Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,703 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
π Multi-Dataset Explorer π
|
| 4 |
+
A comprehensive Gradio app for exploring datasets with multiple access patterns
|
| 5 |
+
Built with emojis, wit, and international accessibility in mind!
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import pandas as pd
|
| 10 |
+
import requests
|
| 11 |
+
import json
|
| 12 |
+
import io
|
| 13 |
+
import base64
|
| 14 |
+
from typing import Dict, List, Tuple, Optional, Any
|
| 15 |
+
import asyncio
|
| 16 |
+
import aiohttp
|
| 17 |
+
from datasets import load_dataset
|
| 18 |
+
from huggingface_hub import HfApi
|
| 19 |
+
from PIL import Image
|
| 20 |
+
import numpy as np
|
| 21 |
+
|
| 22 |
+
# π¨ Dataset configurations with emojis for easy identification
|
| 23 |
+
DATASETS = {
|
| 24 |
+
"βοΈ Caselaw": {
|
| 25 |
+
"name": "common-pile/caselaw_access_project",
|
| 26 |
+
"description": "Legal cases from Caselaw Access Project",
|
| 27 |
+
"emoji": "βοΈ",
|
| 28 |
+
"has_images": False,
|
| 29 |
+
"sample_fields": ["id", "source", "added", "created", "metadata", "text"]
|
| 30 |
+
},
|
| 31 |
+
"π¬ ChatGPT": {
|
| 32 |
+
"name": "fka/awesome-chatgpt-prompts",
|
| 33 |
+
"description": "Awesome ChatGPT prompts collection",
|
| 34 |
+
"emoji": "π¬",
|
| 35 |
+
"has_images": False,
|
| 36 |
+
"sample_fields": ["act", "prompt"]
|
| 37 |
+
},
|
| 38 |
+
"π° Finance": {
|
| 39 |
+
"name": "snorkelai/agent-finance-reasoning",
|
| 40 |
+
"description": "Agent finance reasoning dataset",
|
| 41 |
+
"emoji": "π°",
|
| 42 |
+
"has_images": False,
|
| 43 |
+
"sample_fields": ["id", "question", "answer", "reasoning"]
|
| 44 |
+
},
|
| 45 |
+
"π₯ Medical": {
|
| 46 |
+
"name": "FreedomIntelligence/medical-o1-reasoning-SFT",
|
| 47 |
+
"description": "Medical reasoning for SFT training",
|
| 48 |
+
"emoji": "π₯",
|
| 49 |
+
"has_images": False,
|
| 50 |
+
"sample_fields": ["instruction", "output", "reasoning"]
|
| 51 |
+
},
|
| 52 |
+
"πΌοΈ InScene": {
|
| 53 |
+
"name": "peteromallet/InScene-Dataset",
|
| 54 |
+
"description": "Image scene understanding dataset",
|
| 55 |
+
"emoji": "πΌοΈ",
|
| 56 |
+
"has_images": True,
|
| 57 |
+
"sample_fields": ["image", "text", "scene_type"]
|
| 58 |
+
}
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
# π οΈ Access pattern configurations
|
| 62 |
+
ACCESS_PATTERNS = {
|
| 63 |
+
"π API": "Direct API calls with curl",
|
| 64 |
+
"πΌ Pandas": "Load with pandas library",
|
| 65 |
+
"π₯ Croissant": "MLCroissant metadata format",
|
| 66 |
+
"π Datasets": "HuggingFace datasets library",
|
| 67 |
+
"π Search": "Smart search functionality"
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
class DatasetExplorer:
|
| 71 |
+
"""π― Main class for dataset exploration with multiple access patterns"""
|
| 72 |
+
|
| 73 |
+
def __init__(self):
|
| 74 |
+
self.api = HfApi()
|
| 75 |
+
self.cache = {}
|
| 76 |
+
|
| 77 |
+
async def fetch_api_data(self, dataset_name: str, limit: int = 100) -> Dict:
|
| 78 |
+
"""π Fetch data using HuggingFace API with async magic"""
|
| 79 |
+
try:
|
| 80 |
+
url = f"https://datasets-server.huggingface.co/rows"
|
| 81 |
+
params = {
|
| 82 |
+
"dataset": dataset_name,
|
| 83 |
+
"config": "default",
|
| 84 |
+
"split": "train",
|
| 85 |
+
"offset": 0,
|
| 86 |
+
"length": min(limit, 100)
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
timeout = aiohttp.ClientTimeout(total=30) # 30 second timeout
|
| 90 |
+
async with aiohttp.ClientSession(timeout=timeout) as session:
|
| 91 |
+
async with session.get(url, params=params) as response:
|
| 92 |
+
if response.status == 200:
|
| 93 |
+
data = await response.json()
|
| 94 |
+
return {"success": True, "data": data, "total_rows": len(data.get("rows", []))}
|
| 95 |
+
elif response.status == 404:
|
| 96 |
+
return {"success": False, "error": "Dataset not found or not accessible"}
|
| 97 |
+
elif response.status == 403:
|
| 98 |
+
return {"success": False, "error": "Access denied - dataset may require authentication"}
|
| 99 |
+
else:
|
| 100 |
+
return {"success": False, "error": f"API returned {response.status}"}
|
| 101 |
+
except asyncio.TimeoutError:
|
| 102 |
+
return {"success": False, "error": "Request timed out - dataset may be too large"}
|
| 103 |
+
except Exception as e:
|
| 104 |
+
return {"success": False, "error": f"Network error: {str(e)}"}
|
| 105 |
+
|
| 106 |
+
def load_with_pandas(self, dataset_name: str, limit: int = 100) -> Dict:
|
| 107 |
+
"""πΌ Load data using pandas - because who doesn't love pandas?"""
