File size: 22,648 Bytes
68992d1
7f41697
 
 
 
68992d1
dd190ef
68992d1
55c99d6
 
 
68992d1
55c99d6
68992d1
55c99d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68992d1
 
 
 
 
3537d14
7f41697
68992d1
 
3537d14
7f41697
68992d1
 
3537d14
7f41697
68992d1
 
3537d14
68992d1
 
 
3537d14
7f41697
 
 
68992d1
 
 
55c99d6
 
 
 
 
 
 
 
7f41697
68992d1
 
 
 
 
 
 
 
 
 
 
7f41697
68992d1
 
 
 
 
 
 
 
 
 
 
7f41697
68992d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f41697
68992d1
 
 
 
7f41697
68992d1
 
 
 
7f41697
68992d1
 
 
 
 
7f41697
68992d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f41697
68992d1
 
7f41697
dd190ef
7f41697
 
 
68992d1
7f41697
68992d1
7f41697
 
 
 
68992d1
 
dd190ef
 
 
68992d1
 
 
 
 
 
 
 
 
 
 
 
 
dd190ef
68992d1
7f41697
 
68992d1
 
3537d14
 
68992d1
7f41697
 
68992d1
3537d14
7f41697
68992d1
 
 
 
 
 
 
 
 
 
7f41697
 
68992d1
3537d14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f41697
dd190ef
7f41697
68992d1
 
 
 
7f41697
68992d1
 
 
 
 
 
 
 
 
 
7f41697
 
 
68992d1
7f41697
68992d1
 
 
 
 
 
 
 
 
 
dd190ef
68992d1
 
 
7f41697
68992d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55c99d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68992d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55c99d6
 
68992d1
3537d14
 
 
55c99d6
 
3537d14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55c99d6
3537d14
 
 
 
55c99d6
3537d14
 
 
 
 
 
 
 
68992d1
 
 
 
 
7f41697
68992d1
 
 
7f41697
68992d1
55c99d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f41697
68992d1
 
 
 
 
 
 
 
 
 
 
 
 
 
7f41697
55c99d6
 
3537d14
 
 
 
55c99d6
7f41697
55c99d6
 
 
 
 
 
 
 
 
7f41697
68992d1
 
 
3537d14
 
 
 
68992d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f41697
68992d1
 
 
 
 
 
 
 
 
3537d14
55c99d6
3537d14
 
 
 
 
 
 
55c99d6
3537d14
55c99d6
3537d14
55c99d6
 
 
 
7f41697
3537d14
 
 
 
 
 
68992d1
 
3537d14
68992d1
3537d14
68992d1
 
3537d14
 
55c99d6
3537d14
 
7f41697
3537d14
 
 
7f41697
68992d1
 
 
7f41697
 
68992d1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
# app.py
import gradio as gr
import pandas as pd
import requests
import io
import warnings
import traceback
import json
import tempfile
import os
import logging

# 🀫 Suppress warnings and set logging levels
warnings.filterwarnings("ignore")
logging.getLogger("absl").setLevel(logging.ERROR)  # Suppress MLCroissant warnings
os.environ["ABSL_LOG_LEVEL"] = "2"  # Only show errors

# Import optional dependencies with fallbacks
try:
    import dask.dataframe as dd
    DASK_AVAILABLE = True
except ImportError:
    DASK_AVAILABLE = False

try:
    from datasets import load_dataset, Image
    DATASETS_AVAILABLE = True
except ImportError:
    DATASETS_AVAILABLE = False

try:
    from mlcroissant import Dataset as CroissantDataset
    CROISSANT_AVAILABLE = True
except ImportError:
    CROISSANT_AVAILABLE = False

try:
    from huggingface_hub import get_token
    HF_HUB_AVAILABLE = True
except ImportError:
    HF_HUB_AVAILABLE = False

try:
    import polars as pl
    POLARS_AVAILABLE = True
except ImportError:
    POLARS_AVAILABLE = False

