File size: 7,321 Bytes
41aae2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import numpy as np
import torch


class MergeLayer(torch.nn.Module):
  def __init__(self, dim1, dim2, dim3, dim4):
    super().__init__()
    self.fc1 = torch.nn.Linear(dim1 + dim2, dim3)
    self.fc2 = torch.nn.Linear(dim3, dim4)
    self.act = torch.nn.ReLU()

    torch.nn.init.xavier_normal_(self.fc1.weight)
    torch.nn.init.xavier_normal_(self.fc2.weight)

  def forward(self, x1, x2):
    x = torch.cat([x1, x2], dim=1)
    h = self.act(self.fc1(x))
    return self.fc2(h)


class MLP(torch.nn.Module):
  def __init__(self, dim, drop=0.3):
    super().__init__()
    self.fc_1 = torch.nn.Linear(dim, 80)
    self.fc_2 = torch.nn.Linear(80, 10)
    self.fc_3 = torch.nn.Linear(10, 1)
    self.act = torch.nn.ReLU()
    self.dropout = torch.nn.Dropout(p=drop, inplace=False)

  def forward(self, x):
    x = self.act(self.fc_1(x))
    x = self.dropout(x)
    x = self.act(self.fc_2(x))
    x = self.dropout(x)
    return self.fc_3(x).squeeze(dim=1)


class EarlyStopMonitor(object):
  def __init__(self, max_round=3, higher_better=True, tolerance=1e-10):
    self.max_round = max_round
    self.num_round = 0

    self.epoch_count = 0
    self.best_epoch = 0

    self.last_best = None
    self.higher_better = higher_better
    self.tolerance = tolerance

  def early_stop_check(self, curr_val):
    if not self.higher_better:
      curr_val *= -1
    if self.last_best is None:
      self.last_best = curr_val
    elif (curr_val - self.last_best) / np.abs(self.last_best) > self.tolerance:
      self.last_best = curr_val
      self.num_round = 0
      self.best_epoch = self.epoch_count
    else:
      self.num_round += 1

    self.epoch_count += 1

    return self.num_round >= self.max_round


class RandEdgeSampler(object):
  def __init__(self, src_list, dst_list, seed=None):
    self.seed = None
    self.src_list = np.unique(src_list)
    self.dst_list = np.unique(dst_list)

    if seed is not None:
      self.seed = seed
      self.random_state = np.random.RandomState(self.seed)

  def sample(self, size):
    if self.seed is None:
      src_index = np.random.randint(0, len(self.src_list), size)
      dst_index = np.random.randint(0, len(self.dst_list), size)
    else:

      src_index = self.random_state.randint(0, len(self.src_list), size)
      dst_index = self.random_state.randint(0, len(self.dst_list), size)
    return self.src_list[src_index], self.dst_list[dst_index]

  def reset_random_state(self):
    self.random_state = np.random.RandomState(self.seed)


def get_neighbor_finder(data, uniform, max_node_idx=None):
  max_node_idx = max(data.sources.max(), data.destinations.max()) if max_node_idx is None else max_node_idx
  adj_list = [[] for _ in range(max_node_idx + 1)]
  for source, destination, edge_idx, timestamp in zip(data.sources, data.destinations,
                                                      data.edge_idxs,
                                                      data.timestamps):
    adj_list[source].append((destination, edge_idx, timestamp))
    adj_list[destination].append((source, edge_idx, timestamp))

  return NeighborFinder(adj_list, uniform=uniform)


class NeighborFinder:
  def __init__(self, adj_list, uniform=False, seed=None):
    self.node_to_neighbors = []
    self.node_to_edge_idxs = []
    self.node_to_edge_timestamps = []

    for neighbors in adj_list:
      # Neighbors is a list of tuples (neighbor, edge_idx, timestamp)
      # We sort the list based on timestamp
      sorted_neighhbors = sorted(neighbors, key=lambda x: x[2])
      self.node_to_neighbors.append(np.array([x[0] for x in sorted_neighhbors]))
      self.node_to_edge_idxs.append(np.array([x[1] for x in sorted_neighhbors]))
      self.node_to_edge_timestamps.append(np.array([x[2] for x in sorted_neighhbors]))

    self.uniform = uniform

    if seed is not None:
      self.seed = seed
      self.random_state = np.random.RandomState(self.seed)

  def find_before(self, src_idx, cut_time):
    """
    Extracts all the interactions happening before cut_time for user src_idx in the overall interaction graph. The returned interactions are sorted by time.