|
| 108 |
+
try:
|
| 109 |
+
df = None
|
| 110 |
+
|
| 111 |
+
# Dataset-specific loading logic
|
| 112 |
+
if dataset_name == "fka/awesome-chatgpt-prompts":
|
| 113 |
+
df = pd.read_csv(f"hf://datasets/{dataset_name}/prompts.csv")
|
| 114 |
+
elif dataset_name == "snorkelai/agent-finance-reasoning":
|
| 115 |
+
df = pd.read_parquet(f"hf://datasets/{dataset_name}/train.parquet")
|
| 116 |
+
elif dataset_name == "peteromallet/InScene-Dataset":
|
| 117 |
+
splits = {'train': 'data/train-00000-of-00001.parquet'}
|
| 118 |
+
df = pd.read_parquet(f"hf://datasets/{dataset_name}/" + splits["train"])
|
| 119 |
+
elif dataset_name == "FreedomIntelligence/medical-o1-reasoning-SFT":
|
| 120 |
+
# Try different file formats
|
| 121 |
+
try:
|
| 122 |
+
df = pd.read_json(f"hf://datasets/{dataset_name}/medical_o1_sft.json", lines=True)
|
| 123 |
+
except:
|
| 124 |
+
df = pd.read_json(f"hf://datasets/{dataset_name}/medical_o1_sft.json")
|
| 125 |
+
elif dataset_name == "common-pile/caselaw_access_project":
|
| 126 |
+
# For large jsonl.gz files, use streaming
|
| 127 |
+
try:
|
| 128 |
+
import gzip
|
| 129 |
+
# This is a workaround for large compressed files
|
| 130 |
+
df = pd.read_json(f"hf://datasets/{dataset_name}/data/train-00000-of-00001.jsonl.gz",
|
| 131 |
+
lines=True, compression='gzip')
|
| 132 |
+
except:
|
| 133 |
+
# Fallback to API if direct file access fails
|
| 134 |
+
return {"success": False, "error": "Large dataset - please use API access method"}
|
| 135 |
+
else:
|
| 136 |
+
# Generic fallback
|
| 137 |
+
try:
|
| 138 |
+
df = pd.read_parquet(f"hf://datasets/{dataset_name}/train.parquet")
|
| 139 |
+
except:
|
| 140 |
+
df = pd.read_json(f"hf://datasets/{dataset_name}/train.json", lines=True)
|
| 141 |
+
|
| 142 |
+
if df is None:
|
| 143 |
+
return {"success": False, "error": "Could not determine appropriate loading method"}
|
| 144 |
+
|
| 145 |
+
total_rows = len(df)
|
| 146 |
+
df_limited = df.head(limit)
|
| 147 |
+
|
| 148 |
+
return {
|
| 149 |
+
"success": True,
|
| 150 |
+
"data": df_limited,
|
| 151 |
+
"total_rows": total_rows
|
| 152 |
+
}
|
| 153 |
+
|
| 154 |
+
except FileNotFoundError:
|
| 155 |
+
return {"success": False, "error": "Dataset files not found - try API access method"}
|
| 156 |
+
except pd.errors.EmptyDataError:
|
| 157 |
+
return {"success": False, "error": "Dataset appears to be empty"}
|
| 158 |
+
except pd.errors.ParserError as e:
|
| 159 |
+
return {"success": False, "error": f"Data parsing error: {str(e)}"}
|
| 160 |
+
except PermissionError:
|
| 161 |
+
return {"success": False, "error": "Dataset requires authentication - please login first"}
|
| 162 |
+
except Exception as e:
|
| 163 |
+
return {"success": False, "error": f"Pandas loading failed: {str(e)}"}
|
| 164 |
+
|
| 165 |
+
def load_with_datasets(self, dataset_name: str, limit: int = 100) -> Dict:
|
| 166 |
+
"""π Load using HuggingFace datasets library - the OG way"""
|
| 167 |
+
try:
|
| 168 |
+
ds = load_dataset(dataset_name, split="train", streaming=True)
|
| 169 |
+
data = list(ds.take(limit))
|
| 170 |
+
df = pd.DataFrame(data)
|
| 171 |
+
|
| 172 |
+
return {
|
| 173 |
+
"success": True,
|
| 174 |
+
"data": df,
|
| 175 |
+
"total_rows": len(data)
|
| 176 |
+
}
|
| 177 |
+
except Exception as e:
|
| 178 |
+
return {"success": False, "error": f"Datasets loading failed: {str(e)}"}
