File size: 15,557 Bytes
19cb70e
 
 
 
 
 
 
 
03cdfd2
19cb70e
 
 
 
 
03cdfd2
19cb70e
 
 
 
 
 
 
 
03cdfd2
19cb70e
 
 
 
03cdfd2
19cb70e
 
 
 
03cdfd2
19cb70e
 
 
03cdfd2
19cb70e
 
 
 
 
03cdfd2
19cb70e
03cdfd2
19cb70e
 
 
 
 
03cdfd2
19cb70e
 
 
03cdfd2
19cb70e
03cdfd2
19cb70e
 
 
 
03cdfd2
19cb70e
 
 
 
 
03cdfd2
 
 
 
19cb70e
 
 
 
 
 
 
03cdfd2
19cb70e
 
03cdfd2
 
19cb70e
 
03cdfd2
19cb70e
03cdfd2
 
19cb70e
03cdfd2
19cb70e
 
 
03cdfd2
19cb70e
03cdfd2
 
 
19cb70e
03cdfd2
19cb70e
 
 
03cdfd2
 
 
 
 
19cb70e
03cdfd2
19cb70e
 
03cdfd2
 
 
 
19cb70e
03cdfd2
19cb70e
 
 
03cdfd2
19cb70e
03cdfd2
 
 
 
 
 
19cb70e
 
 
03cdfd2
19cb70e
03cdfd2
 
19cb70e
03cdfd2
19cb70e
 
 
03cdfd2
19cb70e
 
03cdfd2
 
 
19cb70e
03cdfd2
 
19cb70e
03cdfd2
19cb70e
03cdfd2
19cb70e
 
03cdfd2
 
19cb70e
 
03cdfd2
 
 
 
 
 
19cb70e
03cdfd2
 
19cb70e
 
03cdfd2
19cb70e
03cdfd2
 
 
 
 
 
 
 
 
19cb70e
03cdfd2
 
 
 
 
 
19cb70e
 
03cdfd2
 
 
19cb70e
03cdfd2
 
 
 
 
19cb70e
03cdfd2
19cb70e
 
03cdfd2
 
 
 
 
 
 
19cb70e
03cdfd2
19cb70e
03cdfd2
 
 
 
 
 
 
 
 
19cb70e
 
03cdfd2
 
 
 
 
 
 
19cb70e
03cdfd2
 
 
 
 
 
 
 
 
19cb70e
03cdfd2
19cb70e
 
03cdfd2
 
19cb70e
03cdfd2
 
 
 
 
 
19cb70e
03cdfd2
 
19cb70e
 
 
03cdfd2
 
 
 
 
 
 
19cb70e
03cdfd2
19cb70e
03cdfd2
19cb70e
 
03cdfd2
 
19cb70e
03cdfd2
19cb70e
 
03cdfd2
19cb70e
 
 
03cdfd2
 
19cb70e
 
 
03cdfd2
 
19cb70e
 
 
03cdfd2
 
19cb70e
 
 
03cdfd2
 
19cb70e
 
 
03cdfd2
19cb70e
03cdfd2
19cb70e
 
03cdfd2
 
19cb70e
03cdfd2
 
 
19cb70e
03cdfd2
 
19cb70e
03cdfd2
 
19cb70e
03cdfd2
 
19cb70e
 
 
03cdfd2
19cb70e
03cdfd2
19cb70e
 
03cdfd2
 
 
 
19cb70e
03cdfd2
f30bacc
 
 
 
 
 
 
 
 
 
 
 
03cdfd2
19cb70e
 
 
03cdfd2
 
 
19cb70e
03cdfd2
 
19cb70e
 
03cdfd2
 
 
19cb70e
03cdfd2
 
19cb70e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import gradio as gr
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats import norm, lognorm
import seaborn as sns