# --- βš™οΈ Configuration & Constants ---
DATASET_CONFIG = {
    "caselaw": {
        "name": "common-pile/caselaw_access_project", "emoji": "βš–οΈ",
        "methods": ["πŸ’¨ API (requests)"], "is_public": True,
    },
    "prompts": {
        "name": "fka/awesome-chatgpt-prompts", "emoji": "πŸ€–",
        "methods": ["🐼 Pandas", "πŸ’¨ API (requests)"], "is_public": True,
    },
    "finance": {
        "name": "snorkelai/agent-finance-reasoning", "emoji": "πŸ’°",
        "methods": ["🐼 Pandas", "πŸ’¨ API (requests)"], "is_public": False,
    },
    "medical": {
        "name": "FreedomIntelligence/medical-o1-reasoning-SFT", "emoji": "🩺",
        "methods": ["🐼 Pandas"], "is_public": False,
    },
    "inscene": {
        "name": "peteromallet/InScene-Dataset", "emoji": "πŸ–ΌοΈ",
        "methods": ["πŸ€— Datasets", "πŸ–ΌοΈ Datasets with Images"], "is_public": False,
    },
}

# --- πŸ”§ Helpers & Utility Functions ---

def get_auth_headers():
    """πŸ”‘ Get authentication headers if available"""
    if not HF_HUB_AVAILABLE:
        return {}
    try:
        token = get_token()
        return {"Authorization": f"Bearer {token}"} if token else {}
    except Exception:
        return {}

# --- ✨ FIXED: dataframe_to_outputs to use temporary files ---
def dataframe_to_outputs(df: pd.DataFrame):
    """
    πŸ“œ Takes a DataFrame and transforms it into various formats.
    Now uses temporary files for maximum Gradio compatibility.
    """
    if df.empty:
        return "No results found. 🀷", None, None, "No results to copy."

    df_str = df.astype(str)
    markdown_output = df_str.to_markdown(index=False)
    
    # Create a temporary CSV file
    with tempfile.NamedTemporaryFile(mode='w+', delete=False, suffix='.csv', encoding='utf-8') as tmp_csv:
        df.to_csv(tmp_csv.name, index=False)
        csv_path = tmp_csv.name

    # Create a temporary XLSX file
    with tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp_xlsx:
        df.to_excel(tmp_xlsx.name, index=False, engine='openpyxl')
        xlsx_path = tmp_xlsx.name

    tab_delimited_output = df.to_csv(sep='\t', index=False)
    
    return (
        markdown_output,
        csv_path,
        xlsx_path,
        tab_delimited_output,
    )

def handle_error(e: Exception, request=None, response=None):
    """
    😱 Oh no! An error! This function now creates a detailed debug log.
    """
    error_message = f"🚨 An error occurred: {str(e)}\n"
    auth_tip = "πŸ”‘ For gated datasets, did you log in? Try `huggingface-cli login` in your terminal."
    full_trace = traceback.format_exc()
    print(full_trace)
    if "401" in str(e) or "Gated" in str(e):
        error_message += auth_tip
    
    debug_log = f"""--- 🐞 DEBUG LOG ---\nTraceback:\n{full_trace}\n\nException Type: {type(e).__name__}\nException Details: {e}\n"""
    if request:
        debug_log += f"""\n--- REQUEST ---\nMethod: {request.method}\nURL: {request.url}\nHeaders: {json.dumps(dict(request.headers), indent=2)}\n"""
    if response is not None:
        try:
            response_text = json.dumps(response.json(), indent=2)
        except json.JSONDecodeError:
            response_text = response.text
        debug_log += f"""\n--- RESPONSE ---\nStatus Code: {response.status_code}\nHeaders: {json.dumps(dict(response.headers), indent=2)}\nContent:\n{response_text}\n"""
    
    return (
        pd.DataFrame(), gr.Gallery(None), f"### 🚨 Error\nAn error occurred. See the debug log below for details.",
        "", None, None, "", f"```python\n# 🚨 Error during execution:\n# {e}\n```",
        gr.Code(value=debug_log, visible=True)
    )

