File size: 7,688 Bytes
c83929c
c485b7b
f5bbdd3
 
 
 
 
 
 
 
 
6c23b9d
5887b54
 
 
 
 
 
 
 
 
 
 
 
70d1188
7338f96
3fc8eb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
560e9b5
3fc8eb5
 
 
01d5275
3fc8eb5
 
 
 
560e9b5
3fc8eb5
70d1188
3fc8eb5
 
 
70d1188
3fc8eb5
 
70d1188
3fc8eb5
 
70d1188
3fc8eb5
 
 
 
70d1188
3fc8eb5
 
 
70d1188
 
3fc8eb5
 
 
 
 
70d1188
3fc8eb5
 
 
70d1188
3fc8eb5
 
 
70d1188
3fc8eb5
 
 
70d1188
 
3fc8eb5
 
70d1188
3fc8eb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70d1188
3fc8eb5
 
 
 
6c23b9d
 
3fc8eb5
 
 
 
 
 
 
 
 
 
 
 
 
 
ba79a4c
3fc8eb5
70d1188
3fc8eb5
 
70d1188
3fc8eb5
70d1188
6c23b9d
 
 
 
 
 
 
 
 
70d1188
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
from spaces import GPU
import torch

def dummy_warmup():
    if torch.cuda.is_available():
        print("[INFO] CUDA is available. Running warmup.")
        # Run any GPU warm-up or dummy CUDA calls here
        x = torch.tensor([1.0]).cuda()
    else:
        print("[WARNING] CUDA not available. Skipping warmup.")


# import numpy as np
# import gradio as gr
# import rembg
# import trimesh
# from moge.model.v1 import MoGeModel
# from utils.geometry import compute_pointmap
# import os, shutil
# import cv2
# from huggingface_hub import hf_hub_download
# from PIL import Image
# import matplotlib.pyplot as plt
# from eval_wrapper.eval import EvalWrapper, eval_scene


# device = 'cuda' if torch.cuda.is_available() else 'cpu'

# @GPU(duration = 180)
# def dummy_warmup():
#     import torch
#     if torch.cuda.is_available():
#         print("Warmup: GPU is available!")
#         _ = torch.tensor([0.0]).to(device)
# dummy_warmup()


# outdir = "/tmp/rayst3r"

# # loading all necessary models

# print("Loading MoGe model")
# # Load the model from huggingface hub (or load from local).


# def depth2uint16(depth):
#     return depth * torch.iinfo(torch.uint16).max / 10.0 # threshold is in m, convert to uint16 value

# def save_tensor_as_png(tensor: torch.Tensor, path: str, dtype: torch.dtype | None = None):
#     if dtype is None:
#         dtype = tensor.dtype
#     Image.fromarray(tensor.to(dtype).cpu().numpy()).save(path)

# def colorize_points_with_turbo_all_dims(points, method='norm',cmap='turbo'):
#     """
#     Assigns colors to 3D points using the 'turbo' colormap based on a scalar computed from all 3 dimensions.

#     Args:
#         points (np.ndarray): (N, 3) array of 3D points.
#         method (str): Method for reducing 3D point to scalar. Options: 'norm', 'pca'.

#     Returns:
#         np.ndarray: (N, 3) RGB colors in [0, 1].
#     """
#     assert points.shape[1] == 3, "Input must be of shape (N, 3)"

#     if method == 'norm':
#         scalar = np.linalg.norm(points, axis=1)
#     elif method == 'pca':
#         # Project onto first principal component
#         mean = points.mean(axis=0)
#         centered = points - mean
#         u, s, vh = np.linalg.svd(centered, full_matrices=False)
#         scalar = centered @ vh[0]  # Project onto first principal axis
#     else:
#         raise ValueError(f"Unknown method '{method}'")

#     # Normalize scalar to [0, 1]
#     scalar_min, scalar_max = scalar.min(), scalar.max()
#     normalized = (scalar - scalar_min) / (scalar_max - scalar_min + 1e-8)

#     # Apply turbo colormap
#     cmap = plt.colormaps.get_cmap(cmap)
#     colors = cmap(normalized)[:, :3]  # Drop alpha

#     return colors

# def prep_for_rayst3r(img,depth_dict,mask):
#     H, W = img.shape[:2]
#     intrinsics = depth_dict["intrinsics"].detach().cpu()
#     intrinsics[0] *= W
#     intrinsics[1] *= H

#     input_dir = os.path.join(outdir, "input")
#     if os.path.exists(input_dir):
#         shutil.rmtree(input_dir)
#     os.makedirs(input_dir, exist_ok=True)
#     # save intrinsics
#     torch.save(intrinsics, os.path.join(input_dir, "intrinsics.pt"))

#     # save depth
#     depth = depth_dict["depth"].cpu()
#     depth = depth2uint16(depth)
#     save_tensor_as_png(depth, os.path.join(input_dir, "depth.png"),dtype=torch.uint16)

#     # save mask as bool 
#     save_tensor_as_png(torch.from_numpy(mask).bool(), os.path.join(input_dir, "mask.png"),dtype=torch.bool)
#     # save image
#     save_tensor_as_png(torch.from_numpy(img), os.path.join(input_dir, "rgb.png"))

