File size: 22,086 Bytes
a3ef88a
d767abc
4d440f4
a3ef88a
16dca97
d767abc
16dca97
a3ef88a
d767abc
a3ef88a
 
 
7dd2cd1
 
 
 
a3ef88a
d767abc
a3ef88a
 
 
 
 
 
 
 
 
 
 
 
 
b9ced4c
 
a3ef88a
 
 
 
 
 
 
 
 
d767abc
a3ef88a
 
 
 
4154701
a3ef88a
 
 
 
 
 
 
 
 
 
dd9d99a
4851155
27d7113
 
dd9d99a
465603c
053cdcc
a3ef88a
83355ca
a3ef88a
8586ed2
7b3dcbc
a3ef88a
 
dd9d99a
b9ced4c
dd9d99a
 
 
 
 
 
 
 
 
 
27d7113
 
 
 
 
 
dd9d99a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de82fc3
dd9d99a
 
 
 
 
 
 
 
0792426
3eaad6d
e02c3f7
0792426
 
2ec9c41
a3ef88a
 
 
39917f5
 
a3ef88a
39917f5
 
a3ef88a
39917f5
a3ef88a
39917f5
a3ef88a
39917f5
a3ef88a
39917f5
 
a3ef88a
39917f5
4851155
938852f
 
 
 
a3ef88a
39917f5
a3ef88a
39917f5
a3ef88a
 
 
2ec9c41
a3ef88a
 
 
 
 
 
 
 
 
39917f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27d7113
938852f
 
39917f5
 
 
63ac720
4851155
a3ef88a
 
d767abc
a3ef88a
 
d767abc
a3ef88a
 
d767abc
a3ef88a
 
 
 
 
 
 
 
 
 
4154701
a3ef88a
890ef0c
 
 
 
e02c3f7
 
a3ef88a
 
 
39917f5
a3ef88a
 
890ef0c
e02c3f7
3eaad6d
 
a3ef88a
bc6831a
 
 
 
a3ef88a
 
 
 
 
 
 
 
39917f5
 
a3ef88a
 
 
 
 
890ef0c
bc6831a
 
890ef0c
39917f5
a3ef88a
 
 
 
890ef0c
 
 
 
6c62733
8586ed2
 
e02c3f7
 
a3ef88a
 
 
 
 
1dc1cfe
2ec9c41
673739f
 
a3ef88a
890ef0c
 
a3ef88a
 
e02c3f7
 
a3ef88a
 
 
 
 
 
 
 
7b3dcbc
 
 
a3ef88a
2ec9c41
a3ef88a
 
 
7b3dcbc
 
 
 
 
 
 
 
 
 
 
 
a3ef88a
0489b1b
d767abc
0489b1b
 
 
 
 
 
 
 
8586ed2
a3ef88a
8586ed2
a3ef88a
 
 
 
890ef0c
 
 
 
6c62733
8586ed2
 
dd9d99a
e02c3f7
 
a3ef88a
7dd2cd1
bc6831a
930090d
 
bc6831a
930090d
6da0de9
 
 
 
930090d
dd9d99a
 
20bc1d1
e02c3f7
2ec9c41
6f4c5be
 
 
 
 
 
 
 
dd9d99a
63a4ff8
 
930090d
 
63a4ff8
6c62733
63a4ff8
a3ef88a
 
 
 
890ef0c
a3ef88a
6c62733
8586ed2
 
e02c3f7
 
a3ef88a
 
8586ed2
bc6831a
 
 
 
 
 
a3ef88a
91ccdd9
a3ef88a
 
 
2ec9c41
a3ef88a
8586ed2
 
a3ef88a
8586ed2
2ec9c41
d7ab2ca
8586ed2
 
 
 
d767abc
8586ed2
 
 
 
d767abc
8586ed2
 
 
 
 
 
 
a3ef88a
8586ed2
 
a3ef88a
8586ed2
 
 
 
a3ef88a
 
 
2ec9c41
a3ef88a
8586ed2
a3ef88a
8586ed2
 
 
 
 
2ec9c41
8586ed2
 
 
d767abc
8586ed2
 
 
 
d767abc
8586ed2
 
 
 
 
 
 
 
 
 
 
 
a3ef88a
8586ed2
 
a3ef88a
8586ed2
a3ef88a
91ccdd9
a3ef88a
8586ed2
 
 
2ec9c41
a3ef88a
c752e13
8586ed2
a3ef88a
 
91ccdd9
d7ab2ca
a3ef88a
d7ab2ca
 
2ec9c41
890ef0c
a3ef88a
 
8edbfbe
 
 
 
 
 
