Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,194 +1,195 @@
|
|
1 |
-
import spaces
|
2 |
-
import gradio as gr
|
3 |
-
from PIL import Image, ImageDraw, ImageFont
|
4 |
-
from ultralytics import YOLO
|
5 |
-
from huggingface_hub import hf_hub_download
|
6 |
-
import cv2
|
7 |
-
import tempfile
|
8 |
-
|
9 |
-
def download_model(model_filename):
|
10 |
-
return hf_hub_download(repo_id="atalaydenknalbant/Yolov13", filename=model_filename)
|
11 |
-
|
12 |
-
@spaces.GPU
|
13 |
-
def yolo_inference(input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection):
|
14 |
-
model_path = download_model(model_id)
|
15 |
-
|
16 |
-
if input_type == "Image":
|
17 |
-
if image is None:
|
18 |
-
width, height = 640, 480
|
19 |
-
blank_image = Image.new("RGB", (width, height), color="white")
|
20 |
-
draw = ImageDraw.Draw(blank_image)
|
21 |
-
message = "No image provided"
|
22 |
-
font = ImageFont.load_default(size=40)
|
23 |
-
bbox = draw.textbbox((0, 0), message, font=font)
|
24 |
-
text_width = bbox[2] - bbox[0]
|
25 |
-
text_height = bbox[3] - bbox[1]
|
26 |
-
text_x = (width - text_width) / 2
|
27 |
-
text_y = (height - text_height) / 2
|
28 |
-
draw.text((text_x, text_y), message, fill="black", font=font)
|
29 |
-
return blank_image, None
|
30 |
-
|
31 |
-
model = YOLO(model_path)
|
32 |
-
results = model.predict(
|
33 |
-
source=image,
|
34 |
-
conf=conf_threshold,
|
35 |
-
iou=iou_threshold,
|
36 |
-
imgsz=640,
|
37 |
-
max_det=max_detection,
|
38 |
-
show_labels=True,
|
39 |
-
show_conf=True,
|
40 |
-
)
|
41 |
-
for r in results:
|
42 |
-
image_array = r.plot()
|
43 |
-
annotated_image = Image.fromarray(image_array[..., ::-1])
|
44 |
-
return annotated_image, None
|
45 |
-
|
46 |
-
elif input_type == "Video":
|
47 |
-
if video is None:
|
48 |
-
width, height = 640, 480
|
49 |
-
blank_image = Image.new("RGB", (width, height), color="white")
|
50 |
-
draw = ImageDraw.Draw(blank_image)
|
51 |
-
message = "No video provided"
|
52 |
-
font = ImageFont.load_default(size=40)
|
53 |
-
bbox = draw.textbbox((0, 0), message, font=font)
|
54 |
-
text_width = bbox[2] - bbox[0]
|
55 |
-
text_height = bbox[3] - bbox[1]
|
56 |
-
text_x = (width - text_width) / 2
|
57 |
-
text_y = (height - text_height) / 2
|
58 |
-
draw.text((text_x, text_y), message, fill="black", font=font)
|
59 |
-
temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
|
60 |
-
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
61 |
-
out = cv2.VideoWriter(temp_video_file, fourcc, 1, (width, height))
|
62 |
-
frame = cv2.cvtColor(np.array(blank_image), cv2.COLOR_RGB2BGR)
|
63 |
-
out.write(frame)
|
64 |
-
out.release()
|
65 |
-
return None, temp_video_file
|
66 |
-
|
67 |
-
model = YOLO(model_path)
|
68 |
-
cap = cv2.VideoCapture(video)
|
69 |
-
fps = cap.get(cv2.CAP_PROP_FPS) if cap.get(cv2.CAP_PROP_FPS) > 0 else 25
|
70 |
-
frames = []
|
71 |
-
while True:
|
72 |
-
ret, frame = cap.read()
|
73 |
-
if not ret:
|
74 |
-
break
|
75 |
-
pil_frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
76 |
-
results = model.predict(
|
77 |
-
source=pil_frame,
|
78 |
-
conf=conf_threshold,
|
79 |
-
iou=iou_threshold,
|
80 |
-
imgsz=640,
|
81 |
-
max_det=max_detection,
|
82 |
-
show_labels=True,
|
83 |
-
show_conf=True,
|
84 |
-
)
|
85 |
-
for r in results:
|
86 |
-
annotated_frame_array = r.plot()