def search_dataframe(df: pd.DataFrame, query: str):
    if not query:
        return df.head(100)
    string_cols = df.select_dtypes(include=['object', 'string']).columns
    if string_cols.empty:
        return pd.DataFrame()
    mask = pd.Series([False] * len(df))
    for col in string_cols:
        mask |= df[col].astype(str).str.contains(query, case=False, na=False)
    return df[mask]

def generate_code_snippet(dataset_key: str, access_method: str, query: str):
    """
    πŸ’» Generate Python code snippet for the current operation
    """
    config = DATASET_CONFIG[dataset_key]
    repo_id = config["name"]
    
    if "API" in access_method:
        return f'''# 🌐 API Access for {repo_id}
import requests
import pandas as pd

url = "https://datasets-server.huggingface.co/rows"
params = {{
    "dataset": "{repo_id}",
    "config": "default",
    "split": "train",
    "offset": 0,
    "length": 100
}}

headers = {{"Authorization": "Bearer YOUR_HF_TOKEN"}} if needed else {{}}
response = requests.get(url, params=params, headers=headers)

if response.status_code == 200:
    data = response.json()
    rows_data = [item['row'] for item in data['rows']]
    df = pd.json_normalize(rows_data)
    
    # Search for: "{query}"
    if "{query}":
        string_cols = df.select_dtypes(include=['object', 'string']).columns
        mask = pd.Series([False] * len(df))
        for col in string_cols:
            mask |= df[col].astype(str).str.contains("{query}", case=False, na=False)
        df = df[mask]
    
    print(f"Found {{len(df)}} results")
    print(df.head())
else:
    print(f"Error: {{response.status_code}} - {{response.text}}")
'''
    
    elif "Pandas" in access_method:
        file_path = "prompts.csv" if repo_id == "fka/awesome-chatgpt-prompts" else "train.parquet"
        read_function = "read_csv" if "csv" in file_path else "read_parquet"
        
        return f'''# 🐼 Pandas Access for {repo_id}
import pandas as pd

# You may need: huggingface-cli login
df = pd.{read_function}("hf://datasets/{repo_id}/{file_path}")

# Search for: "{query}"
if "{query}":
    string_cols = df.select_dtypes(include=['object', 'string']).columns
    mask = pd.Series([False] * len(df))
    for col in string_cols:
        mask |= df[col].astype(str).str.contains("{query}", case=False, na=False)
    df = df[mask]

print(f"Found {{len(df)}} results")
print(df.head())
'''
    
    elif "Datasets" in access_method:
        if "Images" in access_method:
            return f'''# πŸ–ΌοΈ Datasets Library with Image Access for {repo_id}
from datasets import load_dataset
import pandas as pd

# You may need: huggingface-cli login
ds = load_dataset("{repo_id}", split="train", streaming=True)
data = list(ds.take(50))  # Smaller sample for images
df = pd.DataFrame(data)

# Process images
images = []
for item in data:
    if 'image' in item and item['image'] is not None:
        images.append((item['image'], item.get('text', '')))

print(f"Found {{len(df)}} records with {{len(images)}} images")
print(df.head())

# Display first image
if images:
    first_image, caption = images[0]
    first_image.show()  # If PIL Image
    print(f"Caption: {{caption}}")
'''
        else:
            return f'''# πŸ€— Datasets Library Access for {repo_id}
from datasets import load_dataset
import pandas as pd

# You may need: huggingface-cli login
ds = load_dataset("{repo_id}", split="train", streaming=True)
data = list(ds.take(1000))
df = pd.DataFrame(data)

# Search for: "{query}"
if "{query}":
    string_cols = df.select_dtypes(include=['object', 'string']).columns
    mask = pd.Series([False] * len(df))
    for col in string_cols:
        mask |= df[col].astype(str).str.contains("{query}", case=False, na=False)
    df = df[mask]

print(f"Found {{len(df)}} results")
print(df.head())
'''
    
    else:
        return f"# Code generation for {access_method} not implemented yet"

# --- 🎣 Data Fetching & Processing Functions ---
def fetch_data(dataset_key: str, access_method: str, query: str):
    """
    πŸš€ Main mission control. Always yields a tuple of 9 values to match the UI components.
    """
    outputs = [pd.DataFrame(), None, "🏁 Ready.", "", None, None, "", "", gr.Code(visible=False)]
    req, res = None, None
    try:
        config = DATASET_CONFIG[dataset_key]
        repo_id = config["name"]
        
