File size: 7,723 Bytes
3ea53a0
 
 
 
 
 
 
f830549
3ea53a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f830549
3ea53a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc582e0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import spaces
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
from ultralytics import YOLO
from huggingface_hub import hf_hub_download
import cv2
import tempfile
import numpy as np

def download_model(model_filename):
    return hf_hub_download(repo_id="atalaydenknalbant/Yolov13", filename=model_filename)

@spaces.GPU
def yolo_inference(input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection):
    model_path = download_model(model_id)

    if input_type == "Image":
        if image is None:
            width, height = 640, 480
            blank_image = Image.new("RGB", (width, height), color="white")
            draw = ImageDraw.Draw(blank_image)
            message = "No image provided"
            font = ImageFont.load_default(size=40)
            bbox = draw.textbbox((0, 0), message, font=font)
            text_width = bbox[2] - bbox[0]
            text_height = bbox[3] - bbox[1]
            text_x = (width - text_width) / 2
            text_y = (height - text_height) / 2
            draw.text((text_x, text_y), message, fill="black", font=font)
            return blank_image, None

        model = YOLO(model_path)
        results = model.predict(
            source=image,
            conf=conf_threshold,
            iou=iou_threshold,
            imgsz=640,
            max_det=max_detection,
            show_labels=True,
            show_conf=True,
        )
        for r in results:
            image_array = r.plot()
            annotated_image = Image.fromarray(image_array[..., ::-1])
        return annotated_image, None

    elif input_type == "Video":
        if video is None:
            width, height = 640, 480
            blank_image = Image.new("RGB", (width, height), color="white")
            draw = ImageDraw.Draw(blank_image)
            message = "No video provided"
            font = ImageFont.load_default(size=40)
            bbox = draw.textbbox((0, 0), message, font=font)
            text_width = bbox[2] - bbox[0]
            text_height = bbox[3] - bbox[1]
            text_x = (width - text_width) / 2
            text_y = (height - text_height) / 2
            draw.text((text_x, text_y), message, fill="black", font=font)
            temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
            fourcc = cv2.VideoWriter_fourcc(*"mp4v")
            out = cv2.VideoWriter(temp_video_file, fourcc, 1, (width, height))
            frame = cv2.cvtColor(np.array(blank_image), cv2.COLOR_RGB2BGR)
            out.write(frame)
            out.release()
            return None, temp_video_file

        model = YOLO(model_path)
        cap = cv2.VideoCapture(video)
        fps = cap.get(cv2.CAP_PROP_FPS) if cap.get(cv2.CAP_PROP_FPS) > 0 else 25
        frames = []
        while True:
            ret, frame = cap.read()
            if not ret:
                break
            pil_frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
            results = model.predict(
                source=pil_frame,
                conf=conf_threshold,
                iou=iou_threshold,
                imgsz=640,
                max_det=max_detection,
                show_labels=True,
                show_conf=True,
            )
            for r in results:
                annotated_frame_array = r.plot()
                annotated_frame = cv2.cvtColor(annotated_frame_array, cv2.COLOR_BGR2RGB)
            frames.append(annotated_frame)
        cap.release()
        if not frames:
            return None, None

        height_out, width_out, _ = frames[0].shape
        temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
        fourcc = cv2.VideoWriter_fourcc(*"mp4v")
        out = cv2.VideoWriter(temp_video_file, fourcc, fps, (width_out, height_out))
        for f in frames:
            f_bgr = cv2.cvtColor(f, cv2.COLOR_RGB2BGR)
            out.write(f_bgr)
        out.release()
        return None, temp_video_file

    return None, None

def update_visibility(input_type):
    if input_type == "Image":
        return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
    else:
        return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=true)

def yolo_inference_for_examples(image, model_id, conf_threshold, iou_threshold, max_detection):
    annotated_image, _ = yolo_inference(
        input_type="Image",
        image=image,
        video=None,
        model_id=model_id,
        conf_threshold=conf_threshold,
        iou_threshold=iou_threshold,
        max_detection=max_detection
    )
    return gr.update(value="Image"), annotated_image

with gr.Blocks() as app:
    gr.Markdown("# Yolo13: Object Detection")
    gr.Markdown("Upload an image or video for inference using the latest YOLOv13 models.")
    gr.Markdown("πŸ“ **Note:** Better-trained models will be deployed as they become available.")
    with gr.Accordion("Paper and Citation", open=False):
        gr.Markdown("""
        This application is based on the research from the paper: **YOLOv13: Real-Time Object Detection with Hypergraph-Enhanced Adaptive Visual Perception**.

        - **Authors:** Mengqi Lei, Siqi Li, Yihong Wu, et al.
        - **Preprint Link:** [https://arxiv.org/abs/2506.17733](https://arxiv.org/abs/2506.17733)

        **BibTeX:**
        ```
        @article{yolov13,
          title={YOLOv13: Real-Time Object Detection with Hypergraph-Enhanced Adaptive Visual Perception},
          author={Lei, Mengqi and Li, Siqi and Wu, Yihong and et al.},
          journal={arXiv preprint arXiv:2506.17733},
          year={2025}
        }
        ```
        """)

    with gr.Row():
        with gr.Column():
            image = gr.Image(type="pil", label="Image", visible=True)
            video = gr.Video(label="Video", visible=False)
            input_type = gr.Radio(
                choices=["Image", "Video"],
                value="Image",
                label="Input Type",
            )
            model_id = gr.Dropdown(
                label="Model Name",
                choices=[
                    'yolov13n.pt', 'yolov13s.pt', 'yolov13l.pt', 'yolov13x.pt',
                ],
                value="yolov13n.pt",
            )
            conf_threshold = gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence Threshold")
            iou_threshold = gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU Threshold")
            max_detection = gr.Slider(minimum=1, maximum=300, step=1, value=300, label="Max Detection")
            infer_button = gr.Button("Detect Objects")
        with gr.Column():
            output_image = gr.Image(type="pil", label="Annotated Image", visible=True)
            output_video = gr.Video(label="Annotated Video", visible=False)
            gr.DeepLinkButton()

    input_type.change(
        fn=update_visibility,
        inputs=input_type,
        outputs=[image, video, output_image, output_video],
    )

    infer_button.click(
        fn=yolo_inference,
        inputs=[input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection],
        outputs=[output_image, output_video],
    )

    gr.Examples(
        examples=[
            ["zidane.jpg", "yolov13s.pt", 0.35, 0.45, 300],
            ["bus.jpg", "yolov13l.pt", 0.35, 0.45, 300],
            ["yolo_vision.jpg", "yolov13x.pt", 0.35, 0.45, 300],
        ],
        fn=yolo_inference_for_examples,
        inputs=[image, model_id, conf_threshold, iou_threshold, max_detection],
        outputs=[input_type, output_image],
        label="Examples (Images)",
    )

if __name__ == '__main__':
    app.launch()