rayst3r / app.py
bartduis's picture
Update app.py
6c23b9d verified
raw
history blame
7.69 kB
from spaces import GPU
import torch
def dummy_warmup():
if torch.cuda.is_available():
print("[INFO] CUDA is available. Running warmup.")
# Run any GPU warm-up or dummy CUDA calls here
x = torch.tensor([1.0]).cuda()
else:
print("[WARNING] CUDA not available. Skipping warmup.")
# import numpy as np
# import gradio as gr
# import rembg
# import trimesh
# from moge.model.v1 import MoGeModel
# from utils.geometry import compute_pointmap
# import os, shutil
# import cv2
# from huggingface_hub import hf_hub_download
# from PIL import Image
# import matplotlib.pyplot as plt
# from eval_wrapper.eval import EvalWrapper, eval_scene
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# @GPU(duration = 180)
# def dummy_warmup():
# import torch
# if torch.cuda.is_available():
# print("Warmup: GPU is available!")
# _ = torch.tensor([0.0]).to(device)
# dummy_warmup()
# outdir = "/tmp/rayst3r"
# # loading all necessary models
# print("Loading MoGe model")
# # Load the model from huggingface hub (or load from local).
# def depth2uint16(depth):
# return depth * torch.iinfo(torch.uint16).max / 10.0 # threshold is in m, convert to uint16 value
# def save_tensor_as_png(tensor: torch.Tensor, path: str, dtype: torch.dtype | None = None):
# if dtype is None:
# dtype = tensor.dtype
# Image.fromarray(tensor.to(dtype).cpu().numpy()).save(path)
# def colorize_points_with_turbo_all_dims(points, method='norm',cmap='turbo'):
# """
# Assigns colors to 3D points using the 'turbo' colormap based on a scalar computed from all 3 dimensions.
# Args:
# points (np.ndarray): (N, 3) array of 3D points.
# method (str): Method for reducing 3D point to scalar. Options: 'norm', 'pca'.
# Returns:
# np.ndarray: (N, 3) RGB colors in [0, 1].
# """
# assert points.shape[1] == 3, "Input must be of shape (N, 3)"
# if method == 'norm':
# scalar = np.linalg.norm(points, axis=1)
# elif method == 'pca':
# # Project onto first principal component
# mean = points.mean(axis=0)
# centered = points - mean
# u, s, vh = np.linalg.svd(centered, full_matrices=False)
# scalar = centered @ vh[0] # Project onto first principal axis
# else:
# raise ValueError(f"Unknown method '{method}'")
# # Normalize scalar to [0, 1]
# scalar_min, scalar_max = scalar.min(), scalar.max()
# normalized = (scalar - scalar_min) / (scalar_max - scalar_min + 1e-8)
# # Apply turbo colormap
# cmap = plt.colormaps.get_cmap(cmap)
# colors = cmap(normalized)[:, :3] # Drop alpha
# return colors
# def prep_for_rayst3r(img,depth_dict,mask):
# H, W = img.shape[:2]
# intrinsics = depth_dict["intrinsics"].detach().cpu()
# intrinsics[0] *= W
# intrinsics[1] *= H
# input_dir = os.path.join(outdir, "input")
# if os.path.exists(input_dir):
# shutil.rmtree(input_dir)
# os.makedirs(input_dir, exist_ok=True)
# # save intrinsics
# torch.save(intrinsics, os.path.join(input_dir, "intrinsics.pt"))
# # save depth
# depth = depth_dict["depth"].cpu()
# depth = depth2uint16(depth)
# save_tensor_as_png(depth, os.path.join(input_dir, "depth.png"),dtype=torch.uint16)
# # save mask as bool
# save_tensor_as_png(torch.from_numpy(mask).bool(), os.path.join(input_dir, "mask.png"),dtype=torch.bool)
# # save image
# save_tensor_as_png(torch.from_numpy(img), os.path.join(input_dir, "rgb.png"))
# @GPU(duration = 180)
# def rayst3r_to_glb(img,depth_dict,mask,max_total_points=10e6,rotated=False):
# prep_for_rayst3r(img,depth_dict,mask)
# dino_model = torch.hub.load('facebookresearch/dinov2', "dinov2_vitl14_reg")