|
| 179 |
+
|
| 180 |
+
def search_dataset(self, dataset_name: str, query: str, limit: int = 100) -> Dict:
|
| 181 |
+
"""π Smart search functionality - finding needles in data haystacks"""
|
| 182 |
+
try:
|
| 183 |
+
# First try to load some data
|
| 184 |
+
result = self.load_with_pandas(dataset_name, limit=1000)
|
| 185 |
+
if not result["success"]:
|
| 186 |
+
result = self.load_with_datasets(dataset_name, limit=1000)
|
| 187 |
+
|
| 188 |
+
if not result["success"]:
|
| 189 |
+
return {"success": False, "error": "Could not load data for search"}
|
| 190 |
+
|
| 191 |
+
df = result["data"]
|
| 192 |
+
|
| 193 |
+
# Perform search across text columns
|
| 194 |
+
text_columns = df.select_dtypes(include=['object']).columns
|
| 195 |
+
search_results = pd.DataFrame()
|
| 196 |
+
|
| 197 |
+
for col in text_columns:
|
| 198 |
+
mask = df[col].astype(str).str.contains(query, case=False, na=False)
|
| 199 |
+
matches = df[mask]
|
| 200 |
+
if not matches.empty:
|
| 201 |
+
search_results = pd.concat([search_results, matches])
|
| 202 |
+
|
| 203 |
+
# Remove duplicates and limit results
|
| 204 |
+
search_results = search_results.drop_duplicates().head(limit)
|
| 205 |
+
|
| 206 |
+
return {
|
| 207 |
+
"success": True,
|
| 208 |
+
"data": search_results,
|
| 209 |
+
"total_matches": len(search_results)
|
| 210 |
+
}
|
| 211 |
+
except Exception as e:
|
| 212 |
+
return {"success": False, "error": f"Search failed: {str(e)}"}
|
| 213 |
+
|
| 214 |
+
# π¨ Initialize our explorer
|
| 215 |
+
explorer = DatasetExplorer()
|
| 216 |
+
|
| 217 |
+
def format_results(result: Dict, format_type: str) -> str:
|
| 218 |
+
"""π¨ Format results in different ways - because variety is the spice of life"""
|
| 219 |
+
if not result["success"]:
|
| 220 |
+
return f"β Error: {result['error']}"
|
| 221 |
+
|
| 222 |
+
df = result["data"]
|
| 223 |
+
|
| 224 |
+
if format_type == "π DataFrame":
|
| 225 |
+
return df.to_string(max_rows=50, max_cols=10)
|
| 226 |
+
elif format_type == "π Markdown":
|
| 227 |
+
return df.to_markdown(index=False, max_cols=10)
|
| 228 |
+
elif format_type == "π Tab-Delimited":
|
| 229 |
+
return df.to_csv(sep='\t', index=False)
|
| 230 |
+
else:
|
| 231 |
+
return str(df)
|
| 232 |
+
|
| 233 |
+
def export_data(df: pd.DataFrame, format_type: str) -> str:
|
| 234 |
+
"""πΎ Export data in various formats - take your data to go!"""
|
| 235 |
+
if format_type == "CSV":
|
| 236 |
+
return df.to_csv(index=False)
|
| 237 |
+
elif format_type == "XLSX":
|
| 238 |
+
buffer = io.BytesIO()
|
| 239 |
+
df.to_excel(buffer, index=False)
|
| 240 |
+
buffer.seek(0)
|
| 241 |
+
return base64.b64encode(buffer.getvalue()).decode()
|
| 242 |
+
elif format_type == "JSON":
|
| 243 |
+
return df.to_json(orient='records', indent=2)
|
| 244 |
+
else:
|
| 245 |
+
return df.to_string()
|
| 246 |
+
|
| 247 |
+
async def query_dataset(dataset_key: str, access_pattern: str, query: str = "", limit: int = 100) -> Tuple[str, str, str, str]:
|
| 248 |
+
"""π― Main query function - the heart of our operation"""
|
| 249 |
+
|
| 250 |
+
dataset_info = DATASETS[dataset_key]
|
| 251 |
+
dataset_name = dataset_info["name"]
|
| 252 |
+
emoji = dataset_info["emoji"]
|
| 253 |
+
|
| 254 |
+
# Show progress
|
| 255 |
+
status = f"{emoji} Fetching data using {access_pattern}..."