        # Generate code snippet
        code_snippet = generate_code_snippet(dataset_key, access_method, query)
        outputs[7] = code_snippet
        
        if "API" in access_method:
            all_results_df = pd.DataFrame()
            MAX_PAGES = 5
            PAGE_SIZE = 100

            if not query:
                MAX_PAGES = 1
                outputs[2] = "⏳ No search term. Fetching first 100 records as a sample..."
                yield tuple(outputs)

            for page in range(MAX_PAGES):
                if query:
                    outputs[2] = f"⏳ Searching page {page + 1}..."
                    yield tuple(outputs)
                
                offset = page * PAGE_SIZE
                url = f"https://datasets-server.huggingface.co/rows?dataset={repo_id}&config=default&split=train&offset={offset}&length={PAGE_SIZE}"
                headers = get_auth_headers() if not config["is_public"] else {}
                
                res = requests.get(url, headers=headers)
                req = res.request
                res.raise_for_status()
                data = res.json()

                if not data.get('rows'):
                    outputs[2] = "🏁 No more data to search."
                    yield tuple(outputs)
                    break

                # --- ✨ FIXED: JSON processing logic ---
                # Extract the actual data from the 'row' key of each item in the list
                rows_data = [item['row'] for item in data['rows']]
                page_df = pd.json_normalize(rows_data)
                
                found_in_page = search_dataframe(page_df, query)

                if not found_in_page.empty:
                    all_results_df = pd.concat([all_results_df, found_in_page]).reset_index(drop=True)
                    outputs[0] = all_results_df
                    outputs[3], outputs[4], outputs[5], outputs[6] = dataframe_to_outputs(all_results_df)
                    outputs[2] = f"βœ… Found **{len(all_results_df)}** results so far..."
                    
                    if dataset_key == 'inscene':
                        try:
                            gallery_data = []
                            for _, row in all_results_df.iterrows():
                                if 'image' in row:
                                    image_data = row.get('image')
                                    text_data = row.get('text', '')
                                    
                                    # Handle different image formats safely
                                    if hasattr(image_data, 'save'):  # PIL Image
                                        gallery_data.append((image_data, text_data))
                                    elif isinstance(image_data, str):  # Image path or URL
                                        gallery_data.append((image_data, text_data))
                                        
                            if gallery_data:
                                outputs[1] = gr.Gallery(gallery_data, label="πŸ–ΌοΈ Image Results", height=400)
                        except Exception as img_error:
                            # Don't break the flow for image errors
                            pass
                    yield tuple(outputs)

            outputs[2] = f"🏁 Search complete. Found a total of **{len(all_results_df)}** results."
            yield tuple(outputs)
            return

        outputs[2] = f"⏳ Loading data via `{access_method}`..."
        yield tuple(outputs)
        
        df = pd.DataFrame()
        
        if "Pandas" in access_method:
            file_path = f"hf://datasets/{repo_id}/"
            if repo_id == "fka/awesome-chatgpt-prompts": 
                file_path += "prompts.csv"
                df = pd.read_csv(file_path)
            else: 
                try: 
                    df = pd.read_parquet(f"{file_path}data/train-00000-of-00001.parquet")
                except:
                     try: 
                         df = pd.read_parquet(f"{file_path}train.parquet")
                     except: 
                         df = pd.read_json(f"{file_path}medical_o1_sft.json")
                         
        elif "Datasets" in access_method:
            if not DATASETS_AVAILABLE:
                raise ImportError("datasets library not available. Install with: pip install datasets")
            
            # Special handling for image datasets
            if dataset_key == 'inscene' and "Images" in access_method:
                outputs[2] = "πŸ–ΌοΈ Loading InScene dataset with image processing..."
                yield tuple(outputs)
                
                # Load with image processing
                ds = load_dataset(repo_id, split='train', streaming=True)
                data_list = list(ds.take(50))  # Smaller sample for images
                df = pd.DataFrame(data_list)
                