5c91d9e
 
a3ef88a
205c7b8
5c91d9e
 
932ddff
1446958
5c91d9e
 
d767abc
 
14b9312
9975bb4
14b9312
 
9975bb4
5c91d9e
14b9312
d767abc
aeee50c
14b9312
 
 
 
 
5c91d9e
2c6a087
 
8586ed2
 
 
e02c3f7
8586ed2
 
 
8f73deb
a3ef88a
 
8586ed2
 
a3ef88a
 
dd9d99a
27d7113
8b5450d
4851155
b14a44f
 
 
a3ef88a
6c62733
 
 
a3ef88a
6c62733
a3ef88a
 
 
 
 
8586ed2
a3ef88a
 
 
 
 
 
 
 
 
eb3b64b
91ccdd9
a3ef88a
 
 
 
890ef0c
a3ef88a
6c62733
8586ed2
 
dd9d99a
e02c3f7
 
a3ef88a
 
 
 
 
 
4023dd5
a3ef88a
 
 
 
 
 
 
 
5c91d9e
 
2ec9c41
5c91d9e
 
 
8586ed2
2ec9c41
8586ed2
a3ef88a
5c91d9e
 
8586ed2
a3ef88a
8edbfbe
 
b506373
8edbfbe
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
#==================================================================================
# https://huggingface.co/spaces/asigalov61/Monster-Piano-Transformer
#==================================================================================

print('=' * 70)
print('Monster Piano Transformer Gradio App')

print('=' * 70)
print('Loading core Monster Piano Transformer modules...')

import os

import time as reqtime
import datetime
from pytz import timezone

print('=' * 70)
print('Loading main Monster Piano Transformer modules...')

os.environ['USE_FLASH_ATTENTION'] = '1'

import torch

torch.set_float32_matmul_precision('high')
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
torch.backends.cuda.enable_mem_efficient_sdp(True)
torch.backends.cuda.enable_math_sdp(True)
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_cudnn_sdp(True)

from huggingface_hub import hf_hub_download

import TMIDIX

from midi_to_colab_audio import midi_to_colab_audio

from x_transformer_1_23_2 import *

import random

print('=' * 70)
print('Loading aux Monster Piano Transformer modules...')

import matplotlib.pyplot as plt

import gradio as gr
import spaces

print('=' * 70)
print('PyTorch version:', torch.__version__)
print('=' * 70)
print('Done!')
print('Enjoy! :)')
print('=' * 70)

#==================================================================================

MODEL_CHECKPOINTS = {
                    'with velocity - 3 epochs': 'Monster_Piano_Transformer_Velocity_Trained_Model_59896_steps_0.9055_loss_0.735_acc.pth',
                    'without velocity - 3 epochs': 'Monster_Piano_Transformer_No_Velocity_Trained_Model_69412_steps_0.8577_loss_0.7442_acc.pth',
                    'without velocity - 7 epochs': 'Monster_Piano_Transformer_No_Velocity_Trained_Model_161960_steps_0.7775_loss_0.7661_acc.pth'
                    }

SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'

NUM_OUT_BATCHES = 12

PREVIEW_LENGTH = 120 # in tokens

#==================================================================================

def load_model(model_selector):

    print('=' * 70)
    print('Instantiating model...')
    
    device_type = 'cuda'
    dtype = 'bfloat16'
    
    ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
    ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
    
    SEQ_LEN = 2048

    if model_selector == 'with velocity - 3 epochs':
        PAD_IDX = 512

    else:
        PAD_IDX = 384
    
    model = TransformerWrapper(
            num_tokens = PAD_IDX+1,
            max_seq_len = SEQ_LEN,
            attn_layers = Decoder(dim = 2048,
                                  depth = 4,
                                  heads = 32,
                                  rotary_pos_emb = True,
                                  attn_flash = True
                                  )
    )
    
    model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
    
    print('=' * 70)
    print('Loading model checkpoint...')      
    
    model_checkpoint = hf_hub_download(repo_id='asigalov61/Monster-Piano-Transformer', filename=MODEL_CHECKPOINTS[model_selector])
    
    model.load_state_dict(torch.load(model_checkpoint, map_location='cpu', weights_only=True))
    
    model = torch.compile(model, mode='max-autotune')
    
    print('=' * 70)
    print('Done!')
    print('=' * 70)
    print('Model will use', dtype, 'precision...')
    print('=' * 70)

    return [model, ctx]