|
| 256 |
+
|
| 257 |
+
try:
|
| 258 |
+
result = None
|
| 259 |
+
|
| 260 |
+
if access_pattern == "π API":
|
| 261 |
+
result = await explorer.fetch_api_data(dataset_name, limit)
|
| 262 |
+
if result["success"] and "data" in result:
|
| 263 |
+
# Handle API response format
|
| 264 |
+
if "rows" in result["data"]:
|
| 265 |
+
df = pd.DataFrame(result["data"]["rows"])
|
| 266 |
+
else:
|
| 267 |
+
df = pd.DataFrame(result["data"])
|
| 268 |
+
result["data"] = df
|
| 269 |
+
|
| 270 |
+
elif access_pattern == "πΌ Pandas":
|
| 271 |
+
result = explorer.load_with_pandas(dataset_name, limit)
|
| 272 |
+
|
| 273 |
+
elif access_pattern == "π Datasets":
|
| 274 |
+
result = explorer.load_with_datasets(dataset_name, limit)
|
| 275 |
+
|
| 276 |
+
elif access_pattern == "π Search":
|
| 277 |
+
if not query.strip():
|
| 278 |
+
return "β Please enter a search query for search mode", "", "", ""
|
| 279 |
+
result = explorer.search_dataset(dataset_name, query, limit)
|
| 280 |
+
|
| 281 |
+
elif access_pattern == "π₯ Croissant":
|
| 282 |
+
# Add Croissant loading logic
|
| 283 |
+
result = {"success": False, "error": "Croissant loading not yet implemented - coming soon! π§"}
|
| 284 |
+
|
| 285 |
+
else:
|
| 286 |
+
result = {"success": False, "error": "Unknown access pattern"}
|
| 287 |
+
|
| 288 |
+
if not result or not result["success"]:
|
| 289 |
+
error_msg = result.get("error", "Unknown error") if result else "No result returned"
|
| 290 |
+
return f"β {error_msg}", "", "", ""
|
| 291 |
+
|
| 292 |
+
df = result["data"]
|
| 293 |
+
|
| 294 |
+
# Ensure we have a valid DataFrame
|
| 295 |
+
if df is None or df.empty:
|
| 296 |
+
return "β No data returned from dataset", "", "", ""
|
| 297 |
+
|
| 298 |
+
# Add metadata info
|
| 299 |
+
metadata_info = f"π Loaded {len(df)} rows"
|
| 300 |
+
if "total_rows" in result:
|
| 301 |
+
metadata_info += f" (of {result['total_rows']} total)"
|
| 302 |
+
metadata_info += f" using {access_pattern}\n\n"
|
| 303 |
+
|
| 304 |
+
# Format in different ways
|
| 305 |
+
dataframe_view = metadata_info + format_results(result, "π DataFrame")
|
| 306 |
+
markdown_view = metadata_info + format_results(result, "π Markdown")
|
| 307 |
+
tab_delimited = format_results(result, "π Tab-Delimited")
|
| 308 |
+
|
| 309 |
+
# Generate access code
|
| 310 |
+
access_code = generate_access_code(dataset_name, access_pattern, query)
|
| 311 |
+
|
| 312 |
+
return dataframe_view, markdown_view, tab_delimited, access_code
|
| 313 |
+
|
| 314 |
+
except Exception as e:
|
| 315 |
+
error_details = f"Unexpected error in {access_pattern}: {str(e)}"
|
| 316 |
+
return f"β {error_details}", "", "", ""
|
| 317 |
+
|
| 318 |
+
def generate_access_code(dataset_name: str, access_pattern: str, query: str = "") -> str:
|
| 319 |
+
"""π» Generate Python code for the selected access pattern"""
|
| 320 |
+
|
| 321 |
+
if access_pattern == "π API":
|
| 322 |
+
return f'''# π API Access Code
|
| 323 |
+
import requests
|
| 324 |
+
|
| 325 |
+
url = "https://datasets-server.huggingface.co/rows"
|
| 326 |
+
params = {{
|
| 327 |
+
"dataset": "{dataset_name}",
|
| 328 |
+
"config": "default",
|
| 329 |
+
"split": "train",
|
| 330 |
+
"offset": 0,
|
| 331 |
+
"length": 100
|
| 332 |
+
}}
|
| 333 |
+
|
| 334 |
+
response = requests.get(url, params=params)
|
| 335 |
+
data = response.json()
|
| 336 |
+
print(f"Loaded {{len(data['rows'])}} rows")
|
| 337 |
+
'''
|
| 338 |
+
|
| 339 |
+
elif access_pattern == "πΌ Pandas":
|
| 340 |
+
if dataset_name == "fka/awesome-chatgpt-prompts":
|
| 341 |
+
return f'''# πΌ Pandas Access Code
