alidenewade's picture
Update app.py
f30bacc verified
raw
history blame
15.6 kB
import gradio as gr
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats import norm, lognorm
import seaborn as sns
# Set matplotlib style for professional plots
plt.style.use('default')
sns.set_palette("husl")
class TVOGAnalysis:
def __init__(self):
self.reset_parameters()
def reset_parameters(self):
"""Reset to default parameters"""
self.scenarios = 10000
self.risk_free_rate = 0.02
self.volatility = 0.03
self.maturity = 10
self.sum_assured = 500000
self.policy_count = 100
def generate_random_numbers(self, scenarios, time_steps):
"""Generate standard normal random numbers"""
np.random.seed(42) # For reproducibility
return np.random.standard_normal((scenarios, time_steps))
def simulate_account_values(self, initial_av, scenarios, time_steps):
"""Simulate account value paths using geometric Brownian motion"""
dt = 1/12 # Monthly time steps
rand_nums = self.generate_random_numbers(scenarios, time_steps)
# Initialize account value matrix
av_paths = np.zeros((scenarios, time_steps + 1))
av_paths[:, 0] = initial_av
# Simulate paths
for t in range(time_steps):
drift = (self.risk_free_rate - 0.5 * self.volatility**2) * dt
diffusion = self.volatility * np.sqrt(dt) * rand_nums[:, t]
av_paths[:, t+1] = av_paths[:, t] * np.exp(drift + diffusion)
return av_paths
def calculate_gmab_payouts(self, av_paths):
"""Calculate GMAB payouts at maturity"""
final_av = av_paths[:, -1]
guarantee = self.sum_assured * self.policy_count
payouts = np.maximum(guarantee - final_av, 0)
# Present value of payouts
discount_factor = np.exp(-self.risk_free_rate * self.maturity)
pv_payouts = payouts * discount_factor
return pv_payouts, payouts
def black_scholes_put(self, S0, K, T, r, sigma):
"""Black-Scholes-Merton formula for European put option"""
d1 = (np.log(S0/K) + (r + 0.5*sigma**2)*T) / (sigma*np.sqrt(T))
d2 = d1 - sigma*np.sqrt(T)
put_price = K*np.exp(-r*T)*norm.cdf(-d2) - S0*norm.cdf(-d1)
return put_price
def create_dashboard():
tvog = TVOGAnalysis()
def update_analysis(scenarios, risk_free_rate, volatility, maturity,
sum_assured, policy_count, min_premium, max_premium, num_points):
# Update parameters
tvog.scenarios = int(scenarios)
tvog.risk_free_rate = risk_free_rate
tvog.volatility = volatility
tvog.maturity = maturity
tvog.sum_assured = sum_assured
tvog.policy_count = policy_count
# Create model points with varying initial account values
premiums = np.linspace(min_premium, max_premium, int(num_points))
initial_avs = premiums * policy_count
monte_carlo_results = []
black_scholes_results = []
time_steps = int(maturity * 12) # Monthly steps
for initial_av in initial_avs:
# Monte Carlo simulation
av_paths = tvog.simulate_account_values(initial_av, tvog.scenarios, time_steps)
pv_payouts, _ = tvog.calculate_gmab_payouts(av_paths)
mc_tvog = np.mean(pv_payouts)
monte_carlo_results.append(mc_tvog)
# Black-Scholes-Merton
guarantee = sum_assured * policy_count
bs_tvog = tvog.black_scholes_put(initial_av, guarantee, maturity,
risk_free_rate, volatility)
black_scholes_results.append(bs_tvog)
# Create results DataFrame
results_df = pd.DataFrame({
'Premium_per_Policy': premiums,
'Initial_Account_Value': initial_avs,
'Monte_Carlo_TVOG': monte_carlo_results,
'Black_Scholes_TVOG': black_scholes_results,
'Ratio_MC_BS': np.array(monte_carlo_results) / np.array(black_scholes_results),
'Difference': np.array(monte_carlo_results) - np.array(black_scholes_results)
})
# Create plots
fig1 = create_tvog_comparison_plot(results_df)
fig2 = create_sample_paths_plot(tvog, initial_avs[len(initial_avs)//2], time_steps)
fig3 = create_distribution_plots(tvog, initial_avs[len(initial_avs)//2], time_steps)
fig4 = create_convergence_plot(tvog, initial_avs[len(initial_avs)//2], time_steps)
return results_df, fig1, fig2, fig3, fig4
def create_tvog_comparison_plot(results_df):
"""Create TVOG comparison plot"""
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))