# Set matplotlib style for professional plots
plt.style.use('default')
sns.set_palette("husl")

class TVOGAnalysis:
    def __init__(self):
        self.reset_parameters()
    
    def reset_parameters(self):
        """Reset to default parameters"""
        self.scenarios = 10000
        self.risk_free_rate = 0.02
        self.volatility = 0.03
        self.maturity = 10
        self.sum_assured = 500000
        self.policy_count = 100
        
    def generate_random_numbers(self, scenarios, time_steps):
        """Generate standard normal random numbers"""
        np.random.seed(42)  # For reproducibility
        return np.random.standard_normal((scenarios, time_steps))
    
    def simulate_account_values(self, initial_av, scenarios, time_steps):
        """Simulate account value paths using geometric Brownian motion"""
        dt = 1/12  # Monthly time steps
        rand_nums = self.generate_random_numbers(scenarios, time_steps)
        
        # Initialize account value matrix
        av_paths = np.zeros((scenarios, time_steps + 1))
        av_paths[:, 0] = initial_av
        
        # Simulate paths
        for t in range(time_steps):
            drift = (self.risk_free_rate - 0.5 * self.volatility**2) * dt
            diffusion = self.volatility * np.sqrt(dt) * rand_nums[:, t]
            av_paths[:, t+1] = av_paths[:, t] * np.exp(drift + diffusion)
        
        return av_paths
    
    def calculate_gmab_payouts(self, av_paths):
        """Calculate GMAB payouts at maturity"""
        final_av = av_paths[:, -1]
        guarantee = self.sum_assured * self.policy_count
        payouts = np.maximum(guarantee - final_av, 0)
        
        # Present value of payouts
        discount_factor = np.exp(-self.risk_free_rate * self.maturity)
        pv_payouts = payouts * discount_factor
        
        return pv_payouts, payouts
    
    def black_scholes_put(self, S0, K, T, r, sigma):
        """Black-Scholes-Merton formula for European put option"""
        d1 = (np.log(S0/K) + (r + 0.5*sigma**2)*T) / (sigma*np.sqrt(T))
        d2 = d1 - sigma*np.sqrt(T)
        
        put_price = K*np.exp(-r*T)*norm.cdf(-d2) - S0*norm.cdf(-d1)
        return put_price

def create_dashboard():
    tvog = TVOGAnalysis()
    
    def update_analysis(scenarios, risk_free_rate, volatility, maturity, 
                       sum_assured, policy_count, min_premium, max_premium, num_points):
        
        # Update parameters
        tvog.scenarios = int(scenarios)
        tvog.risk_free_rate = risk_free_rate
        tvog.volatility = volatility
        tvog.maturity = maturity
        tvog.sum_assured = sum_assured
        tvog.policy_count = policy_count
        
        # Create model points with varying initial account values
        premiums = np.linspace(min_premium, max_premium, int(num_points))
        initial_avs = premiums * policy_count
        
        monte_carlo_results = []
        black_scholes_results = []
        
        time_steps = int(maturity * 12)  # Monthly steps
        
        for initial_av in initial_avs:
            # Monte Carlo simulation
            av_paths = tvog.simulate_account_values(initial_av, tvog.scenarios, time_steps)
            pv_payouts, _ = tvog.calculate_gmab_payouts(av_paths)
            mc_tvog = np.mean(pv_payouts)
            monte_carlo_results.append(mc_tvog)
            
            # Black-Scholes-Merton
            guarantee = sum_assured * policy_count
            bs_tvog = tvog.black_scholes_put(initial_av, guarantee, maturity, 
                                           risk_free_rate, volatility)
            black_scholes_results.append(bs_tvog)
        
        # Create results DataFrame
        results_df = pd.DataFrame({
            'Premium_per_Policy': premiums,
            'Initial_Account_Value': initial_avs,
            'Monte_Carlo_TVOG': monte_carlo_results,
            'Black_Scholes_TVOG': black_scholes_results,
            'Ratio_MC_BS': np.array(monte_carlo_results) / np.array(black_scholes_results),
            'Difference': np.array(monte_carlo_results) - np.array(black_scholes_results)
        })
        