#==================================================================================

def load_midi(input_midi, model_selector=''):

    raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)

    escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
    escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32)
    
    sp_escore_notes = TMIDIX.solo_piano_escore_notes(escore_notes, keep_drums=False)
    zscore = TMIDIX.recalculate_score_timings(sp_escore_notes)
    
    cscore = TMIDIX.chordify_score([1000, zscore])
    
    score = []
    
    pc = cscore[0]
    
    for c in cscore:
        score.append(max(0, min(127, c[0][1]-pc[0][1])))
    
        for n in c:
            if model_selector == 'with velocity - 3 epochs':
                score.extend([max(1, min(127, n[2]))+128, max(1, min(127, n[4]))+256, max(1, min(127, n[5]))+384])

            else:
                score.extend([max(1, min(127, n[2]))+128, max(1, min(127, n[4]))+256])
    
        pc = c

    return score

#==================================================================================

def save_midi(tokens, batch_number=None, model_selector=''):

    song = tokens
    song_f = []
    
    time = 0
    dur = 0
    vel = 90
    pitch = 0
    channel = 0
    patch = 0

    patches = [0] * 16

    for m in song:

        if 0 <= m < 128:
            time += m * 32

        elif 128 < m < 256:
            dur = (m-128) * 32

        elif 256 < m < 384:
            pitch = (m-256)

            if model_selector == 'without velocity - 3 epochs' or model_selector == 'without velocity - 7 epochs':
                song_f.append(['note', time, dur, 0, pitch, max(40, pitch), 0])

        elif 384 < m < 512:
            vel = (m-384)

            if model_selector == 'with velocity - 3 epochs':
                song_f.append(['note', time, dur, 0, pitch, vel, 0])

    if batch_number == None:
        fname = 'Monster-Piano-Transformer-Music-Composition'
        
    else:
        fname = 'Monster-Piano-Transformer-Music-Composition_'+str(batch_number)
    
    data = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
                                                  output_signature = 'Monster Piano Transformer',
                                                  output_file_name = fname,
                                                  track_name='Project Los Angeles',
                                                  list_of_MIDI_patches=patches,
                                                  verbose=False
                                                  )

    return song_f

#==================================================================================

@spaces.GPU
def generate_music(prime, 
                   num_gen_tokens,
                   num_mem_tokens,
                   num_gen_batches,
                   model_temperature,
                   # model_sampling_top_p,
                   model_state
                  ):

    if not prime:
        inputs = [0]

    else:
        inputs = prime[-num_mem_tokens:]

    model = model_state[0]
    ctx = model_state[1]
        
    model.cuda()
    model.eval()

    print('Generating...')
    
    inp = [inputs] * num_gen_batches
    
    inp = torch.LongTensor(inp).cuda()
    
    with ctx:
        out = model.generate(inp,
                              num_gen_tokens,
                              #filter_logits_fn=top_p,
                              #filter_kwargs={'thres': model_sampling_top_p},
                              temperature=model_temperature,
                              return_prime=False,
                              verbose=False)
    
    output = out.tolist()

    print('Done!')
    print('=' * 70)
            
    return output
    
#==================================================================================

def generate_callback(input_midi, 
                      num_prime_tokens, 
                      num_gen_tokens,
                      num_mem_tokens,
                      model_temperature,
                      # model_sampling_top_p,
                      final_composition, 
                      generated_batches, 
                      block_lines,
                      model_state
                     ):

    generated_batches = []

    if not final_composition and input_midi is not None:
        final_composition = load_midi(input_midi, model_selector=model_state[2])[:num_prime_tokens]
        midi_score = save_midi(final_composition, model_selector=model_state[2])
        block_lines.append(midi_score[-1][1] / 1000)
        
    batched_gen_tokens = generate_music(final_composition, 
                                        num_gen_tokens,
                                        num_mem_tokens,
                                        NUM_OUT_BATCHES,
                                        model_temperature,
                                        # model_sampling_top_p,
                                        model_state
                                       )
    
    outputs = []
    
    for i in range(len(batched_gen_tokens)):

        tokens = batched_gen_tokens[i]
        
        # Preview
        tokens_preview = final_composition[-PREVIEW_LENGTH:]
        
        # Save MIDI to a temporary file
        midi_score = save_midi(tokens_preview + tokens, i, model_selector=model_state[2])

        # MIDI plot

        if len(final_composition) > PREVIEW_LENGTH:
            midi_plot = TMIDIX.plot_ms_SONG(midi_score, 
                                            plot_title='Batch # ' + str(i),
                                            preview_length_in_notes=int(PREVIEW_LENGTH / 3),
                                            return_plt=True
                                           )

        else:
            midi_plot = TMIDIX.plot_ms_SONG(midi_score, 
                                            plot_title='Batch # ' + str(i), 
                                            return_plt=True
                                           )