# dino_model.eval()
# dino_model.to(device)
# print("Loading RaySt3R model")
# rayst3r_checkpoint = hf_hub_download("bartduis/rayst3r", "rayst3r.pth")
# rayst3r_model = EvalWrapper(rayst3r_checkpoint,device='cpu')
# rayst3r_model = rayst3r_model.to(device)
# rayst3r_points = eval_scene(rayst3r_model,os.path.join(outdir, "input"),do_filter_all_masks=True,dino_model=dino_model, device = device).cpu()
# # subsample points
# n_points = min(max_total_points,rayst3r_points.shape[0])
# rayst3r_points = rayst3r_points[torch.randperm(rayst3r_points.shape[0])[:n_points]].numpy()
# rayst3r_points[:,1] = -rayst3r_points[:,1]
# rayst3r_points[:,2] = -rayst3r_points[:,2]
# # make all points red
# colors = colorize_points_with_turbo_all_dims(rayst3r_points)
# # load the input glb
# scene = trimesh.Scene()
# pct = trimesh.PointCloud(rayst3r_points, colors=colors, radius=0.01)
# scene.add_geometry(pct)
# outfile = os.path.join(outdir, "rayst3r.glb")
# scene.export(outfile)
# return outfile
# def input_to_glb(outdir,img,depth_dict,mask,rotated=False):
# H, W = img.shape[:2]
# intrinsics = depth_dict["intrinsics"].cpu().numpy()
# intrinsics[0] *= W
# intrinsics[1] *= H
# depth = depth_dict["depth"].cpu().numpy()
# cam2world = np.eye(4)
# points_world = compute_pointmap(depth, cam2world, intrinsics)
# scene = trimesh.Scene()
# pts = np.concatenate([p[m] for p,m in zip(points_world,mask)])
# col = np.concatenate([c[m] for c,m in zip(img,mask)])
# pts = pts.reshape(-1,3)
# pts[:,1] = -pts[:,1]
# pts[:,2] = -pts[:,2]
# pct = trimesh.PointCloud(pts, colors=col.reshape(-1,3))
# scene.add_geometry(pct)
# outfile = os.path.join(outdir, "input.glb")
# scene.export(outfile)
# return outfile
# @GPU(duration = 180)
# def depth_moge(input_img):
# moge_model = MoGeModel.from_pretrained("Ruicheng/moge-vitl")
# moge_model.to(device)
# input_img_torch = torch.tensor(input_img / 255, dtype=torch.float32, device=device).permute(2, 0, 1)
# output = moge_model.infer(input_img_torch).cpu()
# return output
# @GPU(duration = 180)
# def mask_rembg(input_img):
# #masked_img = rembg.remove(input_img,)
# output_img = rembg.remove(input_img, alpha_matting=False, post_process_mask=True)
# # Convert to NumPy array
# output_np = np.array(output_img)
# alpha = output_np[..., 3]
# # Step 2: Erode the alpha mask to shrink object slightly
# kernel = np.ones((3, 3), np.uint8) # Adjust size for aggressiveness
# eroded_alpha = cv2.erode(alpha, kernel, iterations=1)
# # Step 3: Replace alpha channel
# output_np[..., 3] = eroded_alpha
# mask = output_np[:,:,-1] >= 128
# rgb = output_np[:,:,:3]
# return mask, rgb
def process_image(input_img):
return input_img, input_img
# @GPU(duration = 180)
# def process_image(input_img):
# # resize the input image
# rotated = False
# #if input_img.shape[0] > input_img.shape[1]:
# #input_img = cv2.rotate(input_img, cv2.ROTATE_90_COUNTERCLOCKWISE)
# #rotated = True
# input_img = cv2.resize(input_img, (640, 480))
# # mask, rgb = mask_rembg(input_img)
# # depth_dict = depth_moge(input_img)
# # if os.path.exists(outdir):
# # shutil.rmtree(outdir)
# # os.makedirs(outdir)
# # input_glb = input_to_glb(outdir,input_img,depth_dict,mask,rotated=rotated)
# # # visualize the input points in 3D in gradio
# # inference_glb = rayst3r_to_glb(input_img,depth_dict,mask,rotated=rotated)
# return input_img, input_img
demo = gr.Interface(
process_image,
gr.Image(),
[gr.Model3D(label="Input"), gr.Model3D(label="RaySt3R",)]
)
if __name__ == "__main__":
dummy_warmup()
demo.launch()