File size: 22,648 Bytes
68992d1 7f41697 68992d1 dd190ef 68992d1 55c99d6 68992d1 55c99d6 68992d1 55c99d6 68992d1 3537d14 7f41697 68992d1 3537d14 7f41697 68992d1 3537d14 7f41697 68992d1 3537d14 68992d1 3537d14 7f41697 68992d1 55c99d6 7f41697 68992d1 7f41697 68992d1 7f41697 68992d1 7f41697 68992d1 7f41697 68992d1 7f41697 68992d1 7f41697 68992d1 7f41697 68992d1 7f41697 dd190ef 7f41697 68992d1 7f41697 68992d1 7f41697 68992d1 dd190ef 68992d1 dd190ef 68992d1 7f41697 68992d1 3537d14 68992d1 7f41697 68992d1 3537d14 7f41697 68992d1 7f41697 68992d1 3537d14 7f41697 dd190ef 7f41697 68992d1 7f41697 68992d1 7f41697 68992d1 7f41697 68992d1 dd190ef 68992d1 7f41697 68992d1 55c99d6 68992d1 55c99d6 68992d1 3537d14 55c99d6 3537d14 55c99d6 3537d14 55c99d6 3537d14 68992d1 7f41697 68992d1 7f41697 68992d1 55c99d6 7f41697 68992d1 7f41697 55c99d6 3537d14 55c99d6 7f41697 55c99d6 7f41697 68992d1 3537d14 68992d1 7f41697 68992d1 3537d14 55c99d6 3537d14 55c99d6 3537d14 55c99d6 3537d14 55c99d6 7f41697 3537d14 68992d1 3537d14 68992d1 3537d14 68992d1 3537d14 55c99d6 3537d14 7f41697 3537d14 7f41697 68992d1 7f41697 68992d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
# app.py
import gradio as gr
import pandas as pd
import requests
import io
import warnings
import traceback
import json
import tempfile
import os
import logging
# π€« Suppress warnings and set logging levels
warnings.filterwarnings("ignore")
logging.getLogger("absl").setLevel(logging.ERROR) # Suppress MLCroissant warnings
os.environ["ABSL_LOG_LEVEL"] = "2" # Only show errors
# Import optional dependencies with fallbacks
try:
import dask.dataframe as dd
DASK_AVAILABLE = True
except ImportError:
DASK_AVAILABLE = False
try:
from datasets import load_dataset, Image
DATASETS_AVAILABLE = True
except ImportError:
DATASETS_AVAILABLE = False
try:
from mlcroissant import Dataset as CroissantDataset
CROISSANT_AVAILABLE = True
except ImportError:
CROISSANT_AVAILABLE = False
try:
from huggingface_hub import get_token
HF_HUB_AVAILABLE = True
except ImportError:
HF_HUB_AVAILABLE = False
try:
import polars as pl
POLARS_AVAILABLE = True
except ImportError:
POLARS_AVAILABLE = False
# --- βοΈ Configuration & Constants ---
DATASET_CONFIG = {
"caselaw": {
"name": "common-pile/caselaw_access_project", "emoji": "βοΈ",
"methods": ["π¨ API (requests)"], "is_public": True,
},
"prompts": {
"name": "fka/awesome-chatgpt-prompts", "emoji": "π€",
"methods": ["πΌ Pandas", "π¨ API (requests)"], "is_public": True,
},
"finance": {
"name": "snorkelai/agent-finance-reasoning", "emoji": "π°",
"methods": ["πΌ Pandas", "π¨ API (requests)"], "is_public": False,
},
"medical": {
"name": "FreedomIntelligence/medical-o1-reasoning-SFT", "emoji": "π©Ί",
"methods": ["πΌ Pandas"], "is_public": False,
},
"inscene": {
"name": "peteromallet/InScene-Dataset", "emoji": "πΌοΈ",
"methods": ["π€ Datasets", "πΌοΈ Datasets with Images"], "is_public": False,
},
}
# --- π§ Helpers & Utility Functions ---
def get_auth_headers():
"""π Get authentication headers if available"""
if not HF_HUB_AVAILABLE:
return {}
try:
token = get_token()
return {"Authorization": f"Bearer {token}"} if token else {}
except Exception:
return {}
# --- β¨ FIXED: dataframe_to_outputs to use temporary files ---
def dataframe_to_outputs(df: pd.DataFrame):
"""
π Takes a DataFrame and transforms it into various formats.