# @GPU(duration = 180)
# def rayst3r_to_glb(img,depth_dict,mask,max_total_points=10e6,rotated=False):
#     prep_for_rayst3r(img,depth_dict,mask)
    
#     dino_model = torch.hub.load('facebookresearch/dinov2', "dinov2_vitl14_reg")
#     dino_model.eval()
#     dino_model.to(device)
    
#     print("Loading RaySt3R model")
#     rayst3r_checkpoint = hf_hub_download("bartduis/rayst3r", "rayst3r.pth")
#     rayst3r_model = EvalWrapper(rayst3r_checkpoint,device='cpu')
#     rayst3r_model = rayst3r_model.to(device)
    
#     rayst3r_points = eval_scene(rayst3r_model,os.path.join(outdir, "input"),do_filter_all_masks=True,dino_model=dino_model, device = device).cpu()

#     # subsample points
#     n_points = min(max_total_points,rayst3r_points.shape[0])
#     rayst3r_points = rayst3r_points[torch.randperm(rayst3r_points.shape[0])[:n_points]].numpy()
    
#     rayst3r_points[:,1] = -rayst3r_points[:,1]
#     rayst3r_points[:,2] = -rayst3r_points[:,2]
    
#     # make all points red
#     colors = colorize_points_with_turbo_all_dims(rayst3r_points)

#     # load the input glb
#     scene = trimesh.Scene()
#     pct = trimesh.PointCloud(rayst3r_points, colors=colors, radius=0.01)
#     scene.add_geometry(pct)
    
#     outfile = os.path.join(outdir, "rayst3r.glb")
#     scene.export(outfile)
#     return outfile


# def input_to_glb(outdir,img,depth_dict,mask,rotated=False):
#     H, W = img.shape[:2]
#     intrinsics = depth_dict["intrinsics"].cpu().numpy()
#     intrinsics[0] *= W
#     intrinsics[1] *= H
    
#     depth = depth_dict["depth"].cpu().numpy()
#     cam2world = np.eye(4)
#     points_world = compute_pointmap(depth, cam2world, intrinsics)

#     scene = trimesh.Scene()
#     pts = np.concatenate([p[m] for p,m in zip(points_world,mask)])
#     col = np.concatenate([c[m] for c,m in zip(img,mask)])

#     pts = pts.reshape(-1,3)
#     pts[:,1] = -pts[:,1]
#     pts[:,2] = -pts[:,2]


#     pct = trimesh.PointCloud(pts, colors=col.reshape(-1,3))
#     scene.add_geometry(pct)
    
#     outfile = os.path.join(outdir, "input.glb")
#     scene.export(outfile)
#     return outfile

# @GPU(duration = 180)
# def depth_moge(input_img):
#     moge_model = MoGeModel.from_pretrained("Ruicheng/moge-vitl")
#     moge_model.to(device)
#     input_img_torch = torch.tensor(input_img / 255, dtype=torch.float32, device=device).permute(2, 0, 1)
#     output = moge_model.infer(input_img_torch).cpu()
#     return output 

# @GPU(duration = 180)
# def mask_rembg(input_img):
#     #masked_img = rembg.remove(input_img,)
#     output_img = rembg.remove(input_img, alpha_matting=False, post_process_mask=True)

#     # Convert to NumPy array
#     output_np = np.array(output_img)
#     alpha = output_np[..., 3]

#     # Step 2: Erode the alpha mask to shrink object slightly
#     kernel = np.ones((3, 3), np.uint8)  # Adjust size for aggressiveness
#     eroded_alpha = cv2.erode(alpha, kernel, iterations=1)
#     # Step 3: Replace alpha channel
#     output_np[..., 3] = eroded_alpha
  
#     mask = output_np[:,:,-1] >= 128
#     rgb = output_np[:,:,:3]
#     return mask, rgb 

def process_image(input_img):
    return input_img, input_img
# @GPU(duration = 180)
# def process_image(input_img):
#     # resize the input image
#     rotated = False
#     #if input_img.shape[0] > input_img.shape[1]:
#         #input_img = cv2.rotate(input_img, cv2.ROTATE_90_COUNTERCLOCKWISE)
#         #rotated = True
#     input_img = cv2.resize(input_img, (640, 480))
#     # mask, rgb = mask_rembg(input_img)
#     # depth_dict = depth_moge(input_img)

#     # if os.path.exists(outdir):
#     #     shutil.rmtree(outdir)
#     # os.makedirs(outdir)
    
#     # input_glb = input_to_glb(outdir,input_img,depth_dict,mask,rotated=rotated)
    
#     # # visualize the input points in 3D in gradio
#     # inference_glb = rayst3r_to_glb(input_img,depth_dict,mask,rotated=rotated)

#     return input_img, input_img

demo = gr.Interface(
    process_image,
    gr.Image(),
    [gr.Model3D(label="Input"), gr.Model3D(label="RaySt3R",)]
)

if __name__ == "__main__":
    dummy_warmup()
    demo.launch()