        # File name
        fname = 'Monster-Piano-Transformer-Music-Composition_'+str(i)
        
        # Save audio to a temporary file
        midi_audio = midi_to_colab_audio(fname + '.mid', 
                                        soundfont_path=SOUDFONT_PATH,
                                        sample_rate=16000,
                                        output_for_gradio=True
                                        )

        outputs.append([(16000, midi_audio), midi_plot, tokens])
        
    return outputs, final_composition, generated_batches, block_lines

#==================================================================================

def generate_callback_wrapper(input_midi, 
                              num_prime_tokens, 
                              num_gen_tokens,
                              num_mem_tokens,
                              model_temperature,
                              # model_sampling_top_p,
                              final_composition, 
                              generated_batches, 
                              block_lines,
                              model_selector,
                              model_state
                             ):

    print('=' * 70)
    print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    start_time = reqtime.time()
    
    print('=' * 70)
    if input_midi is not None:
            fn = os.path.basename(input_midi.name)
            fn1 = fn.split('.')[0]
            print('Input file name:', fn)

    print('Selected model type:', model_selector)

    if not model_state:
        model_state = load_model(model_selector)
        model_state.append(model_selector)

    else:
        if model_selector != model_state[2]:
            print('=' * 70)
            print('Switching model...')
            model_state = load_model(model_selector)
            model_state.append(model_selector)
            print('=' * 70)
    
    print('Num prime tokens:', num_prime_tokens)
    print('Num gen tokens:', num_gen_tokens)
    print('Num mem tokens:', num_mem_tokens)

    print('Model temp:', model_temperature)
    # print('Model top_p:', model_sampling_top_p)
    print('=' * 70)
    
    result = generate_callback(input_midi, 
                                num_prime_tokens, 
                                num_gen_tokens,
                                num_mem_tokens,
                                model_temperature,
                                # model_sampling_top_p,
                                final_composition,
                                generated_batches,
                                block_lines,
                                model_state
                             )
    
    generated_batches = [sublist[-1] for sublist in result[0]]

    print('=' * 70)
    print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('=' * 70)
    print('Req execution time:', (reqtime.time() - start_time), 'sec')
    print('*' * 70)    
    
    return tuple([result[1], generated_batches, result[3]] + [item for sublist in result[0] for item in sublist[:-1]] + [model_state])

#==================================================================================

def add_batch(batch_number, final_composition, generated_batches, block_lines, model_state=[]):

    if generated_batches:
        final_composition.extend(generated_batches[batch_number])

        # Save MIDI to a temporary file
        midi_score = save_midi(final_composition, model_selector=model_state[2])
    
        block_lines.append(midi_score[-1][1] / 1000)

        # MIDI plot
        midi_plot = TMIDIX.plot_ms_SONG(midi_score, 
                                        plot_title='Monster Piano Transformer Composition',
                                        block_lines_times_list=block_lines[:-1],
                                        return_plt=True)
        
        # File name
        fname = 'Monster-Piano-Transformer-Music-Composition'
        
        # Save audio to a temporary file
        midi_audio = midi_to_colab_audio(fname + '.mid', 
                                        soundfont_path=SOUDFONT_PATH,
                                        sample_rate=16000,
                                        output_for_gradio=True
                                        )
    
        print('Added batch #', batch_number)
        print('=' * 70)

        return (16000, midi_audio), midi_plot, fname+'.mid', final_composition, generated_batches, block_lines

    else:
        return None, None, None, [], [], []

#==================================================================================

def remove_batch(batch_number, num_tokens, final_composition, generated_batches, block_lines, model_state=[]):

    if final_composition:

        if len(final_composition) > num_tokens:
            final_composition = final_composition[:-num_tokens]
            block_lines.pop()
    
        # Save MIDI to a temporary file
        midi_score = save_midi(final_composition, model_selector=model_state[2])
    
        # MIDI plot
        midi_plot = TMIDIX.plot_ms_SONG(midi_score, 
                                        plot_title='Monster Piano Transformer Composition',
                                        block_lines_times_list=block_lines[:-1],
                                        return_plt=True)
    
        # File name
        fname = 'Monster-Piano-Transformer-Music-Composition'
        
        # Save audio to a temporary file
        midi_audio = midi_to_colab_audio(fname + '.mid', 
                                        soundfont_path=SOUDFONT_PATH,
                                        sample_rate=16000,
                                        output_for_gradio=True
                                        )
        
        print('Removed batch #', batch_number)
        print('=' * 70)
        
        return (16000, midi_audio), midi_plot, fname+'.mid', final_composition, generated_batches, block_lines

    else:
        return None, None, None, [], [], []