|
| 342 |
+
import pandas as pd
|
| 343 |
+
|
| 344 |
+
df = pd.read_csv("hf://datasets/{dataset_name}/prompts.csv")
|
| 345 |
+
print(f"Loaded {{len(df)}} rows")
|
| 346 |
+
print(df.head())
|
| 347 |
+
'''
|
| 348 |
+
else:
|
| 349 |
+
return f'''# πΌ Pandas Access Code
|
| 350 |
+
import pandas as pd
|
| 351 |
+
|
| 352 |
+
df = pd.read_parquet("hf://datasets/{dataset_name}/train.parquet")
|
| 353 |
+
print(f"Loaded {{len(df)}} rows")
|
| 354 |
+
print(df.head())
|
| 355 |
+
'''
|
| 356 |
+
|
| 357 |
+
elif access_pattern == "π Datasets":
|
| 358 |
+
return f'''# π Datasets Library Access Code
|
| 359 |
+
from datasets import load_dataset
|
| 360 |
+
|
| 361 |
+
ds = load_dataset("{dataset_name}", split="train")
|
| 362 |
+
print(f"Loaded {{len(ds)}} rows")
|
| 363 |
+
print(ds[0])
|
| 364 |
+
'''
|
| 365 |
+
|
| 366 |
+
elif access_pattern == "π Search":
|
| 367 |
+
return f'''# π Search Code
|
| 368 |
+
import pandas as pd
|
| 369 |
+
|
| 370 |
+
# Load the dataset
|
| 371 |
+
df = pd.read_parquet("hf://datasets/{dataset_name}/train.parquet")
|
| 372 |
+
|
| 373 |
+
# Search for: "{query}"
|
| 374 |
+
text_columns = df.select_dtypes(include=['object']).columns
|
| 375 |
+
search_results = pd.DataFrame()
|
| 376 |
+
|
| 377 |
+
for col in text_columns:
|
| 378 |
+
mask = df[col].astype(str).str.contains("{query}", case=False, na=False)
|
| 379 |
+
matches = df[mask]
|
| 380 |
+
if not matches.empty:
|
| 381 |
+
search_results = pd.concat([search_results, matches])
|
| 382 |
+
|
| 383 |
+
search_results = search_results.drop_duplicates()
|
| 384 |
+
print(f"Found {{len(search_results)}} matching rows")
|
| 385 |
+
'''
|
| 386 |
+
|
| 387 |
+
else:
|
| 388 |
+
return "# Code generation not available for this pattern"
|
| 389 |
+
|
| 390 |
+
def create_image_viewer(dataset_key: str, current_data: str = "") -> Tuple[str, str]:
|
| 391 |
+
"""πΌοΈ Create image viewer for datasets with images"""
|
| 392 |
+
if dataset_key != "πΌοΈ InScene":
|
| 393 |
+
return "This dataset does not contain images", ""
|
| 394 |
+
|
| 395 |
+
try:
|
| 396 |
+
# Parse current data to look for image information
|
| 397 |
+
if not current_data or "β" in current_data:
|
| 398 |
+
return """
|
| 399 |
+
πΌοΈ **Image Viewer for InScene Dataset**
|
| 400 |
+
|
| 401 |
+
To view images, first query the dataset using any access method.
|
| 402 |
+
The image viewer will then display available images with their metadata.
|
| 403 |
+
|
| 404 |
+
**Features coming in this viewer:**
|
| 405 |
+
- πΌοΈ Image thumbnails and full-size viewing
|
| 406 |
+
- π Image metadata and annotations
|
| 407 |
+
- π Search images by scene type
|
| 408 |
+
- π Navigation between images
|
| 409 |
+
- πΎ Download individual images
|
| 410 |
+
""", ""
|
| 411 |
+
|
| 412 |
+
# If we have data, try to extract image info
|
| 413 |
+
image_info = """
|
| 414 |
+
πΌοΈ **InScene Dataset Images**
|
| 415 |
+
|
| 416 |
+
**Sample Image Metadata:**
|
| 417 |
+
- Scene types: Indoor, Outdoor, Urban, Natural
|
| 418 |
+
- Annotations: Object detection, scene classification
|
| 419 |
+
- Format: Various (JPG, PNG)
|
| 420 |
+
- Resolution: Mixed resolutions
|
| 421 |
+
|
| 422 |
+
**Navigation:**
|
| 423 |
+
- Use the query controls above to load specific images
|
| 424 |
+
- Search for scene types like "indoor", "outdoor", "kitchen", etc.
|
| 425 |
+
- Images will be displayed with their metadata
|
| 426 |
+
|
| 427 |
+
π§ **Full image viewer implementation coming soon!**
|
| 428 |
+
For now, use the data tabs above to explore image metadata.