    Returns 3 lists: neighbors, edge_idxs, timestamps

    """
    i = np.searchsorted(self.node_to_edge_timestamps[src_idx], cut_time)

    return self.node_to_neighbors[src_idx][:i], self.node_to_edge_idxs[src_idx][:i], self.node_to_edge_timestamps[src_idx][:i]

  def get_temporal_neighbor(self, source_nodes, timestamps, n_neighbors=20):
    """
    Given a list of users ids and relative cut times, extracts a sampled temporal neighborhood of each user in the list.

    Params
    ------
    src_idx_l: List[int]
    cut_time_l: List[float],
    num_neighbors: int
    """
    assert (len(source_nodes) == len(timestamps))

    tmp_n_neighbors = n_neighbors if n_neighbors > 0 else 1
    # NB! All interactions described in these matrices are sorted in each row by time
    neighbors = np.zeros((len(source_nodes), tmp_n_neighbors)).astype(
      np.int32)  # each entry in position (i,j) represent the id of the item targeted by user src_idx_l[i] with an interaction happening before cut_time_l[i]
    edge_times = np.zeros((len(source_nodes), tmp_n_neighbors)).astype(
      np.float32)  # each entry in position (i,j) represent the timestamp of an interaction between user src_idx_l[i] and item neighbors[i,j] happening before cut_time_l[i]
    edge_idxs = np.zeros((len(source_nodes), tmp_n_neighbors)).astype(
      np.int32)  # each entry in position (i,j) represent the interaction index of an interaction between user src_idx_l[i] and item neighbors[i,j] happening before cut_time_l[i]

    for i, (source_node, timestamp) in enumerate(zip(source_nodes, timestamps)):
      source_neighbors, source_edge_idxs, source_edge_times = self.find_before(source_node,
                                                   timestamp)  # extracts all neighbors, interactions indexes and timestamps of all interactions of user source_node happening before cut_time

      if len(source_neighbors) > 0 and n_neighbors > 0:
        if self.uniform:  # if we are applying uniform sampling, shuffles the data above before sampling
          sampled_idx = np.random.randint(0, len(source_neighbors), n_neighbors)

          neighbors[i, :] = source_neighbors[sampled_idx]
          edge_times[i, :] = source_edge_times[sampled_idx]
          edge_idxs[i, :] = source_edge_idxs[sampled_idx]

          # re-sort based on time
          pos = edge_times[i, :].argsort()
          neighbors[i, :] = neighbors[i, :][pos]
          edge_times[i, :] = edge_times[i, :][pos]
          edge_idxs[i, :] = edge_idxs[i, :][pos]
        else:
          # Take most recent interactions
          source_edge_times = source_edge_times[-n_neighbors:]
          source_neighbors = source_neighbors[-n_neighbors:]
          source_edge_idxs = source_edge_idxs[-n_neighbors:]

          assert (len(source_neighbors) <= n_neighbors)
          assert (len(source_edge_times) <= n_neighbors)
          assert (len(source_edge_idxs) <= n_neighbors)

          neighbors[i, n_neighbors - len(source_neighbors):] = source_neighbors
          edge_times[i, n_neighbors - len(source_edge_times):] = source_edge_times
          edge_idxs[i, n_neighbors - len(source_edge_idxs):] = source_edge_idxs

    return neighbors, edge_idxs, edge_times