#==================================================================================

def reset(final_composition=[], generated_batches=[], block_lines=[], model_state=[]):
    
    final_composition = []
    generated_batches = []
    block_lines = []
    model_state = []

    return final_composition, generated_batches, block_lines
    
#==================================================================================

def reset_demo(final_composition=[], generated_batches=[], block_lines=[], model_state=[]):
    
    final_composition = []
    generated_batches = []
    block_lines = []
    model_state = []

#==================================================================================

PDT = timezone('US/Pacific')

print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)

#==================================================================================

with gr.Blocks() as demo:

    #==================================================================================

    demo.load(reset_demo)

    #==================================================================================

    gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Monster Piano Transformer</h1>")
    gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Ultra-fast and very well fitted solo Piano music transformer</h1>")
    gr.HTML("""
            Check out <a href="https://github.com/asigalov61/monsterpianotransformer">Monster Piano Transformer</a> on GitHub or on
            
            <p>
                <a href="https://pypi.org/project/monsterpianotransformer/">
                    <img src="https://upload.wikimedia.org/wikipedia/commons/6/64/PyPI_logo.svg" alt="PyPI Project" style="width: 100px; height: auto;">
                </a> or 
                <a href="https://huggingface.co/spaces/asigalov61/Monster-Piano-Transformer?duplicate=true">
                    <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face">
                </a>
            </p>
            
            for faster execution and endless generation!
            """)
    
    #==================================================================================

    final_composition = gr.State([])
    generated_batches = gr.State([])
    block_lines = gr.State([])
    model_state = gr.State([])
    
    #==================================================================================
    
    gr.Markdown("## Upload seed MIDI or click 'Generate' button for random output")
    
    input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
    input_midi.upload(reset, [final_composition, generated_batches, block_lines], 
                            [final_composition, generated_batches, block_lines])
    
    gr.Markdown("## Generate")

    model_selector = gr.Dropdown(["without velocity - 7 epochs",
                                  "without velocity - 3 epochs", 
                                  "with velocity - 3 epochs"
                                ], 
                                label="Select model", 
                               )
    
    num_prime_tokens = gr.Slider(15, 1024, value=1024, step=1, label="Number of prime tokens")
    num_gen_tokens = gr.Slider(15, 1024, value=1024, step=1, label="Number of tokens to generate")
    num_mem_tokens = gr.Slider(15, 2048, value=2048, step=1, label="Number of memory tokens")
    model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature")
    # model_sampling_top_p = gr.Slider(0.1, 1, value=0.96, step=0.01, label="Model sampling top p value")
    
    generate_btn = gr.Button("Generate", variant="primary")

    gr.Markdown("## Select batch")
    
    outputs = [final_composition, generated_batches, block_lines]
    
    for i in range(NUM_OUT_BATCHES):
        with gr.Tab(f"Batch # {i}") as tab:
            
            audio_output = gr.Audio(label=f"Batch # {i} MIDI Audio", format="mp3", elem_id="midi_audio")
            plot_output = gr.Plot(label=f"Batch # {i} MIDI Plot")
            
            outputs.extend([audio_output, plot_output])

    outputs.extend([model_state])

    generate_btn.click(generate_callback_wrapper, 
                       [input_midi, 
                        num_prime_tokens, 
                        num_gen_tokens,
                        num_mem_tokens,
                        model_temperature,
                        # model_sampling_top_p,
                        final_composition,
                        generated_batches,
                        block_lines,
                        model_selector,
                        model_state
                       ], 
                       outputs
                      )
    
    gr.Markdown("## Add/Remove batch")
    
    batch_number = gr.Slider(0, NUM_OUT_BATCHES-1, value=0, step=1, label="Batch number to add/remove")
    
    add_btn = gr.Button("Add batch", variant="primary")
    remove_btn = gr.Button("Remove batch", variant="stop")
    
    final_audio_output = gr.Audio(label="Final MIDI audio", format="mp3", elem_id="midi_audio")
    final_plot_output = gr.Plot(label="Final MIDI plot")
    final_file_output = gr.File(label="Final MIDI file")

    #==================================================================================

    add_btn.click(add_batch, [batch_number, final_composition, generated_batches, block_lines, model_state],
                  [final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines])

    #==================================================================================

    remove_btn.click(remove_batch, [batch_number, num_gen_tokens, final_composition, generated_batches, block_lines, model_state], 
                     [final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines])

    #==================================================================================

    demo.unload(reset_demo)

#==================================================================================

demo.launch()

#==================================================================================