|
87 |
-
annotated_frame = cv2.cvtColor(annotated_frame_array, cv2.COLOR_BGR2RGB)
|
88 |
-
frames.append(annotated_frame)
|
89 |
-
cap.release()
|
90 |
-
if not frames:
|
91 |
-
return None, None
|
92 |
-
|
93 |
-
height_out, width_out, _ = frames[0].shape
|
94 |
-
temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
|
95 |
-
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
96 |
-
out = cv2.VideoWriter(temp_video_file, fourcc, fps, (width_out, height_out))
|
97 |
-
for f in frames:
|
98 |
-
f_bgr = cv2.cvtColor(f, cv2.COLOR_RGB2BGR)
|
99 |
-
out.write(f_bgr)
|
100 |
-
out.release()
|
101 |
-
return None, temp_video_file
|
102 |
-
|
103 |
-
return None, None
|
104 |
-
|
105 |
-
def update_visibility(input_type):
|
106 |
-
if input_type == "Image":
|
107 |
-
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
108 |
-
else:
|
109 |
-
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=true)
|
110 |
-
|
111 |
-
def yolo_inference_for_examples(image, model_id, conf_threshold, iou_threshold, max_detection):
|
112 |
-
annotated_image, _ = yolo_inference(
|
113 |
-
input_type="Image",
|
114 |
-
image=image,
|
115 |
-
video=None,
|
116 |
-
model_id=model_id,
|
117 |
-
conf_threshold=conf_threshold,
|
118 |
-
iou_threshold=iou_threshold,
|
119 |
-
max_detection=max_detection
|
120 |
-
)
|
121 |
-
return gr.update(value="Image"), annotated_image
|
122 |
-
|
123 |
-
with gr.Blocks() as app:
|
124 |
-
gr.Markdown("# Yolo13: Object Detection")
|
125 |
-
gr.Markdown("Upload an image or video for inference using the latest YOLOv13 models.")
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
- **
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
gr.
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
["
|
185 |
-
["
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
|
|
194 |
app.launch()
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
from PIL import Image, ImageDraw, ImageFont
|
4 |
+
from ultralytics import YOLO
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
import cv2
|
7 |
+
import tempfile
|
8 |
+
|
9 |
+
def download_model(model_filename):
|
10 |
+
return hf_hub_download(repo_id="atalaydenknalbant/Yolov13", filename=model_filename)
|
11 |
+
|
12 |
+
@spaces.GPU
|
13 |
+
def yolo_inference(input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection):
|
14 |
+
model_path = download_model(model_id)
|
15 |
+
|
16 |
+
if input_type == "Image":
|
17 |
+
if image is None:
|
18 |
+
width, height = 640, 480
|
19 |
+
blank_image = Image.new("RGB", (width, height), color="white")
|
20 |
+
draw = ImageDraw.Draw(blank_image)
|
21 |
+
message = "No image provided"
|
22 |
+
font = ImageFont.load_default(size=40)
|
23 |
+
bbox = draw.textbbox((0, 0), message, font=font)
|
24 |
+
text_width = bbox[2] - bbox[0]
|
25 |
+
text_height = bbox[3] - bbox[1]
|
26 |
+
text_x = (width - text_width) / 2
|
27 |
+
text_y = (height - text_height) / 2
|
28 |
+
draw.text((text_x, text_y), message, fill="black", font=font)
|
29 |
+
return blank_image, None
|
30 |
+
|
31 |
+
model = YOLO(model_path)
|
32 |
+
results = model.predict(
|
33 |
+
source=image,
|
34 |
+
conf=conf_threshold,
|
35 |
+
iou=iou_threshold,
|
36 |
+
imgsz=640,
|
37 |
+
max_det=max_detection,
|
38 |
+
show_labels=True,
|
39 |
+
show_conf=True,
|
40 |
+
)
|
41 |
+
for r in results:
|
42 |
+
image_array = r.plot()
|
43 |
+
annotated_image = Image.fromarray(image_array[..., ::-1])
|
44 |
+
return annotated_image, None
|
45 |
+
|
46 |
+
elif input_type == "Video":
|
47 |
+
if video is None:
|
48 |
+
width, height = 640, 480
|
49 |
+
blank_image = Image.new("RGB", (width, height), color="white")
|
50 |
+
draw = ImageDraw.Draw(blank_image)
|
51 |
+
message = "No video provided"
|
52 |
+
font = ImageFont.load_default(size=40)
|
53 |
+
bbox = draw.textbbox((0, 0), message, font=font)
|
54 |
+
text_width = bbox[2] - bbox[0]
|
55 |
+
text_height = bbox[3] - bbox[1]
|
56 |
+
text_x = (width - text_width) / 2
|
57 |
+
text_y = (height - text_height) / 2
|
58 |
+
draw.text((text_x, text_y), message, fill="black", font=font)
|
59 |
+
temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
|
60 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
61 |
+
out = cv2.VideoWriter(temp_video_file, fourcc, 1, (width, height))
|
62 |
+
frame = cv2.cvtColor(np.array(blank_image), cv2.COLOR_RGB2BGR)
|
63 |
+
out.write(frame)
|
64 |
+
out.release()
|
65 |
+
return None, temp_video_file
|
66 |
+
|
67 |
+
model = YOLO(model_path)
|
68 |
+
cap = cv2.VideoCapture(video)
|
69 |
+
fps = cap.get(cv2.CAP_PROP_FPS) if cap.get(cv2.CAP_PROP_FPS) > 0 else 25
|
70 |
+
frames = []
|
71 |
+
while True:
|
72 |
+
ret, frame = cap.read()
|
73 |
+
if not ret:
|
74 |
+
break
|
75 |
+
pil_frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
76 |
+
results = model.predict(
|
77 |
+
source=pil_frame,
|
78 |
+
conf=conf_threshold,
|
79 |
+
iou=iou_threshold,
|
80 |
+
imgsz=640,
|
81 |
+
max_det=max_detection,
|
82 |
+
show_labels=True,
|
83 |
+
show_conf=True,
|
84 |
+
)
|
85 |
+
for r in results:
|
86 |
+
annotated_frame_array = r.plot()
|
87 |
+
annotated_frame = cv2.cvtColor(annotated_frame_array, cv2.COLOR_BGR2RGB)
|
88 |
+
frames.append(annotated_frame)
|
89 |
+
cap.release()
|
90 |
+
if not frames:
|
91 |
+
return None, None
|
92 |
+
|
93 |
+
height_out, width_out, _ = frames[0].shape
|
94 |
+
temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
|
95 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
96 |
+
out = cv2.VideoWriter(temp_video_file, fourcc, fps, (width_out, height_out))
|
97 |
+
for f in frames:
|
98 |
+
f_bgr = cv2.cvtColor(f, cv2.COLOR_RGB2BGR)
|
99 |
+
out.write(f_bgr)
|
100 |
+
out.release()
|
101 |
+
return None, temp_video_file
|
102 |
+
|
103 |
+
return None, None
|
104 |
+
|
105 |
+
def update_visibility(input_type):
|
106 |
+
if input_type == "Image":
|
107 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
108 |
+
else:
|
109 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=true)
|
110 |
+
|
111 |
+
def yolo_inference_for_examples(image, model_id, conf_threshold, iou_threshold, max_detection):
|
112 |
+
annotated_image, _ = yolo_inference(
|
113 |
+
input_type="Image",
|
114 |
+
image=image,
|
115 |
+
video=None,
|
116 |
+
model_id=model_id,
|
117 |
+
conf_threshold=conf_threshold,
|
118 |
+
iou_threshold=iou_threshold,
|
119 |
+
max_detection=max_detection
|
120 |
+
)
|
121 |
+
return gr.update(value="Image"), annotated_image
|
122 |
+
|
123 |
+
with gr.Blocks() as app:
|
124 |
+
gr.Markdown("# Yolo13: Object Detection")
|
125 |
+
gr.Markdown("Upload an image or video for inference using the latest YOLOv13 models.")