|
| 429 |
+
"""
|
| 430 |
+
|
| 431 |
+
return image_info, ""
|
| 432 |
+
|
| 433 |
+
except Exception as e:
|
| 434 |
+
return f"Error in image viewer: {str(e)}", ""
|
| 435 |
+
|
| 436 |
+
def get_export_data(dataframe_content: str, format_type: str) -> Tuple[str, str]:
|
| 437 |
+
"""πΎ Prepare data for export in various formats"""
|
| 438 |
+
try:
|
| 439 |
+
if not dataframe_content or "β" in dataframe_content:
|
| 440 |
+
return "No data to export", ""
|
| 441 |
+
|
| 442 |
+
# Extract actual data from the display format
|
| 443 |
+
# This is a simplified version - in production you'd want to maintain
|
| 444 |
+
# the actual DataFrame separately
|
| 445 |
+
|
| 446 |
+
if format_type == "CSV":
|
| 447 |
+
filename = "dataset_export.csv"
|
| 448 |
+
# In a real implementation, you'd export the actual DataFrame
|
| 449 |
+
content = "# Export functionality will be implemented with actual DataFrame data\n"
|
| 450 |
+
content += "# This is a placeholder showing the export structure\n"
|
| 451 |
+
content += dataframe_content
|
| 452 |
+
|
| 453 |
+
elif format_type == "XLSX":
|
| 454 |
+
filename = "dataset_export.xlsx"
|
| 455 |
+
content = "Excel export will be available in full implementation"
|
| 456 |
+
|
| 457 |
+
elif format_type == "JSON":
|
| 458 |
+
filename = "dataset_export.json"
|
| 459 |
+
content = '{"note": "JSON export will contain actual DataFrame data"}'
|
| 460 |
+
|
| 461 |
+
else:
|
| 462 |
+
filename = "dataset_export.txt"
|
| 463 |
+
content = dataframe_content
|
| 464 |
+
|
| 465 |
+
return content, filename
|
| 466 |
+
|
| 467 |
+
except Exception as e:
|
| 468 |
+
return f"Export error: {str(e)}", "error.txt"
|
| 469 |
+
|
| 470 |
+
# π¨ Create the Gradio interface
|
| 471 |
+
def create_interface():
|
| 472 |
+
"""π¨ Create the main Gradio interface - where the magic happens"""
|
| 473 |
+
|
| 474 |
+
with gr.Blocks(
|
| 475 |
+
title="π Multi-Dataset Explorer",
|
| 476 |
+
theme=gr.themes.Soft(),
|
| 477 |
+
css="""
|
| 478 |
+
.dataset-card { border: 2px solid #e1e5e9; border-radius: 10px; padding: 15px; margin: 10px; }
|
| 479 |
+
.emoji-large { font-size: 2em; }
|
| 480 |
+
"""
|
| 481 |
+
) as demo:
|
| 482 |
+
|
| 483 |
+
gr.Markdown("""
|
| 484 |
+
# π Multi-Dataset Explorer π
|
| 485 |
+
### Explore 5 amazing datasets with multiple access patterns!
|
| 486 |
+
Choose your dataset π, pick your method π οΈ, and dive deep into the data πββοΈ
|
| 487 |
+
""")
|
| 488 |
+
|
| 489 |
+
with gr.Row():
|
| 490 |
+
dataset_dropdown = gr.Dropdown(
|
| 491 |
+
choices=list(DATASETS.keys()),
|
| 492 |
+
value=list(DATASETS.keys())[0],
|
| 493 |
+
label="π Select Dataset",
|
| 494 |
+
interactive=True
|
| 495 |
+
)
|
| 496 |
+
|
| 497 |
+
access_dropdown = gr.Dropdown(
|
| 498 |
+
choices=list(ACCESS_PATTERNS.keys()),
|
| 499 |
+
value=list(ACCESS_PATTERNS.keys())[0],
|
| 500 |
+
label="π οΈ Access Method",
|
| 501 |
+
interactive=True
|
| 502 |
+
)
|
| 503 |
+
|
| 504 |
+
with gr.Row():
|
| 505 |
+
query_input = gr.Textbox(
|
| 506 |
+
placeholder="π Enter search query (for search mode)",
|
| 507 |
+
label="Search Query",
|
| 508 |
+
interactive=True
|
| 509 |
+
)
|
| 510 |
+
|
| 511 |
+
limit_slider = gr.Slider(
|
| 512 |
+
minimum=10,
|
| 513 |
+
maximum=500,
|
| 514 |
+
value=100,
|
| 515 |
+
label="π Result Limit",
|
| 516 |
+
interactive=True
|
| 517 |
+
)
|
| 518 |
+
|
| 519 |
+
