Spaces:
Running
on
Zero
Running
on
Zero
asigalov61
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -56,7 +56,10 @@ print('=' * 70)
|
|
56 |
|
57 |
#==================================================================================
|
58 |
|
59 |
-
|
|
|
|
|
|
|
60 |
|
61 |
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'
|
62 |
|
@@ -66,45 +69,47 @@ PREVIEW_LENGTH = 120 # in tokens
|
|
66 |
|
67 |
#==================================================================================
|
68 |
|
69 |
-
|
70 |
-
print('Instantiating model...')
|
71 |
-
|
72 |
-
device_type = 'cuda'
|
73 |
-
dtype = 'bfloat16'
|
74 |
-
|
75 |
-
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
76 |
-
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
77 |
-
|
78 |
-
SEQ_LEN = 2048
|
79 |
-
PAD_IDX = 512
|
80 |
-
|
81 |
-
model = TransformerWrapper(
|
82 |
-
num_tokens = PAD_IDX+1,
|
83 |
-
max_seq_len = SEQ_LEN,
|
84 |
-
attn_layers = Decoder(dim = 2048,
|
85 |
-
depth = 4,
|
86 |
-
heads = 32,
|
87 |
-
rotary_pos_emb = True,
|
88 |
-
attn_flash = True
|
89 |
-
)
|
90 |
-
)
|
91 |
-
|
92 |
-
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
|
93 |
-
|
94 |
-
print('=' * 70)
|
95 |
-
print('Loading model checkpoint...')
|
96 |
-
|
97 |
-
model_checkpoint = hf_hub_download(repo_id='asigalov61/Monster-Piano-Transformer', filename=MODEL_CHECKPOINT_VEL)
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
#==================================================================================
|
110 |
|
@@ -304,7 +309,8 @@ def generate_callback_wrapper(input_midi,
|
|
304 |
# model_sampling_top_p,
|
305 |
final_composition,
|
306 |
generated_batches,
|
307 |
-
block_lines
|
|
|
308 |
):
|
309 |
|
310 |
print('=' * 70)
|
@@ -317,6 +323,10 @@ def generate_callback_wrapper(input_midi,
|
|
317 |
fn1 = fn.split('.')[0]
|
318 |
print('Input file name:', fn)
|
319 |
|
|
|
|
|
|
|
|
|
320 |
print('Num prime tokens:', num_prime_tokens)
|
321 |
print('Num gen tokens:', num_gen_tokens)
|
322 |
print('Num mem tokens:', num_mem_tokens)
|
@@ -481,6 +491,13 @@ with gr.Blocks() as demo:
|
|
481 |
[final_composition, generated_batches, block_lines])
|
482 |
|
483 |
gr.Markdown("## Generate")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
484 |
|
485 |
num_prime_tokens = gr.Slider(15, 1024, value=1024, step=1, label="Number of prime tokens")
|
486 |
num_gen_tokens = gr.Slider(15, 1024, value=1024, step=1, label="Number of tokens to generate")
|
@@ -511,7 +528,8 @@ with gr.Blocks() as demo:
|
|
511 |
# model_sampling_top_p,
|
512 |
final_composition,
|
513 |
generated_batches,
|
514 |
-
block_lines
|
|
|
515 |
],
|
516 |
outputs
|
517 |
)
|
|
|
56 |
|
57 |
#==================================================================================
|
58 |
|
59 |
+
MODEL_CHECKPOINTS = {
|
60 |
+
'with velocity': 'Monster_Piano_Transformer_Velocity_Trained_Model_59896_steps_0.9055_loss_0.735_acc.pth',
|
61 |
+
'without velocity': 'Monster_Piano_Transformer_Velocity_Trained_Model_59896_steps_0.9055_loss_0.735_acc.pth'
|
62 |
+
}
|
63 |
|
64 |
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'
|
65 |
|
|
|
69 |
|
70 |
#==================================================================================
|
71 |
|
72 |
+
def load_model(model_selector):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
print('=' * 70)
|
75 |
+
print('Instantiating model...')
|
76 |
+
|
77 |
+
device_type = 'cuda'
|
78 |
+
dtype = 'bfloat16'
|
79 |
+
|
80 |
+
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
81 |
+
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
82 |
+
|
83 |
+
SEQ_LEN = 2048
|
84 |
+
PAD_IDX = 512
|
85 |
+
|
86 |
+
model = TransformerWrapper(
|
87 |
+
num_tokens = PAD_IDX+1,
|
88 |
+
max_seq_len = SEQ_LEN,
|
89 |
+
attn_layers = Decoder(dim = 2048,
|
90 |
+
depth = 4,
|
91 |
+
heads = 32,
|
92 |
+
rotary_pos_emb = True,
|
93 |
+
attn_flash = True
|
94 |
+
)
|
95 |
+
)
|
96 |
+
|
97 |
+
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
|
98 |
+
|
99 |
+
print('=' * 70)
|
100 |
+
print('Loading model checkpoint...')
|
101 |
+
|
102 |
+
model_checkpoint = hf_hub_download(repo_id='asigalov61/Monster-Piano-Transformer', filename=MODEL_CHECKPOINTS[model_selector])
|
103 |
+
|
104 |
+
model.load_state_dict(torch.load(model_checkpoint, map_location='cpu'))
|
105 |
+
|
106 |
+
model = torch.compile(model, mode='max-autotune')
|
107 |
+
|
108 |
+
print('=' * 70)
|
109 |
+
print('Done!')
|
110 |
+
print('=' * 70)
|
111 |
+
print('Model will use', dtype, 'precision...')
|
112 |
+
print('=' * 70)
|
113 |
|
114 |
#==================================================================================
|
115 |
|
|
|
309 |
# model_sampling_top_p,
|
310 |
final_composition,
|
311 |
generated_batches,
|
312 |
+
block_lines,
|
313 |
+
model_selector
|
314 |
):
|
315 |
|
316 |
print('=' * 70)
|
|
|
323 |
fn1 = fn.split('.')[0]
|
324 |
print('Input file name:', fn)
|
325 |
|
326 |
+
print('Selected model type:', model_selector)
|
327 |
+
|
328 |
+
load_model(model_selector)
|
329 |
+
|
330 |
print('Num prime tokens:', num_prime_tokens)
|
331 |
print('Num gen tokens:', num_gen_tokens)
|
332 |
print('Num mem tokens:', num_mem_tokens)
|
|
|
491 |
[final_composition, generated_batches, block_lines])
|
492 |
|
493 |
gr.Markdown("## Generate")
|
494 |
+
|
495 |
+
model_selector = gr.gr.Dropdown(["with velocity",
|
496 |
+
"Without velocity"
|
497 |
+
],
|
498 |
+
label="Select model",
|
499 |
+
info="Select desired Monster Piano Transformer model"
|
500 |
+
)
|
501 |
|
502 |
num_prime_tokens = gr.Slider(15, 1024, value=1024, step=1, label="Number of prime tokens")
|
503 |
num_gen_tokens = gr.Slider(15, 1024, value=1024, step=1, label="Number of tokens to generate")
|
|
|
528 |
# model_sampling_top_p,
|
529 |
final_composition,
|
530 |
generated_batches,
|
531 |
+
block_lines,
|
532 |
+
model_selector
|
533 |
],
|
534 |
outputs
|
535 |
)
|