Spaces:
Sleeping
Sleeping
File size: 1,060 Bytes
dcdccdb ab580b5 dcdccdb ab580b5 dcdccdb ab580b5 dcdccdb ab580b5 dcdccdb ab580b5 dcdccdb ab580b5 dcdccdb ab580b5 dcdccdb ab580b5 dcdccdb ab580b5 dcdccdb ab580b5 dcdccdb ab580b5 dcdccdb ab580b5 dcdccdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
# -*- coding: utf-8 -*-
"""app.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1qNBkOEPBOkXJ0zcGdwQmdS7bt5zxjpIr
##Creating app.py
###Installing Dependencies
"""
!pip install gradio transformers torch
"""###Importing Dependencies"""
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
"""###Loading the model and tokenizer"""
model_name = "gpt2"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
"""###Defining the prediction function"""
def generate_text(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text
"""###Creating the Gradio interface
"""
api = gr.Interface(
fn=generate_text,
inputs=gr.Textbox(label="Input Prompt"),
outputs=gr.Textbox(label="Generated Text"),
)
"""###Launching the API"""
api.launch() |