                # Process images for gallery display
                gallery_data = []
                for i, item in enumerate(data_list):
                    try:
                        if 'image' in item and item['image'] is not None:
                            image = item['image']
                            caption = item.get('text', f'Image {i+1}')
                            
                            # Convert PIL Image to displayable format
                            if hasattr(image, 'save'):
                                gallery_data.append((image, caption))
                            elif isinstance(image, str):
                                gallery_data.append((image, caption))
                        
                        # Limit to first 20 images for performance
                        if len(gallery_data) >= 20:
                            break
                            
                    except Exception as img_error:
                        continue
                
                # Update gallery with images
                if gallery_data:
                    outputs[1] = gr.Gallery(gallery_data, label=f"πŸ–ΌοΈ Found {len(gallery_data)} Images", height=400, columns=4, rows=2)
                    outputs[2] = f"πŸ–ΌοΈ Loaded {len(df)} records with {len(gallery_data)} images"
                else:
                    outputs[2] = "πŸ–ΌοΈ Loaded data but no images found to display"
                
            else:
                # Regular datasets loading
                ds = load_dataset(repo_id, split='train', streaming=True)
                data_list = list(ds.take(1000))
                df = pd.DataFrame(data_list)
                outputs[2] = f"πŸ“š Loaded {len(df)} records via Datasets library"
        
        outputs[2] = "πŸ” Searching loaded data..."
        yield tuple(outputs)

        final_df = search_dataframe(df, query)
        
        outputs[0] = final_df
        outputs[3], outputs[4], outputs[5], outputs[6] = dataframe_to_outputs(final_df)
        outputs[2] = f"🏁 Search complete. Found **{len(final_df)}** results."
        
        if dataset_key == 'inscene' and not final_df.empty:
            # Handle image data more safely
            try:
                gallery_data = []
                for _, row in final_df.iterrows():
                    if 'image' in row:
                        image_data = row.get('image')
                        text_data = row.get('text', '')
                        
                        # Handle different image formats
                        if hasattr(image_data, 'save'):  # PIL Image
                            gallery_data.append((image_data, text_data))
                        elif isinstance(image_data, str):  # Image path or URL
                            gallery_data.append((image_data, text_data))
                        
                if gallery_data:
                    outputs[1] = gr.Gallery(gallery_data, label="πŸ–ΌοΈ Image Results", height=400)
            except Exception as img_error:
                outputs[2] += f"\n⚠️ Image display error: {str(img_error)}"
        
        yield tuple(outputs)

    except Exception as e:
        yield handle_error(e, req, res)


# --- πŸ–ΌοΈ UI Generation ---
def create_dataset_tab(dataset_key: str):
    config = DATASET_CONFIG[dataset_key]
    
    with gr.Tab(f"{config['emoji']} {dataset_key.capitalize()}"):
        gr.Markdown(f"## {config['emoji']} Query the `{config['name']}` Dataset")
        if not config['is_public']:
            gr.Markdown("**Note:** This is a gated dataset. Please log in via `huggingface-cli login` in your terminal first.")
        
        # Show available methods for this dataset
        available_methods = config['methods']
        methods_note = f"**Available methods:** {len(available_methods)} tested and working methods"
        if dataset_key == 'inscene':
            methods_note += " (πŸ–ΌοΈ = Image viewer included)"
        gr.Markdown(methods_note)
        
        with gr.Row():
            access_method = gr.Radio(
                available_methods, 
                label="πŸ”‘ Access Method", 
                value=available_methods[0] if available_methods else "πŸ’¨ API (requests)"
            )
            query = gr.Textbox(
                label="πŸ” Search Query", 
                placeholder="Enter any text to search, or leave blank for samples..."
            )
        
        fetch_button = gr.Button("πŸš€ Go Fetch!")
        status_output = gr.Markdown("🏁 Ready to search.")
        df_output = gr.DataFrame(label="πŸ“Š Results DataFrame", interactive=False, wrap=True)
        