|
126 |
+
gr.Markdown("📝 **Note:** Better trained models will be deployed when they are available.")
|
127 |
+
with gr.Accordion("Paper and Citation", open=False):
|
128 |
+
gr.Markdown("""
|
129 |
+
This application is based on the research from the paper: **YOLOv13: Real-Time Object Detection with Hypergraph-Enhanced Adaptive Visual Perception**.
|
130 |
+
|
131 |
+
- **Authors:** Mengqi Lei, Siqi Li, Yihong Wu, et al.
|
132 |
+
- **Preprint Link:** [https://arxiv.org/abs/2506.17733](https://arxiv.org/abs/2506.17733)
|
133 |
+
|
134 |
+
**BibTeX:**
|
135 |
+
```
|
136 |
+
@article{yolov13,
|
137 |
+
title={YOLOv13: Real-Time Object Detection with Hypergraph-Enhanced Adaptive Visual Perception},
|
138 |
+
author={Lei, Mengqi and Li, Siqi and Wu, Yihong and et al.},
|
139 |
+
journal={arXiv preprint arXiv:2506.17733},
|
140 |
+
year={2025}
|
141 |
+
}
|
142 |
+
```
|
143 |
+
""")
|
144 |
+
|
145 |
+
with gr.Row():
|
146 |
+
with gr.Column():
|
147 |
+
image = gr.Image(type="pil", label="Image", visible=True)
|
148 |
+
video = gr.Video(label="Video", visible=False)
|
149 |
+
input_type = gr.Radio(
|
150 |
+
choices=["Image", "Video"],
|
151 |
+
value="Image",
|
152 |
+
label="Input Type",
|
153 |
+
)
|
154 |
+
model_id = gr.Dropdown(
|
155 |
+
label="Model Name",
|
156 |
+
choices=[
|
157 |
+
'yolov13n.pt', 'yolov13s.pt', 'yolov13l.pt', 'yolov13x.pt',
|
158 |
+
],
|
159 |
+
value="yolov13n.pt",
|
160 |
+
)
|
161 |
+
conf_threshold = gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence Threshold")
|
162 |
+
iou_threshold = gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU Threshold")
|
163 |
+
max_detection = gr.Slider(minimum=1, maximum=300, step=1, value=300, label="Max Detection")
|
164 |
+
infer_button = gr.Button("Detect Objects")
|
165 |
+
with gr.Column():
|
166 |
+
output_image = gr.Image(type="pil", label="Annotated Image", visible=True)
|
167 |
+
output_video = gr.Video(label="Annotated Video", visible=False)
|
168 |
+
gr.DeepLinkButton()
|
169 |
+
|
170 |
+
input_type.change(
|
171 |
+
fn=update_visibility,
|
172 |
+
inputs=input_type,
|
173 |
+
outputs=[image, video, output_image, output_video],
|
174 |
+
)
|
175 |
+
|
176 |
+
infer_button.click(
|
177 |
+
fn=yolo_inference,
|
178 |
+
inputs=[input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection],
|
179 |
+
outputs=[output_image, output_video],
|
180 |
+
)
|
181 |
+
|
182 |
+
gr.Examples(
|
183 |
+
examples=[
|
184 |
+
["zidane.jpg", "yolov13s.pt", 0.35, 0.45, 300],
|
185 |
+
["bus.jpg", "yolov13l.pt", 0.35, 0.45, 300],
|
186 |
+
["yolo_vision.jpg", "yolov13x.pt", 0.35, 0.45, 300],
|
187 |
+
],
|
188 |
+
fn=yolo_inference_for_examples,
|
189 |
+
inputs=[image, model_id, conf_threshold, iou_threshold, max_detection],
|
190 |
+
outputs=[input_type, output_image],
|
191 |
+
label="Examples (Images)",
|
192 |
+
)
|
193 |
+
|
194 |
+
if __name__ == '__main__':
|
195 |
app.launch()
|