baakaani commited on
Commit
b5fc27f
·
1 Parent(s): c28be3c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -13
app.py CHANGED
@@ -1,19 +1,46 @@
1
- from PIL import Image
2
- import requests
3
  import gradio as gr
 
4
 
5
- from transformers import BlipProcessor, BlipForConditionalGeneration
6
 
7
- model_id = "Salesforce/blip-image-captioning-base"
8
 
9
- model = BlipForConditionalGeneration.from_pretrained(model_id)
10
- processor = BlipProcessor.from_pretrained(model_id)
11
 
12
- def launch(input):
13
- image = Image.open(requests.get(input, stream=True).raw).convert('RGB')
14
- inputs = processor(image, return_tensors="pt")
15
- out = model.generate(**inputs)
16
- return processor.decode(out[0], skip_special_tokens=True)
17
 
18
- iface = gr.Interface(launch, inputs="text", outputs="text")
19
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import torch
3
 
4
+ from transformers import BlipForConditionalGeneration, BlipProcessor
5
 
6
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
7
 
8
+ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
9
+ model_image_captioning = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to(device)
10
 
11
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
 
 
 
 
12
 
13
+ def inference(raw_image, question, decoding_strategy):
14
+ inputs = processor(images=raw_image, text=question, return_tensors="pt")
15
+
16
+ if decoding_strategy == "Beam search":
17
+ inputs["max_length"] = 20
18
+ inputs["num_beams"] = 5
19
+ elif decoding_strategy == "Nucleus sampling":
20
+ inputs["max_length"] = 20
21
+ inputs["num_beams"] = 1
22
+ inputs["do_sample"] = True
23
+ inputs["top_k"] = 50
24
+ inputs["top_p"] = 0.95
25
+ elif decoding_strategy == "Contrastive search":
26
+ inputs["penalty_alpha"] = 0.6
27
+ inputs["top_k"] = 4
28
+ inputs["max_length"] = 512
29
+
30
+ out = model_image_captioning.generate(**inputs)
31
+ return processor.batch_decode(out, skip_special_tokens=True)[0]
32
+
33
+ inputs = [
34
+ gr.inputs.Image(type='pil'),
35
+ gr.inputs.Textbox(lines=2, label="Context (optional)"),
36
+ gr.inputs.Radio(choices=["Beam search","Nucleus sampling", "Contrastive search"], type="value", default="Nucleus sampling", label="Caption Decoding Strategy")
37
+ ]
38
+ outputs = gr.outputs.Textbox(label="Output")
39
+
40
+ title = "BLIP"
41
+
42
+ description = "Gradio demo for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation (Salesforce Research). To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
43
+
44
+ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.12086' target='_blank'>BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation</a> | <a href='https://github.com/salesforce/BLIP' target='_blank'>Github Repo</a></p>"
45
+
46
+ gr.Interface(inference, inputs, outputs, title=title, description=description, article=article).launch(enable_queue=True)