|
import gradio as gr |
|
import torch |
|
|
|
from transformers import BlipForConditionalGeneration, BlipProcessor |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") |
|
model_image_captioning = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to(device) |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
def inference(raw_image, question, decoding_strategy): |
|
inputs = processor(images=raw_image, text=question, return_tensors="pt") |
|
|
|
if decoding_strategy == "Beam search": |
|
inputs["max_length"] = 20 |
|
inputs["num_beams"] = 5 |
|
elif decoding_strategy == "Nucleus sampling": |
|
inputs["max_length"] = 20 |
|
inputs["num_beams"] = 1 |
|
inputs["do_sample"] = True |
|
inputs["top_k"] = 50 |
|
inputs["top_p"] = 0.95 |
|
elif decoding_strategy == "Contrastive search": |
|
inputs["penalty_alpha"] = 0.6 |
|
inputs["top_k"] = 4 |
|
inputs["max_length"] = 512 |
|
|
|
out = model_image_captioning.generate(**inputs) |
|
return processor.batch_decode(out, skip_special_tokens=True)[0] |
|
|
|
inputs = [ |
|
gr.inputs.Image(type='pil'), |
|
gr.inputs.Textbox(lines=2, label="Context (optional)"), |
|
gr.inputs.Radio(choices=["Beam search","Nucleus sampling", "Contrastive search"], type="value", default="Nucleus sampling", label="Caption Decoding Strategy") |
|
] |
|
outputs = gr.outputs.Textbox(label="Output") |
|
|
|
title = "BLIP" |
|
|
|
description = "Gradio demo for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation (Salesforce Research). To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." |
|
|
|
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.12086' target='_blank'>BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation</a> | <a href='https://github.com/salesforce/BLIP' target='_blank'>Github Repo</a></p>" |
|
|
|
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article).launch(enable_queue=True) |