Now uses temporary files for maximum Gradio compatibility.
"""
if df.empty:
return "No results found. π€·", None, None, "No results to copy."
df_str = df.astype(str)
markdown_output = df_str.to_markdown(index=False)
# Create a temporary CSV file
with tempfile.NamedTemporaryFile(mode='w+', delete=False, suffix='.csv', encoding='utf-8') as tmp_csv:
df.to_csv(tmp_csv.name, index=False)
csv_path = tmp_csv.name
# Create a temporary XLSX file
with tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp_xlsx:
df.to_excel(tmp_xlsx.name, index=False, engine='openpyxl')
xlsx_path = tmp_xlsx.name
tab_delimited_output = df.to_csv(sep='\t', index=False)
return (
markdown_output,
csv_path,
xlsx_path,
tab_delimited_output,
)
def handle_error(e: Exception, request=None, response=None):
"""
π± Oh no! An error! This function now creates a detailed debug log.
"""
error_message = f"π¨ An error occurred: {str(e)}\n"
auth_tip = "π For gated datasets, did you log in? Try `huggingface-cli login` in your terminal."
full_trace = traceback.format_exc()
print(full_trace)
if "401" in str(e) or "Gated" in str(e):
error_message += auth_tip
debug_log = f"""--- π DEBUG LOG ---\nTraceback:\n{full_trace}\n\nException Type: {type(e).__name__}\nException Details: {e}\n"""
if request:
debug_log += f"""\n--- REQUEST ---\nMethod: {request.method}\nURL: {request.url}\nHeaders: {json.dumps(dict(request.headers), indent=2)}\n"""
if response is not None:
try:
response_text = json.dumps(response.json(), indent=2)
except json.JSONDecodeError:
response_text = response.text
debug_log += f"""\n--- RESPONSE ---\nStatus Code: {response.status_code}\nHeaders: {json.dumps(dict(response.headers), indent=2)}\nContent:\n{response_text}\n"""
return (
pd.DataFrame(), gr.Gallery(None), f"### π¨ Error\nAn error occurred. See the debug log below for details.",
"", None, None, "", f"```python\n# π¨ Error during execution:\n# {e}\n```",
gr.Code(value=debug_log, visible=True)
)
def search_dataframe(df: pd.DataFrame, query: str):
if not query:
return df.head(100)
string_cols = df.select_dtypes(include=['object', 'string']).columns
if string_cols.empty:
return pd.DataFrame()
mask = pd.Series([False] * len(df))
for col in string_cols:
mask |= df[col].astype(str).str.contains(query, case=False, na=False)
return df[mask]
def generate_code_snippet(dataset_key: str, access_method: str, query: str):
"""
π» Generate Python code snippet for the current operation
"""
config = DATASET_CONFIG[dataset_key]
repo_id = config["name"]
if "API" in access_method:
return f'''# π API Access for {repo_id}
import requests
import pandas as pd
url = "https://datasets-server.huggingface.co/rows"
params = {{
"dataset": "{repo_id}",
"config": "default",
"split": "train",
"offset": 0,
"length": 100
}}
headers = {{"Authorization": "Bearer YOUR_HF_TOKEN"}} if needed else {{}}
response = requests.get(url, params=params, headers=headers)
if response.status_code == 200:
data = response.json()
rows_data = [item['row'] for item in data['rows']]
df = pd.json_normalize(rows_data)
# Search for: "{query}"
if "{query}":
string_cols = df.select_dtypes(include=['object', 'string']).columns
mask = pd.Series([False] * len(df))
for col in string_cols:
mask |= df[col].astype(str).str.contains("{query}", case=False, na=False)
df = df[mask]
print(f"Found {{len(df)}} results")
print(df.head())
else:
print(f"Error: {{response.status_code}} - {{response.text}}")
'''
elif "Pandas" in access_method:
file_path = "prompts.csv" if repo_id == "fka/awesome-chatgpt-prompts" else "train.parquet"
read_function = "read_csv" if "csv" in file_path else "read_parquet"
return f'''# πΌ Pandas Access for {repo_id}
import pandas as pd
# You may need: huggingface-cli login
df = pd.{read_function}("hf://datasets/{repo_id}/{file_path}")
# Search for: "{query}"
if "{query}":
string_cols = df.select_dtypes(include=['object', 'string']).columns
mask = pd.Series([False] * len(df))
for col in string_cols:
