Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +32 -49
- requirements.txt +3 -1
app.py
CHANGED
|
@@ -1,64 +1,47 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
"""
|
| 5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 6 |
-
"""
|
| 7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
message,
|
| 12 |
-
history: list[tuple[str, str]],
|
| 13 |
-
system_message,
|
| 14 |
-
max_tokens,
|
| 15 |
-
temperature,
|
| 16 |
-
top_p,
|
| 17 |
-
):
|
| 18 |
-
messages = [{"role": "system", "content": system_message}]
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
messages.append({"role": "user", "content": val[0]})
|
| 23 |
-
if val[1]:
|
| 24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
|
| 26 |
-
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
messages,
|
| 32 |
-
max_tokens=max_tokens,
|
| 33 |
-
stream=True,
|
| 34 |
-
temperature=temperature,
|
| 35 |
-
top_p=top_p,
|
| 36 |
-
):
|
| 37 |
-
token = message.choices[0].delta.content
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
| 41 |
|
|
|
|
| 42 |
|
| 43 |
"""
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 52 |
-
gr.Slider(
|
| 53 |
-
minimum=0.1,
|
| 54 |
-
maximum=1.0,
|
| 55 |
-
value=0.95,
|
| 56 |
-
step=0.05,
|
| 57 |
-
label="Top-p (nucleus sampling)",
|
| 58 |
-
),
|
| 59 |
-
],
|
| 60 |
)
|
| 61 |
|
|
|
|
| 62 |
|
| 63 |
-
|
| 64 |
-
demo.launch()
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""app.ipynb
|
| 3 |
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1qNBkOEPBOkXJ0zcGdwQmdS7bt5zxjpIr
|
| 8 |
+
|
| 9 |
+
##Creating app.py
|
| 10 |
+
|
| 11 |
+
###Installing Dependencies
|
| 12 |
"""
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
!pip install gradio transformers torch
|
| 15 |
|
| 16 |
+
"""###Importing Dependencies"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
import gradio as gr
|
| 19 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
"""###Loading the model and tokenizer"""
|
| 22 |
|
| 23 |
+
model_name = "gpt2"
|
| 24 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 26 |
|
| 27 |
+
"""###Defining the prediction function"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
def generate_text(prompt):
|
| 30 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 31 |
+
outputs = model.generate(**inputs, max_length=100)
|
| 32 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 33 |
+
return generated_text
|
| 34 |
|
| 35 |
+
"""###Creating the Gradio interface
|
| 36 |
|
| 37 |
"""
|
| 38 |
+
|
| 39 |
+
api = gr.Interface(
|
| 40 |
+
fn=generate_text,
|
| 41 |
+
inputs=gr.Textbox(label="Input Prompt"),
|
| 42 |
+
outputs=gr.Textbox(label="Generated Text"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
)
|
| 44 |
|
| 45 |
+
"""###Launching the API"""
|
| 46 |
|
| 47 |
+
api.launch()
|
|
|
requirements.txt
CHANGED
|
@@ -1 +1,3 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
transformers
|
| 3 |
+
torch
|