ashu316's picture
Upload 14 files
41aae2b verified
import numpy as np
import torch
class MergeLayer(torch.nn.Module):
def __init__(self, dim1, dim2, dim3, dim4):
super().__init__()
self.fc1 = torch.nn.Linear(dim1 + dim2, dim3)
self.fc2 = torch.nn.Linear(dim3, dim4)
self.act = torch.nn.ReLU()
torch.nn.init.xavier_normal_(self.fc1.weight)
torch.nn.init.xavier_normal_(self.fc2.weight)
def forward(self, x1, x2):
x = torch.cat([x1, x2], dim=1)
h = self.act(self.fc1(x))
return self.fc2(h)
class MLP(torch.nn.Module):
def __init__(self, dim, drop=0.3):
super().__init__()
self.fc_1 = torch.nn.Linear(dim, 80)
self.fc_2 = torch.nn.Linear(80, 10)
self.fc_3 = torch.nn.Linear(10, 1)
self.act = torch.nn.ReLU()
self.dropout = torch.nn.Dropout(p=drop, inplace=False)
def forward(self, x):
x = self.act(self.fc_1(x))
x = self.dropout(x)
x = self.act(self.fc_2(x))
x = self.dropout(x)
return self.fc_3(x).squeeze(dim=1)
class EarlyStopMonitor(object):
def __init__(self, max_round=3, higher_better=True, tolerance=1e-10):
self.max_round = max_round
self.num_round = 0
self.epoch_count = 0
self.best_epoch = 0
self.last_best = None
self.higher_better = higher_better
self.tolerance = tolerance
def early_stop_check(self, curr_val):
if not self.higher_better:
curr_val *= -1
if self.last_best is None:
self.last_best = curr_val
elif (curr_val - self.last_best) / np.abs(self.last_best) > self.tolerance:
self.last_best = curr_val
self.num_round = 0
self.best_epoch = self.epoch_count
else:
self.num_round += 1
self.epoch_count += 1
return self.num_round >= self.max_round
class RandEdgeSampler(object):
def __init__(self, src_list, dst_list, seed=None):
self.seed = None
self.src_list = np.unique(src_list)
self.dst_list = np.unique(dst_list)
if seed is not None:
self.seed = seed
self.random_state = np.random.RandomState(self.seed)
def sample(self, size):
if self.seed is None:
src_index = np.random.randint(0, len(self.src_list), size)
dst_index = np.random.randint(0, len(self.dst_list), size)
else:
src_index = self.random_state.randint(0, len(self.src_list), size)
dst_index = self.random_state.randint(0, len(self.dst_list), size)
return self.src_list[src_index], self.dst_list[dst_index]
def reset_random_state(self):
self.random_state = np.random.RandomState(self.seed)
def get_neighbor_finder(data, uniform, max_node_idx=None):
max_node_idx = max(data.sources.max(), data.destinations.max()) if max_node_idx is None else max_node_idx
adj_list = [[] for _ in range(max_node_idx + 1)]
for source, destination, edge_idx, timestamp in zip(data.sources, data.destinations,
data.edge_idxs,
data.timestamps):
adj_list[source].append((destination, edge_idx, timestamp))
adj_list[destination].append((source, edge_idx, timestamp))
return NeighborFinder(adj_list, uniform=uniform)
class NeighborFinder:
def __init__(self, adj_list, uniform=False, seed=None):
self.node_to_neighbors = []
self.node_to_edge_idxs = []
self.node_to_edge_timestamps = []
for neighbors in adj_list:
# Neighbors is a list of tuples (neighbor, edge_idx, timestamp)
# We sort the list based on timestamp
sorted_neighhbors = sorted(neighbors, key=lambda x: x[2])
self.node_to_neighbors.append(np.array([x[0] for x in sorted_neighhbors]))
self.node_to_edge_idxs.append(np.array([x[1] for x in sorted_neighhbors]))
self.node_to_edge_timestamps.append(np.array([x[2] for x in sorted_neighhbors]))
self.uniform = uniform
if seed is not None:
self.seed = seed
self.random_state = np.random.RandomState(self.seed)
def find_before(self, src_idx, cut_time):
"""
Extracts all the interactions happening before cut_time for user src_idx in the overall interaction graph. The returned interactions are sorted by time.
Returns 3 lists: neighbors, edge_idxs, timestamps
"""
i = np.searchsorted(self.node_to_edge_timestamps[src_idx], cut_time)
return self.node_to_neighbors[src_idx][:i], self.node_to_edge_idxs[src_idx][:i], self.node_to_edge_timestamps[src_idx][:i]
def get_temporal_neighbor(self, source_nodes, timestamps, n_neighbors=20):
"""
Given a list of users ids and relative cut times, extracts a sampled temporal neighborhood of each user in the list.
Params
------
src_idx_l: List[int]
cut_time_l: List[float],
num_neighbors: int
"""
assert (len(source_nodes) == len(timestamps))
tmp_n_neighbors = n_neighbors if n_neighbors > 0 else 1
# NB! All interactions described in these matrices are sorted in each row by time
neighbors = np.zeros((len(source_nodes), tmp_n_neighbors)).astype(
np.int32) # each entry in position (i,j) represent the id of the item targeted by user src_idx_l[i] with an interaction happening before cut_time_l[i]
edge_times = np.zeros((len(source_nodes), tmp_n_neighbors)).astype(
np.float32) # each entry in position (i,j) represent the timestamp of an interaction between user src_idx_l[i] and item neighbors[i,j] happening before cut_time_l[i]
edge_idxs = np.zeros((len(source_nodes), tmp_n_neighbors)).astype(
np.int32) # each entry in position (i,j) represent the interaction index of an interaction between user src_idx_l[i] and item neighbors[i,j] happening before cut_time_l[i]
for i, (source_node, timestamp) in enumerate(zip(source_nodes, timestamps)):
source_neighbors, source_edge_idxs, source_edge_times = self.find_before(source_node,
timestamp) # extracts all neighbors, interactions indexes and timestamps of all interactions of user source_node happening before cut_time
if len(source_neighbors) > 0 and n_neighbors > 0:
if self.uniform: # if we are applying uniform sampling, shuffles the data above before sampling
sampled_idx = np.random.randint(0, len(source_neighbors), n_neighbors)
neighbors[i, :] = source_neighbors[sampled_idx]
edge_times[i, :] = source_edge_times[sampled_idx]
edge_idxs[i, :] = source_edge_idxs[sampled_idx]
# re-sort based on time
pos = edge_times[i, :].argsort()
neighbors[i, :] = neighbors[i, :][pos]
edge_times[i, :] = edge_times[i, :][pos]
edge_idxs[i, :] = edge_idxs[i, :][pos]
else:
# Take most recent interactions
source_edge_times = source_edge_times[-n_neighbors:]
source_neighbors = source_neighbors[-n_neighbors:]
source_edge_idxs = source_edge_idxs[-n_neighbors:]
assert (len(source_neighbors) <= n_neighbors)
assert (len(source_edge_times) <= n_neighbors)
assert (len(source_edge_idxs) <= n_neighbors)
neighbors[i, n_neighbors - len(source_neighbors):] = source_neighbors
edge_times[i, n_neighbors - len(source_edge_times):] = source_edge_times
edge_idxs[i, n_neighbors - len(source_edge_idxs):] = source_edge_idxs
return neighbors, edge_idxs, edge_times