        # Show gallery for InScene dataset or when using image methods
        show_gallery = (dataset_key == 'inscene')
        gallery_output = gr.Gallery(visible=show_gallery, label="πŸ–ΌοΈ Image Results", height=400, columns=4, rows=2)

        with gr.Accordion("πŸ“‚ View/Export Full Results", open=False):
            markdown_output = gr.Markdown(label="πŸ“ Markdown View")
            with gr.Row():
                csv_output = gr.File(label="⬇️ Download CSV")
                xlsx_output = gr.File(label="⬇️ Download XLSX")
            copy_output = gr.Code(label="πŸ“‹ Copy-Paste (Tab-Delimited)")
        
        code_output = gr.Code(label="πŸ’» Python Code Snippet", language="python")
        
        debug_log_output = gr.Code(label="🐞 Debug Log", visible=False)
        
        fetch_button.click(
            fn=fetch_data,
            inputs=[gr.State(dataset_key), access_method, query],
            outputs=[
                df_output, gallery_output, status_output, markdown_output,
                csv_output, xlsx_output, copy_output, code_output,
                debug_log_output
            ]
        )

# --- πŸš€ Main App ---
with gr.Blocks(theme=gr.themes.Soft(), title="Hugging Face Dataset Explorer") as demo:
    gr.Markdown("# πŸ€— Hugging Face Dataset Explorer")
    gr.Markdown(
        "Select a dataset, choose an access method, and type a query. "
        "If an error occurs, a detailed debug log will appear to help troubleshoot the issue."
    )
    
    # Show dependency status and dataset-specific methods
    def get_dependency_status():
        status = "### πŸ”§ Dataset-Specific Methods (Only Working Methods Shown):\n"
        for key, config in DATASET_CONFIG.items():
            methods_str = ", ".join(config['methods'])
            auth_status = "πŸ” Requires Auth" if not config['is_public'] else "βœ… Public"
            status += f"- **{config['emoji']} {key.capitalize()}**: {methods_str} ({auth_status})\n"
        
        status += "\n### πŸ“š Library Dependencies:\n"
        status += f"- **🐼 Pandas**: βœ… Available\n"
        status += f"- **πŸ’¨ Requests**: βœ… Available\n"
        status += f"- **πŸ€— Datasets**: {'βœ… Available' if DATASETS_AVAILABLE else '❌ Not installed'}\n"
        
        return status
    
    with gr.Accordion("πŸ”§ Library Status & Quick Start Guide", open=False):
        gr.Markdown(get_dependency_status())
        gr.Markdown("""
        ### πŸš€ Quick Start Guide:
        1. **πŸ€– Prompts**: Try Pandas or API method, search for "translator", "linux", or "writer"
        2. **βš–οΈ Caselaw**: Try API method only, search for "contract", "court", or "appeal"
        3. **πŸ’° Finance**: Try Pandas or API method (requires auth), search for "interest" or "market"
        4. **🩺 Medical**: Try Pandas method only (requires auth), search for "diagnosis" or "treatment"
        5. **πŸ–ΌοΈ InScene**: Try "πŸ–ΌοΈ Datasets with Images" to see actual images, search for "kitchen" or "outdoor"
        
        ### πŸ”‘ Authentication:
        For gated datasets (Finance, Medical, InScene), run: `huggingface-cli login`
        
        ### πŸ› οΈ Method Explanations:
        - **πŸ’¨ API**: Fast, reliable, works without login (100 rows max)
        - **🐼 Pandas**: Full dataset access, requires login for gated datasets
        - **πŸ€— Datasets**: Standard HuggingFace datasets library
        - **πŸ–ΌοΈ Datasets with Images**: Special image viewer for InScene dataset
        
        ### ⚠️ Note:
        Only working methods are shown for each dataset. Non-functional methods have been removed.
        """)
        
        if not DATASETS_AVAILABLE:
            gr.Markdown("**⚠️ Install datasets library for image viewing:** `pip install datasets`")
    
    with gr.Tabs():
        for key in DATASET_CONFIG.keys():
            create_dataset_tab(key)

if __name__ == "__main__":
    demo.launch(debug=True)