File size: 7,688 Bytes
c83929c c485b7b f5bbdd3 6c23b9d 5887b54 70d1188 7338f96 3fc8eb5 560e9b5 3fc8eb5 01d5275 3fc8eb5 560e9b5 3fc8eb5 70d1188 3fc8eb5 70d1188 3fc8eb5 70d1188 3fc8eb5 70d1188 3fc8eb5 70d1188 3fc8eb5 70d1188 3fc8eb5 70d1188 3fc8eb5 70d1188 3fc8eb5 70d1188 3fc8eb5 70d1188 3fc8eb5 70d1188 3fc8eb5 70d1188 3fc8eb5 6c23b9d 3fc8eb5 ba79a4c 3fc8eb5 70d1188 3fc8eb5 70d1188 3fc8eb5 70d1188 6c23b9d 70d1188 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
from spaces import GPU
import torch
def dummy_warmup():
if torch.cuda.is_available():
print("[INFO] CUDA is available. Running warmup.")
# Run any GPU warm-up or dummy CUDA calls here
x = torch.tensor([1.0]).cuda()
else:
print("[WARNING] CUDA not available. Skipping warmup.")
# import numpy as np
# import gradio as gr
# import rembg
# import trimesh
# from moge.model.v1 import MoGeModel
# from utils.geometry import compute_pointmap
# import os, shutil
# import cv2
# from huggingface_hub import hf_hub_download
# from PIL import Image
# import matplotlib.pyplot as plt
# from eval_wrapper.eval import EvalWrapper, eval_scene
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# @GPU(duration = 180)
# def dummy_warmup():
# import torch
# if torch.cuda.is_available():
# print("Warmup: GPU is available!")
# _ = torch.tensor([0.0]).to(device)
# dummy_warmup()
# outdir = "/tmp/rayst3r"
# # loading all necessary models
# print("Loading MoGe model")
# # Load the model from huggingface hub (or load from local).
# def depth2uint16(depth):
# return depth * torch.iinfo(torch.uint16).max / 10.0 # threshold is in m, convert to uint16 value
# def save_tensor_as_png(tensor: torch.Tensor, path: str, dtype: torch.dtype | None = None):
# if dtype is None:
# dtype = tensor.dtype
# Image.fromarray(tensor.to(dtype).cpu().numpy()).save(path)
# def colorize_points_with_turbo_all_dims(points, method='norm',cmap='turbo'):
# """
# Assigns colors to 3D points using the 'turbo' colormap based on a scalar computed from all 3 dimensions.
# Args:
# points (np.ndarray): (N, 3) array of 3D points.
# method (str): Method for reducing 3D point to scalar. Options: 'norm', 'pca'.
# Returns:
# np.ndarray: (N, 3) RGB colors in [0, 1].
# """
# assert points.shape[1] == 3, "Input must be of shape (N, 3)"
# if method == 'norm':
# scalar = np.linalg.norm(points, axis=1)
# elif method == 'pca':
# # Project onto first principal component
# mean = points.mean(axis=0)
# centered = points - mean
# u, s, vh = np.linalg.svd(centered, full_matrices=False)
# scalar = centered @ vh[0] # Project onto first principal axis
# else:
# raise ValueError(f"Unknown method '{method}'")
# # Normalize scalar to [0, 1]
# scalar_min, scalar_max = scalar.min(), scalar.max()
# normalized = (scalar - scalar_min) / (scalar_max - scalar_min + 1e-8)
# # Apply turbo colormap
# cmap = plt.colormaps.get_cmap(cmap)
# colors = cmap(normalized)[:, :3] # Drop alpha
# return colors
# def prep_for_rayst3r(img,depth_dict,mask):
# H, W = img.shape[:2]
# intrinsics = depth_dict["intrinsics"].detach().cpu()
# intrinsics[0] *= W
# intrinsics[1] *= H
# input_dir = os.path.join(outdir, "input")
# if os.path.exists(input_dir):
# shutil.rmtree(input_dir)
# os.makedirs(input_dir, exist_ok=True)
# # save intrinsics
# torch.save(intrinsics, os.path.join(input_dir, "intrinsics.pt"))
# # save depth
# depth = depth_dict["depth"].cpu()
# depth = depth2uint16(depth)
# save_tensor_as_png(depth, os.path.join(input_dir, "depth.png"),dtype=torch.uint16)
# # save mask as bool
# save_tensor_as_png(torch.from_numpy(mask).bool(), os.path.join(input_dir, "mask.png"),dtype=torch.bool)
# # save image
# save_tensor_as_png(torch.from_numpy(img), os.path.join(input_dir, "rgb.png"))
# @GPU(duration = 180)
# def rayst3r_to_glb(img,depth_dict,mask,max_total_points=10e6,rotated=False):
# prep_for_rayst3r(img,depth_dict,mask)
# dino_model = torch.hub.load('facebookresearch/dinov2', "dinov2_vitl14_reg")
# dino_model.eval()
# dino_model.to(device)
# print("Loading RaySt3R model")
# rayst3r_checkpoint = hf_hub_download("bartduis/rayst3r", "rayst3r.pth")
# rayst3r_model = EvalWrapper(rayst3r_checkpoint,device='cpu')
# rayst3r_model = rayst3r_model.to(device)
# rayst3r_points = eval_scene(rayst3r_model,os.path.join(outdir, "input"),do_filter_all_masks=True,dino_model=dino_model, device = device).cpu()
# # subsample points
# n_points = min(max_total_points,rayst3r_points.shape[0])
# rayst3r_points = rayst3r_points[torch.randperm(rayst3r_points.shape[0])[:n_points]].numpy()
# rayst3r_points[:,1] = -rayst3r_points[:,1]
# rayst3r_points[:,2] = -rayst3r_points[:,2]
# # make all points red
# colors = colorize_points_with_turbo_all_dims(rayst3r_points)
# # load the input glb
# scene = trimesh.Scene()
# pct = trimesh.PointCloud(rayst3r_points, colors=colors, radius=0.01)
# scene.add_geometry(pct)
# outfile = os.path.join(outdir, "rayst3r.glb")
# scene.export(outfile)
# return outfile
# def input_to_glb(outdir,img,depth_dict,mask,rotated=False):
# H, W = img.shape[:2]
# intrinsics = depth_dict["intrinsics"].cpu().numpy()
# intrinsics[0] *= W
# intrinsics[1] *= H
# depth = depth_dict["depth"].cpu().numpy()
# cam2world = np.eye(4)
# points_world = compute_pointmap(depth, cam2world, intrinsics)
# scene = trimesh.Scene()
# pts = np.concatenate([p[m] for p,m in zip(points_world,mask)])
# col = np.concatenate([c[m] for c,m in zip(img,mask)])
# pts = pts.reshape(-1,3)
# pts[:,1] = -pts[:,1]
# pts[:,2] = -pts[:,2]
# pct = trimesh.PointCloud(pts, colors=col.reshape(-1,3))
# scene.add_geometry(pct)
# outfile = os.path.join(outdir, "input.glb")
# scene.export(outfile)
# return outfile
# @GPU(duration = 180)
# def depth_moge(input_img):
# moge_model = MoGeModel.from_pretrained("Ruicheng/moge-vitl")
# moge_model.to(device)
# input_img_torch = torch.tensor(input_img / 255, dtype=torch.float32, device=device).permute(2, 0, 1)
# output = moge_model.infer(input_img_torch).cpu()
# return output
# @GPU(duration = 180)
# def mask_rembg(input_img):
# #masked_img = rembg.remove(input_img,)
# output_img = rembg.remove(input_img, alpha_matting=False, post_process_mask=True)
# # Convert to NumPy array
# output_np = np.array(output_img)
# alpha = output_np[..., 3]
# # Step 2: Erode the alpha mask to shrink object slightly
# kernel = np.ones((3, 3), np.uint8) # Adjust size for aggressiveness
# eroded_alpha = cv2.erode(alpha, kernel, iterations=1)
# # Step 3: Replace alpha channel
# output_np[..., 3] = eroded_alpha
# mask = output_np[:,:,-1] >= 128
# rgb = output_np[:,:,:3]
# return mask, rgb
def process_image(input_img):
return input_img, input_img
# @GPU(duration = 180)
# def process_image(input_img):
# # resize the input image
# rotated = False
# #if input_img.shape[0] > input_img.shape[1]:
# #input_img = cv2.rotate(input_img, cv2.ROTATE_90_COUNTERCLOCKWISE)
# #rotated = True
# input_img = cv2.resize(input_img, (640, 480))
# # mask, rgb = mask_rembg(input_img)
# # depth_dict = depth_moge(input_img)
# # if os.path.exists(outdir):
# # shutil.rmtree(outdir)
# # os.makedirs(outdir)
# # input_glb = input_to_glb(outdir,input_img,depth_dict,mask,rotated=rotated)
# # # visualize the input points in 3D in gradio
# # inference_glb = rayst3r_to_glb(input_img,depth_dict,mask,rotated=rotated)
# return input_img, input_img
demo = gr.Interface(
process_image,
gr.Image(),
[gr.Model3D(label="Input"), gr.Model3D(label="RaySt3R",)]
)
if __name__ == "__main__":
dummy_warmup()
demo.launch()
|