_ID}' target='_blank'>Model Repository</a> |
137
+ Built with Gradio
138
+ </div>
139
+ """.format(MODEL_REPO_ID=MODEL_REPO_ID)
140
+
141
+ # Create and launch the interface
142
+ if model is not None: # Only launch if model loaded successfully
143
+ iface = gr.Interface(
144
+ fn=predict,
145
+ inputs=gr.Image(type="pil", label="Upload Fruit Image"),
146
+ outputs=gr.Label(num_top_classes=5, label="Predictions"), # Show top 5 predictions
147
+ title=title,
148
+ description=description,
149
+ article=article,
150
+ examples=example_list,
151
+ allow_flagging="never" # Optional: disable flagging
152
+ )
153
+
154
+ iface.launch()
155
+ else:
156
+ print("Gradio interface not launched due to model loading failure.")
157
+