query_button = gr.Button("π Query Dataset", variant="primary", size="lg")
|
| 520 |
+
|
| 521 |
+
with gr.Tabs():
|
| 522 |
+
|
| 523 |
+
with gr.Tab("π Data View"):
|
| 524 |
+
dataframe_output = gr.Textbox(
|
| 525 |
+
label="π DataFrame View",
|
| 526 |
+
lines=20,
|
| 527 |
+
max_lines=30
|
| 528 |
+
)
|
| 529 |
+
|
| 530 |
+
with gr.Tab("π Markdown"):
|
| 531 |
+
markdown_output = gr.Textbox(
|
| 532 |
+
label="π Markdown Format",
|
| 533 |
+
lines=20,
|
| 534 |
+
max_lines=30
|
| 535 |
+
)
|
| 536 |
+
|
| 537 |
+
with gr.Tab("π Copy-Paste"):
|
| 538 |
+
tab_output = gr.Textbox(
|
| 539 |
+
label="π Tab-Delimited (Copy-Ready)",
|
| 540 |
+
lines=20,
|
| 541 |
+
max_lines=30
|
| 542 |
+
)
|
| 543 |
+
|
| 544 |
+
with gr.Tab("π» Access Code"):
|
| 545 |
+
code_output = gr.Code(
|
| 546 |
+
label="π» Python Access Code",
|
| 547 |
+
language="python",
|
| 548 |
+
lines=15
|
| 549 |
+
)
|
| 550 |
+
|
| 551 |
+
with gr.Tab("πΌοΈ Images"):
|
| 552 |
+
image_output = gr.Textbox(
|
| 553 |
+
label="πΌοΈ Image Viewer",
|
| 554 |
+
lines=10
|
| 555 |
+
)
|
| 556 |
+
|
| 557 |
+
with gr.Row():
|
| 558 |
+
gr.Markdown("### πΎ Export Options")
|
| 559 |
+
with gr.Column():
|
| 560 |
+
export_format = gr.Dropdown(
|
| 561 |
+
choices=["CSV", "XLSX", "JSON", "TXT"],
|
| 562 |
+
value="CSV",
|
| 563 |
+
label="Export Format"
|
| 564 |
+
)
|
| 565 |
+
export_button = gr.Button("πΎ Export Data", variant="secondary")
|
| 566 |
+
export_output = gr.File(label="π Download", visible=False)
|
| 567 |
+
|
| 568 |
+
# π§ Status and help section
|
| 569 |
+
with gr.Row():
|
| 570 |
+
status_display = gr.Textbox(
|
| 571 |
+
label="π Status",
|
| 572 |
+
value="Ready to explore datasets! π",
|
| 573 |
+
interactive=False
|
| 574 |
+
)
|
| 575 |
+
|
| 576 |
+
# π Dataset info display
|
| 577 |
+
def update_dataset_info(dataset_key):
|
| 578 |
+
info = DATASETS[dataset_key]
|
| 579 |
+
return f"""
|
| 580 |
+
## {info['emoji']} {dataset_key}
|
| 581 |
+
**Description:** {info['description']}
|
| 582 |
+
**Dataset:** `{info['name']}`
|
| 583 |
+
**Has Images:** {'Yes πΌοΈ' if info['has_images'] else 'No π'}
|
| 584 |
+
**Sample Fields:** {', '.join(info['sample_fields'])}
|
| 585 |
+
|
| 586 |
+
### π§ Recommended Access Methods:
|
| 587 |
+
- **π API**: Fast, always works, limited to 100 rows
|
| 588 |
+
- **πΌ Pandas**: Full dataset access, may require authentication
|
| 589 |
+
- **π Datasets**: Streaming support, good for large datasets
|
| 590 |
+
- **π Search**: Find specific content within the dataset
|
| 591 |
+
"""
|
| 592 |
+
|
| 593 |
+
dataset_info = gr.Markdown()
|
| 594 |
+
|
| 595 |
+
# π Event handlers
|
| 596 |
+
dataset_dropdown.change(
|
| 597 |
+
update_dataset_info,
|
| 598 |
+
inputs=[dataset_dropdown],
|
| 599 |
+
outputs=[dataset_info]
|
| 600 |
+
)
|
| 601 |
+
|
| 602 |
+
# Update image viewer when dataset changes
|
| 603 |
+
def update_image_viewer(dataset_key, current_data):
|
| 604 |
+
return create_image_viewer(dataset_key, current_data)
|
| 605 |
+
|
| 606 |
+
dataset_dropdown.change(
|
| 607 |
+
update_image_viewer,
|
| 608 |
+
inputs=[dataset_dropdown, dataframe_output],
|
| 609 |
+
outputs=[image_output]
|
| 610 |
+
)
|
| 611 |
+
|
| 612 |
+
# Async wrapper for the query function
|
| 613 |
+
def query_wrapper(dataset_key, access_pattern, query, limit):
|
| 614 |
+
try:
|
| 615 |
+
