bartduis commited on
Commit
c485b7b
·
verified ·
1 Parent(s): d43e49d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -12
app.py CHANGED
@@ -1,15 +1,7 @@
1
  from spaces import GPU
2
- @GPU
3
- def dummy_warmup():
4
- import torch
5
- if torch.cuda.is_available():
6
- print("Warmup: GPU is available!")
7
- _ = torch.tensor([0.0]).to("cuda")
8
- dummy_warmup()
9
-
10
  import numpy as np
11
  import gradio as gr
12
- import torch
13
  import rembg
14
  import trimesh
15
  from moge.model.v1 import MoGeModel
@@ -22,6 +14,17 @@ import matplotlib.pyplot as plt
22
  from eval_wrapper.eval import EvalWrapper, eval_scene
23
 
24
 
 
 
 
 
 
 
 
 
 
 
 
25
  outdir = "/tmp/rayst3r"
26
 
27
  # loading all necessary models
@@ -101,12 +104,12 @@ def rayst3r_to_glb(img,depth_dict,mask,max_total_points=10e6,rotated=False):
101
 
102
  dino_model = torch.hub.load('facebookresearch/dinov2', "dinov2_vitl14_reg")
103
  dino_model.eval()
104
- dino_model.to("cuda")
105
 
106
  print("Loading RaySt3R model")
107
  rayst3r_checkpoint = hf_hub_download("bartduis/rayst3r", "rayst3r.pth")
108
  rayst3r_model = EvalWrapper(rayst3r_checkpoint,device='cpu')
109
- rayst3r_model = rayst3r_model.to("cuda")
110
 
111
  rayst3r_points = eval_scene(rayst3r_model,os.path.join(outdir, "input"),do_filter_all_masks=True,dino_model=dino_model).cpu()
112
 
@@ -159,7 +162,7 @@ def input_to_glb(outdir,img,depth_dict,mask,rotated=False):
159
  @GPU
160
  def depth_moge(input_img):
161
  moge_model = MoGeModel.from_pretrained("Ruicheng/moge-vitl")
162
- moge_model.to("cuda")
163
  input_img_torch = torch.tensor(input_img / 255, dtype=torch.float32, device='cuda').permute(2, 0, 1)
164
  output = moge_model.infer(input_img_torch).cpu()
165
  return output
 
1
  from spaces import GPU
2
+ import torch
 
 
 
 
 
 
 
3
  import numpy as np
4
  import gradio as gr
 
5
  import rembg
6
  import trimesh
7
  from moge.model.v1 import MoGeModel
 
14
  from eval_wrapper.eval import EvalWrapper, eval_scene
15
 
16
 
17
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
18
+
19
+ @GPU
20
+ def dummy_warmup():
21
+ import torch
22
+ if torch.cuda.is_available():
23
+ print("Warmup: GPU is available!")
24
+ _ = torch.tensor([0.0]).to(device)
25
+ dummy_warmup()
26
+
27
+
28
  outdir = "/tmp/rayst3r"
29
 
30
  # loading all necessary models
 
104
 
105
  dino_model = torch.hub.load('facebookresearch/dinov2', "dinov2_vitl14_reg")
106
  dino_model.eval()
107
+ dino_model.to(device)
108
 
109
  print("Loading RaySt3R model")
110
  rayst3r_checkpoint = hf_hub_download("bartduis/rayst3r", "rayst3r.pth")
111
  rayst3r_model = EvalWrapper(rayst3r_checkpoint,device='cpu')
112
+ rayst3r_model = rayst3r_model.to(device)
113
 
114
  rayst3r_points = eval_scene(rayst3r_model,os.path.join(outdir, "input"),do_filter_all_masks=True,dino_model=dino_model).cpu()
115
 
 
162
  @GPU
163
  def depth_moge(input_img):
164
  moge_model = MoGeModel.from_pretrained("Ruicheng/moge-vitl")
165
+ moge_model.to(device)
166
  input_img_torch = torch.tensor(input_img / 255, dtype=torch.float32, device='cuda').permute(2, 0, 1)
167
  output = moge_model.infer(input_img_torch).cpu()
168
  return output