# TVOG Comparison
ax1.scatter(results_df['Initial_Account_Value'], results_df['Monte_Carlo_TVOG'],
s=50, alpha=0.7, label='Monte Carlo', color='blue')
ax1.scatter(results_df['Initial_Account_Value'], results_df['Black_Scholes_TVOG'],
s=50, alpha=0.7, label='Black-Scholes-Merton', color='red')
ax1.set_xlabel('Initial Account Value')
ax1.set_ylabel('TVOG Value')
ax1.set_title('TVOG: Monte Carlo vs Black-Scholes-Merton')
ax1.legend()
ax1.grid(True, alpha=0.3)
# Ratio Plot
ax2.plot(results_df['Initial_Account_Value'], results_df['Ratio_MC_BS'],
'o-', color='green', markersize=6)
ax2.axhline(y=1, color='red', linestyle='--', alpha=0.7)
ax2.set_xlabel('Initial Account Value')
ax2.set_ylabel('Monte Carlo / Black-Scholes Ratio')
ax2.set_title('Convergence Ratio (MC/BS)')
ax2.grid(True, alpha=0.3)
plt.tight_layout()
return fig
def create_sample_paths_plot(tvog, initial_av, time_steps):
"""Create sample simulation paths plot"""
sample_scenarios = min(100, tvog.scenarios)
av_paths = tvog.simulate_account_values(initial_av, sample_scenarios, time_steps)
fig, ax = plt.subplots(1, 1, figsize=(12, 6))
time_axis = np.arange(time_steps + 1) / 12 # Convert to years
for i in range(sample_scenarios):
ax.plot(time_axis, av_paths[i, :], alpha=0.3, linewidth=0.8)
# Add mean path
mean_path = np.mean(av_paths, axis=0)
ax.plot(time_axis, mean_path, color='red', linewidth=3, label='Mean Path')
# Add guarantee line
guarantee = tvog.sum_assured * tvog.policy_count
ax.axhline(y=guarantee, color='black', linestyle='--', linewidth=2,
label=f'Guarantee Level ({guarantee:,.0f})')
ax.set_xlabel('Time (Years)')
ax.set_ylabel('Account Value')
ax.set_title(f'Sample Account Value Simulation Paths (n={sample_scenarios})')
ax.legend()
ax.grid(True, alpha=0.3)
return fig
def create_distribution_plots(tvog, initial_av, time_steps):
"""Create distribution analysis plots"""
av_paths = tvog.simulate_account_values(initial_av, tvog.scenarios, time_steps)
final_av = av_paths[:, -1]
# Present value of final account values
pv_final_av = final_av * np.exp(-tvog.risk_free_rate * tvog.maturity)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))
# Histogram of final account values
ax1.hist(pv_final_av, bins=50, density=True, alpha=0.7, color='skyblue')
# Theoretical lognormal distribution
S0 = initial_av
sigma = tvog.volatility
T = tvog.maturity
x_range = np.linspace(pv_final_av.min(), pv_final_av.max(), 1000)
theoretical_pdf = lognorm.pdf(x_range, sigma * np.sqrt(T), scale=S0)
ax1.plot(x_range, theoretical_pdf, 'r-', linewidth=2, label='Theoretical Lognormal')
ax1.axvline(x=S0, color='green', linestyle='--', label=f'Initial Value: {S0:,.0f}')
ax1.axvline(x=np.mean(pv_final_av), color='orange', linestyle='--',
label=f'Simulated Mean: {np.mean(pv_final_av):,.0f}')
ax1.set_xlabel('Present Value of Final Account Value')
ax1.set_ylabel('Density')
ax1.set_title('Distribution of Final Account Values')
ax1.legend()
ax1.grid(True, alpha=0.3)
# GMAB Payouts
pv_payouts, _ = tvog.calculate_gmab_payouts(av_paths)
non_zero_payouts = pv_payouts[pv_payouts > 0]
ax2.hist(pv_payouts, bins=50, alpha=0.7, color='lightcoral')
ax2.set_xlabel('GMAB Payout (Present Value)')
ax2.set_ylabel('Frequency')
ax2.set_title(f'GMAB Payout Distribution\n({len(non_zero_payouts)} non-zero payouts)')
ax2.grid(True, alpha=0.3)
# Add statistics text
stats_text = f'Mean Payout: {np.mean(pv_payouts):,.0f}\n'
stats_text += f'Max Payout: {np.max(pv_payouts):,.0f}\n'
stats_text += f'Payout Probability: {len(non_zero_payouts)/len(pv_payouts):.1%}'
ax2.text(0.95, 0.95, stats_text, transform=ax2.transAxes,
verticalalignment='top', horizontalalignment='right',
bbox=dict(boxstyle='round', facecolor='white', alpha=0.8))
plt.tight_layout()
return fig
def create_convergence_plot(tvog, initial_av, time_steps):
"""Create convergence analysis plot"""
# Test different numbers of scenarios
scenario_counts = [100, 500, 1000, 2000, 5000, 10000]