        # Create plots
        fig1 = create_tvog_comparison_plot(results_df)
        fig2 = create_sample_paths_plot(tvog, initial_avs[len(initial_avs)//2], time_steps)
        fig3 = create_distribution_plots(tvog, initial_avs[len(initial_avs)//2], time_steps)
        fig4 = create_convergence_plot(tvog, initial_avs[len(initial_avs)//2], time_steps)
        
        return results_df, fig1, fig2, fig3, fig4
    
    def create_tvog_comparison_plot(results_df):
        """Create TVOG comparison plot"""
        fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))
        
        # TVOG Comparison
        ax1.scatter(results_df['Initial_Account_Value'], results_df['Monte_Carlo_TVOG'], 
                   s=50, alpha=0.7, label='Monte Carlo', color='blue')
        ax1.scatter(results_df['Initial_Account_Value'], results_df['Black_Scholes_TVOG'], 
                   s=50, alpha=0.7, label='Black-Scholes-Merton', color='red')
        ax1.set_xlabel('Initial Account Value')
        ax1.set_ylabel('TVOG Value')
        ax1.set_title('TVOG: Monte Carlo vs Black-Scholes-Merton')
        ax1.legend()
        ax1.grid(True, alpha=0.3)
        
        # Ratio Plot
        ax2.plot(results_df['Initial_Account_Value'], results_df['Ratio_MC_BS'], 
                'o-', color='green', markersize=6)
        ax2.axhline(y=1, color='red', linestyle='--', alpha=0.7)
        ax2.set_xlabel('Initial Account Value')
        ax2.set_ylabel('Monte Carlo / Black-Scholes Ratio')
        ax2.set_title('Convergence Ratio (MC/BS)')
        ax2.grid(True, alpha=0.3)
        
        plt.tight_layout()
        return fig
    
    def create_sample_paths_plot(tvog, initial_av, time_steps):
        """Create sample simulation paths plot"""
        sample_scenarios = min(100, tvog.scenarios)
        av_paths = tvog.simulate_account_values(initial_av, sample_scenarios, time_steps)
        
        fig, ax = plt.subplots(1, 1, figsize=(12, 6))
        
        time_axis = np.arange(time_steps + 1) / 12  # Convert to years
        
        for i in range(sample_scenarios):
            ax.plot(time_axis, av_paths[i, :], alpha=0.3, linewidth=0.8)
        
        # Add mean path
        mean_path = np.mean(av_paths, axis=0)
        ax.plot(time_axis, mean_path, color='red', linewidth=3, label='Mean Path')
        
        # Add guarantee line
        guarantee = tvog.sum_assured * tvog.policy_count
        ax.axhline(y=guarantee, color='black', linestyle='--', linewidth=2, 
                  label=f'Guarantee Level ({guarantee:,.0f})')
        
        ax.set_xlabel('Time (Years)')
        ax.set_ylabel('Account Value')
        ax.set_title(f'Sample Account Value Simulation Paths (n={sample_scenarios})')
        ax.legend()
        ax.grid(True, alpha=0.3)
        
        return fig
    
    def create_distribution_plots(tvog, initial_av, time_steps):
        """Create distribution analysis plots"""
        av_paths = tvog.simulate_account_values(initial_av, tvog.scenarios, time_steps)
        final_av = av_paths[:, -1]
        
        # Present value of final account values
        pv_final_av = final_av * np.exp(-tvog.risk_free_rate * tvog.maturity)
        
        fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))
        