mask |= df[col].astype(str).str.contains("{query}", case=False, na=False)
df = df[mask]
print(f"Found {{len(df)}} results")
print(df.head())
'''
elif "Datasets" in access_method:
if "Images" in access_method:
return f'''# πΌοΈ Datasets Library with Image Access for {repo_id}
from datasets import load_dataset
import pandas as pd
# You may need: huggingface-cli login
ds = load_dataset("{repo_id}", split="train", streaming=True)
data = list(ds.take(50)) # Smaller sample for images
df = pd.DataFrame(data)
# Process images
images = []
for item in data:
if 'image' in item and item['image'] is not None:
images.append((item['image'], item.get('text', '')))
print(f"Found {{len(df)}} records with {{len(images)}} images")
print(df.head())
# Display first image
if images:
first_image, caption = images[0]
first_image.show() # If PIL Image
print(f"Caption: {{caption}}")
'''
else:
return f'''# π€ Datasets Library Access for {repo_id}
from datasets import load_dataset
import pandas as pd
# You may need: huggingface-cli login
ds = load_dataset("{repo_id}", split="train", streaming=True)
data = list(ds.take(1000))
df = pd.DataFrame(data)
# Search for: "{query}"
if "{query}":
string_cols = df.select_dtypes(include=['object', 'string']).columns
mask = pd.Series([False] * len(df))
for col in string_cols:
mask |= df[col].astype(str).str.contains("{query}", case=False, na=False)
df = df[mask]
print(f"Found {{len(df)}} results")
print(df.head())
'''
else:
return f"# Code generation for {access_method} not implemented yet"
# --- π£ Data Fetching & Processing Functions ---
def fetch_data(dataset_key: str, access_method: str, query: str):
"""
π Main mission control. Always yields a tuple of 9 values to match the UI components.
"""
outputs = [pd.DataFrame(), None, "π Ready.", "", None, None, "", "", gr.Code(visible=False)]
req, res = None, None
try:
config = DATASET_CONFIG[dataset_key]
repo_id = config["name"]
# Generate code snippet
code_snippet = generate_code_snippet(dataset_key, access_method, query)
outputs[7] = code_snippet
if "API" in access_method:
all_results_df = pd.DataFrame()
MAX_PAGES = 5
PAGE_SIZE = 100
if not query:
MAX_PAGES = 1
outputs[2] = "β³ No search term. Fetching first 100 records as a sample..."
yield tuple(outputs)
for page in range(MAX_PAGES):
if query:
outputs[2] = f"β³ Searching page {page + 1}..."
yield tuple(outputs)
offset = page * PAGE_SIZE
url = f"https://datasets-server.huggingface.co/rows?dataset={repo_id}&config=default&split=train&offset={offset}&length={PAGE_SIZE}"
headers = get_auth_headers() if not config["is_public"] else {}
res = requests.get(url, headers=headers)
req = res.request
res.raise_for_status()
data = res.json()
if not data.get('rows'):
outputs[2] = "π No more data to search."
yield tuple(outputs)
break
# --- β¨ FIXED: JSON processing logic ---
# Extract the actual data from the 'row' key of each item in the list
rows_data = [item['row'] for item in data['rows']]
page_df = pd.json_normalize(rows_data)
found_in_page = search_dataframe(page_df, query)
if not found_in_page.empty:
all_results_df = pd.concat([all_results_df, found_in_page]).reset_index(drop=True)
outputs[0] = all_results_df
outputs[3], outputs[4], outputs[5], outputs[6] = dataframe_to_outputs(all_results_df)
outputs[2] = f"β
Found **{len(all_results_df)}** results so far..."
if dataset_key == 'inscene':
try:
gallery_data = []
for _, row in all_results_df.iterrows():
if 'image' in row:
image_data = row.get('image')
text_data = row.get('text', '')
# Handle different image formats safely
if hasattr(image_data, 'save'): # PIL Image
gallery_data.append((image_data, text_data))
elif isinstance(image_data, str): # Image path or URL
gallery_data.append((image_data, text_data))
if gallery_data:
outputs[1] = gr.Gallery(gallery_data, label="πΌοΈ Image Results", height=400)
except Exception as img_error:
# Don't break the flow for image errors
pass
yield tuple(outputs)
outputs[2] = f"π Search complete. Found a total of **{len(all_results_df)}** results."