if tvog.scenarios not in scenario_counts:
scenario_counts.append(tvog.scenarios)
scenario_counts.sort()
mc_results = []
guarantee = tvog.sum_assured * tvog.policy_count
bs_result = tvog.black_scholes_put(initial_av, guarantee, tvog.maturity,
tvog.risk_free_rate, tvog.volatility)
np.random.seed(42) # For reproducible convergence
for n_scenarios in scenario_counts:
av_paths = tvog.simulate_account_values(initial_av, n_scenarios, time_steps)
pv_payouts, _ = tvog.calculate_gmab_payouts(av_paths)
mc_tvog = np.mean(pv_payouts)
mc_results.append(mc_tvog)
fig, ax = plt.subplots(1, 1, figsize=(10, 6))
ax.plot(scenario_counts, mc_results, 'bo-', markersize=8, linewidth=2,
label='Monte Carlo Results')
ax.axhline(y=bs_result, color='red', linestyle='--', linewidth=2,
label=f'Black-Scholes Result: {bs_result:.0f}')
ax.set_xlabel('Number of Scenarios')
ax.set_ylabel('TVOG Value')
ax.set_title('Monte Carlo Convergence Analysis')
ax.legend()
ax.grid(True, alpha=0.3)
ax.set_xscale('log')
# Add convergence statistics
final_error = abs(mc_results[-1] - bs_result) / bs_result * 100
ax.text(0.02, 0.98, f'Final Error: {final_error:.2f}%',
transform=ax.transAxes, verticalalignment='top',
bbox=dict(boxstyle='round', facecolor='white', alpha=0.8))
return fig
# Create Gradio interface
with gr.Blocks(title="TVOG Analysis Dashboard") as app:
gr.Markdown("""
# Time Value of Options and Guarantees (TVOG) Analysis Dashboard
This dashboard compares Monte Carlo simulation results with Black-Scholes-Merton analytical solutions
for Variable Annuity products with Guaranteed Minimum Accumulation Benefits (GMAB).
**Target Users:** Actuaries, Finance Professionals, Economists, and Academics
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Model Parameters")
scenarios = gr.Slider(
minimum=1000, maximum=50000, step=1000, value=10000,
label="Number of Monte Carlo Scenarios"
)
risk_free_rate = gr.Slider(
minimum=0.001, maximum=0.1, step=0.001, value=0.02,
label="Risk-Free Rate (continuous)"
)
volatility = gr.Slider(
minimum=0.01, maximum=0.5, step=0.01, value=0.03,
label="Volatility (σ)"
)
maturity = gr.Slider(
minimum=1, maximum=30, step=1, value=10,
label="Maturity (years)"
)
with gr.Row():
sum_assured = gr.Number(
value=500000, label="Sum Assured per Policy"
)
policy_count = gr.Number(
value=100, label="Number of Policies"
)
gr.Markdown("### Model Point Range")
with gr.Row():
min_premium = gr.Number(
value=300000, label="Min Premium per Policy"
)
max_premium = gr.Number(
value=500000, label="Max Premium per Policy"
)
num_points = gr.Slider(
minimum=3, maximum=20, step=1, value=9,
label="Number of Model Points"
)
calculate_btn = gr.Button("Run Analysis", variant="primary")
with gr.Column(scale=2):
gr.Markdown("### Results Summary")
results_table = gr.Dataframe(
headers=["Premium per Policy", "Initial Account Value", "Monte Carlo TVOG",
"Black-Scholes TVOG", "MC/BS Ratio", "Difference"],
label="TVOG Comparison Results"
)
with gr.Tabs():
with gr.Tab("TVOG Comparison"):
tvog_plot = gr.Plot(label="Monte Carlo vs Black-Scholes Analysis")
with gr.Tab("Simulation Paths"):
paths_plot = gr.Plot(label="Sample Account Value Trajectories")
with gr.Tab("Distribution Analysis"):
dist_plot = gr.Plot(label="Final Values & Payout Distributions")
with gr.Tab("Convergence Analysis"):
conv_plot = gr.Plot(label="Monte Carlo Convergence to Analytical Solution")
# Event handlers
calculate_btn.click(
fn=update_analysis,
inputs=[scenarios, risk_free_rate, volatility, maturity,
sum_assured, policy_count, min_premium, max_premium, num_points],
outputs=[results_table, tvog_plot, paths_plot, dist_plot, conv_plot]
)
# Initial calculation
app.load(
fn=update_analysis,
inputs=[scenarios, risk_free_rate, volatility, maturity,
sum_assured, policy_count, min_premium, max_premium, num_points],
outputs=[results_table, tvog_plot, paths_plot, dist_plot, conv_plot]
)
return app
if __name__ == "__main__":
app = create_dashboard()
app.launch()