return asyncio.run(query_dataset(dataset_key, access_pattern, query, limit))
|
| 616 |
+
except Exception as e:
|
| 617 |
+
error_msg = f"Query failed: {str(e)}"
|
| 618 |
+
return error_msg, error_msg, error_msg, f"# Error: {str(e)}"
|
| 619 |
+
|
| 620 |
+
# Update status on query start
|
| 621 |
+
def update_status_start(dataset_key, access_pattern):
|
| 622 |
+
dataset_emoji = DATASETS[dataset_key]["emoji"]
|
| 623 |
+
return f"{dataset_emoji} Querying with {access_pattern}... Please wait β³"
|
| 624 |
+
|
| 625 |
+
query_button.click(
|
| 626 |
+
update_status_start,
|
| 627 |
+
inputs=[dataset_dropdown, access_dropdown],
|
| 628 |
+
outputs=[status_display]
|
| 629 |
+
)
|
| 630 |
+
|
| 631 |
+
def query_and_update_status(dataset_key, access_pattern, query, limit):
|
| 632 |
+
results = query_wrapper(dataset_key, access_pattern, query, limit)
|
| 633 |
+
|
| 634 |
+
# Update status based on results
|
| 635 |
+
if results[0].startswith("β"):
|
| 636 |
+
status = f"β Query failed - see data tabs for details"
|
| 637 |
+
else:
|
| 638 |
+
dataset_emoji = DATASETS[dataset_key]["emoji"]
|
| 639 |
+
status = f"β
{dataset_emoji} Data loaded successfully!"
|
| 640 |
+
|
| 641 |
+
return results + (status,)
|
| 642 |
+
|
| 643 |
+
query_button.click(
|
| 644 |
+
query_and_update_status,
|
| 645 |
+
inputs=[dataset_dropdown, access_dropdown, query_input, limit_slider],
|
| 646 |
+
outputs=[dataframe_output, markdown_output, tab_output, code_output, status_display]
|
| 647 |
+
)
|
| 648 |
+
|
| 649 |
+
# Export functionality
|
| 650 |
+
def handle_export(format_type, dataframe_content):
|
| 651 |
+
content, filename = get_export_data(dataframe_content, format_type)
|
| 652 |
+
|
| 653 |
+
# Create a temporary file for download
|
| 654 |
+
import tempfile
|
| 655 |
+
import os
|
| 656 |
+
|
| 657 |
+
temp_file = tempfile.NamedTemporaryFile(mode='w', delete=False, suffix=f'.{format_type.lower()}')
|
| 658 |
+
temp_file.write(content)
|
| 659 |
+
temp_file.close()
|
| 660 |
+
|
| 661 |
+
return temp_file.name
|
| 662 |
+
|
| 663 |
+
export_button.click(
|
| 664 |
+
handle_export,
|
| 665 |
+
inputs=[export_format, dataframe_output],
|
| 666 |
+
outputs=[export_output]
|
| 667 |
+
)
|
| 668 |
+
|
| 669 |
+
# Initialize with first dataset info
|
| 670 |
+
demo.load(
|
| 671 |
+
update_dataset_info,
|
| 672 |
+
inputs=[dataset_dropdown],
|
| 673 |
+
outputs=[dataset_info]
|
| 674 |
+
)
|
| 675 |
+
|
| 676 |
+
gr.Markdown("""
|
| 677 |
+
---
|
| 678 |
+
### π― Quick Tips:
|
| 679 |
+
- **βοΈ Caselaw**: Legal document analysis
|
| 680 |
+
- **π¬ ChatGPT**: Prompt engineering examples
|
| 681 |
+
- **π° Finance**: Financial reasoning chains
|
| 682 |
+
- **π₯ Medical**: Medical AI training data
|
| 683 |
+
- **πΌοΈ InScene**: Computer vision datasets
|
| 684 |
+
|
| 685 |
+
### π οΈ Access Patterns:
|
| 686 |
+
- **π API**: Direct HTTP calls
|
| 687 |
+
- **πΌ Pandas**: DataFrame magic
|
| 688 |
+
- **π Datasets**: HF standard
|
| 689 |
+
- **π Search**: Smart filtering
|
| 690 |
+
|
| 691 |
+
Made with β€οΈ and lots of β for the global data community π
|
| 692 |
+
""")
|
| 693 |
+
|
| 694 |
+
return demo
|
| 695 |
+
|
| 696 |
+
if __name__ == "__main__":
|
| 697 |
+
demo = create_interface()
|
| 698 |
+
demo.launch(
|
| 699 |
+
server_name="0.0.0.0",
|
| 700 |
+
server_port=7860,
|
| 701 |
+
share=True,
|
| 702 |
+
show_error=True
|
| 703 |
+
)
|