yield tuple(outputs)
return
outputs[2] = f"β³ Loading data via `{access_method}`..."
yield tuple(outputs)
df = pd.DataFrame()
if "Pandas" in access_method:
file_path = f"hf://datasets/{repo_id}/"
if repo_id == "fka/awesome-chatgpt-prompts":
file_path += "prompts.csv"
df = pd.read_csv(file_path)
else:
try:
df = pd.read_parquet(f"{file_path}data/train-00000-of-00001.parquet")
except:
try:
df = pd.read_parquet(f"{file_path}train.parquet")
except:
df = pd.read_json(f"{file_path}medical_o1_sft.json")
elif "Datasets" in access_method:
if not DATASETS_AVAILABLE:
raise ImportError("datasets library not available. Install with: pip install datasets")
# Special handling for image datasets
if dataset_key == 'inscene' and "Images" in access_method:
outputs[2] = "πΌοΈ Loading InScene dataset with image processing..."
yield tuple(outputs)
# Load with image processing
ds = load_dataset(repo_id, split='train', streaming=True)
data_list = list(ds.take(50)) # Smaller sample for images
df = pd.DataFrame(data_list)
# Process images for gallery display
gallery_data = []
for i, item in enumerate(data_list):
try:
if 'image' in item and item['image'] is not None:
image = item['image']
caption = item.get('text', f'Image {i+1}')
# Convert PIL Image to displayable format
if hasattr(image, 'save'):
gallery_data.append((image, caption))
elif isinstance(image, str):
gallery_data.append((image, caption))
# Limit to first 20 images for performance
if len(gallery_data) >= 20:
break
except Exception as img_error:
continue
# Update gallery with images
if gallery_data:
outputs[1] = gr.Gallery(gallery_data, label=f"πΌοΈ Found {len(gallery_data)} Images", height=400, columns=4, rows=2)
outputs[2] = f"πΌοΈ Loaded {len(df)} records with {len(gallery_data)} images"
else:
outputs[2] = "πΌοΈ Loaded data but no images found to display"
else:
# Regular datasets loading
ds = load_dataset(repo_id, split='train', streaming=True)
data_list = list(ds.take(1000))
df = pd.DataFrame(data_list)
outputs[2] = f"π Loaded {len(df)} records via Datasets library"
outputs[2] = "π Searching loaded data..."
yield tuple(outputs)
final_df = search_dataframe(df, query)
outputs[0] = final_df
outputs[3], outputs[4], outputs[5], outputs[6] = dataframe_to_outputs(final_df)
outputs[2] = f"π Search complete. Found **{len(final_df)}** results."
if dataset_key == 'inscene' and not final_df.empty:
# Handle image data more safely
try:
gallery_data = []
for _, row in final_df.iterrows():
if 'image' in row:
image_data = row.get('image')
text_data = row.get('text', '')
# Handle different image formats
if hasattr(image_data, 'save'): # PIL Image
gallery_data.append((image_data, text_data))
elif isinstance(image_data, str): # Image path or URL
gallery_data.append((image_data, text_data))
if gallery_data:
outputs[1] = gr.Gallery(gallery_data, label="πΌοΈ Image Results", height=400)
except Exception as img_error:
outputs[2] += f"\nβ οΈ Image display error: {str(img_error)}"
yield tuple(outputs)
except Exception as e:
yield handle_error(e, req, res)
# --- πΌοΈ UI Generation ---
def create_dataset_tab(dataset_key: str):
config = DATASET_CONFIG[dataset_key]
with gr.Tab(f"{config['emoji']} {dataset_key.capitalize()}"):
gr.Markdown(f"## {config['emoji']} Query the `{config['name']}` Dataset")
if not config['is_public']:
gr.Markdown("**Note:** This is a gated dataset. Please log in via `huggingface-cli login` in your terminal first.")
# Show available methods for this dataset
available_methods = config['methods']
methods_note = f"**Available methods:** {len(available_methods)} tested and working methods"
if dataset_key == 'inscene':
methods_note += " (πΌοΈ = Image viewer included)"
gr.Markdown(methods_note)
with gr.Row():
access_method = gr.Radio(
available_methods,
label="π Access Method",
value=available_methods[0] if available_methods else "π¨ API (requests)"
)
query = gr.Textbox(
label="π Search Query",
placeholder="Enter any text to search, or leave blank for samples..."
)
fetch_button = gr.Button("π Go Fetch!")
status_output = gr.Markdown("π Ready to search.")
df_output = gr.DataFrame(label="π Results DataFrame", interactive=False, wrap=True)
# Show gallery for InScene dataset or when using image methods
show_gallery = (dataset_key == 'inscene')
gallery_output = gr.Gallery(visible=show_gallery, label="πΌοΈ Image Results", height=400, columns=4, rows=2)
with gr.Accordion("π View/Export Full Results", open=False):
markdown_output = gr.Markdown(label="π Markdown View")
with gr.Row():
csv_output = gr.File(label="β¬οΈ Download CSV")
xlsx_output = gr.File(label="β¬οΈ Download XLSX")
copy_output = gr.Code(label="π Copy-Paste (Tab-Delimited)")
code_output = gr.Code(label="π» Python Code Snippet", language="python")
debug_log_output = gr.Code(label="π Debug Log", visible=False)
fetch_button.click(
fn=fetch_data,
inputs=[gr.State(dataset_key), access_method, query],
outputs=[
df_output, gallery_output, status_output, markdown_output,
csv_output, xlsx_output, copy_output, code_output,
debug_log_output
]
)
# --- π Main App ---
with gr.Blocks(theme=gr.themes.Soft(), title="Hugging Face Dataset Explorer") as demo:
gr.Markdown("# π€ Hugging Face Dataset Explorer")
gr.Markdown(
"Select a dataset, choose an access method, and type a query. "
"If an error occurs, a detailed debug log will appear to help troubleshoot the issue."
)
# Show dependency status and dataset-specific methods
def get_dependency_status():
status = "### π§ Dataset-Specific Methods (Only Working Methods Shown):\n"
for key, config in DATASET_CONFIG.items():
methods_str = ", ".join(config['methods'])
auth_status = "π Requires Auth" if not config['is_public'] else "β
Public"
status += f"- **{config['emoji']} {key.capitalize()}**: {methods_str} ({auth_status})\n"
status += "\n### π Library Dependencies:\n"
status += f"- **πΌ Pandas**: β
Available\n"
status += f"- **π¨ Requests**: β
Available\n"
status += f"- **π€ Datasets**: {'β
Available' if DATASETS_AVAILABLE else 'β Not installed'}\n"
return status
with gr.Accordion("π§ Library Status & Quick Start Guide", open=False):
gr.Markdown(get_dependency_status())
gr.Markdown("""
### π Quick Start Guide:
1. **π€ Prompts**: Try Pandas or API method, search for "translator", "linux", or "writer"
2. **βοΈ Caselaw**: Try API method only, search for "contract", "court", or "appeal"
3. **π° Finance**: Try Pandas or API method (requires auth), search for "interest" or "market"
4. **π©Ί Medical**: Try Pandas method only (requires auth), search for "diagnosis" or "treatment"
5. **πΌοΈ InScene**: Try "πΌοΈ Datasets with Images" to see actual images, search for "kitchen" or "outdoor"
### π Authentication:
For gated datasets (Finance, Medical, InScene), run: `huggingface-cli login`
### π οΈ Method Explanations:
- **π¨ API**: Fast, reliable, works without login (100 rows max)
- **πΌ Pandas**: Full dataset access, requires login for gated datasets
- **π€ Datasets**: Standard HuggingFace datasets library
- **πΌοΈ Datasets with Images**: Special image viewer for InScene dataset
### β οΈ Note:
Only working methods are shown for each dataset. Non-functional methods have been removed.
""")
if not DATASETS_AVAILABLE:
gr.Markdown("**β οΈ Install datasets library for image viewing:** `pip install datasets`")
with gr.Tabs():
for key in DATASET_CONFIG.keys():
create_dataset_tab(key)
if __name__ == "__main__":
demo.launch(debug=True) |