        # Histogram of final account values
        ax1.hist(pv_final_av, bins=50, density=True, alpha=0.7, color='skyblue')
        
        # Theoretical lognormal distribution
        S0 = initial_av
        sigma = tvog.volatility
        T = tvog.maturity
        
        x_range = np.linspace(pv_final_av.min(), pv_final_av.max(), 1000)
        theoretical_pdf = lognorm.pdf(x_range, sigma * np.sqrt(T), scale=S0)
        ax1.plot(x_range, theoretical_pdf, 'r-', linewidth=2, label='Theoretical Lognormal')
        ax1.axvline(x=S0, color='green', linestyle='--', label=f'Initial Value: {S0:,.0f}')
        ax1.axvline(x=np.mean(pv_final_av), color='orange', linestyle='--', 
                   label=f'Simulated Mean: {np.mean(pv_final_av):,.0f}')
        
        ax1.set_xlabel('Present Value of Final Account Value')
        ax1.set_ylabel('Density')
        ax1.set_title('Distribution of Final Account Values')
        ax1.legend()
        ax1.grid(True, alpha=0.3)
        
        # GMAB Payouts
        pv_payouts, _ = tvog.calculate_gmab_payouts(av_paths)
        non_zero_payouts = pv_payouts[pv_payouts > 0]
        
        ax2.hist(pv_payouts, bins=50, alpha=0.7, color='lightcoral')
        ax2.set_xlabel('GMAB Payout (Present Value)')
        ax2.set_ylabel('Frequency')
        ax2.set_title(f'GMAB Payout Distribution\n({len(non_zero_payouts)} non-zero payouts)')
        ax2.grid(True, alpha=0.3)
        
        # Add statistics text
        stats_text = f'Mean Payout: {np.mean(pv_payouts):,.0f}\n'
        stats_text += f'Max Payout: {np.max(pv_payouts):,.0f}\n'
        stats_text += f'Payout Probability: {len(non_zero_payouts)/len(pv_payouts):.1%}'
        ax2.text(0.95, 0.95, stats_text, transform=ax2.transAxes, 
                verticalalignment='top', horizontalalignment='right',
                bbox=dict(boxstyle='round', facecolor='white', alpha=0.8))
        
        plt.tight_layout()
        return fig
    
    def create_convergence_plot(tvog, initial_av, time_steps):
        """Create convergence analysis plot"""
        # Test different numbers of scenarios
        scenario_counts = [100, 500, 1000, 2000, 5000, 10000]
        if tvog.scenarios not in scenario_counts:
            scenario_counts.append(tvog.scenarios)
            scenario_counts.sort()
        
        mc_results = []
        
        guarantee = tvog.sum_assured * tvog.policy_count
        bs_result = tvog.black_scholes_put(initial_av, guarantee, tvog.maturity, 
                                         tvog.risk_free_rate, tvog.volatility)
        
        np.random.seed(42)  # For reproducible convergence
        
        for n_scenarios in scenario_counts:
            av_paths = tvog.simulate_account_values(initial_av, n_scenarios, time_steps)
            pv_payouts, _ = tvog.calculate_gmab_payouts(av_paths)
            mc_tvog = np.mean(pv_payouts)
            mc_results.append(mc_tvog)
        
        fig, ax = plt.subplots(1, 1, figsize=(10, 6))
        
        ax.plot(scenario_counts, mc_results, 'bo-', markersize=8, linewidth=2, 
               label='Monte Carlo Results')
        ax.axhline(y=bs_result, color='red', linestyle='--', linewidth=2, 
                  label=f'Black-Scholes Result: {bs_result:.0f}')
        
        ax.set_xlabel('Number of Scenarios')
        ax.set_ylabel('TVOG Value')
        ax.set_title('Monte Carlo Convergence Analysis')
        ax.legend()
        ax.grid(True, alpha=0.3)
        ax.set_xscale('log')
        
        # Add convergence statistics
        final_error = abs(mc_results[-1] - bs_result) / bs_result * 100
        ax.text(0.02, 0.98, f'Final Error: {final_error:.2f}%', 
               transform=ax.transAxes, verticalalignment='top',
               bbox=dict(boxstyle='round', facecolor='white', alpha=0.8))
        
        return fig
    
    # Create Gradio interface
    with gr.Blocks(title="TVOG Analysis Dashboard") as app:
        gr.Markdown("""
        # Time Value of Options and Guarantees (TVOG) Analysis Dashboard
        
        This dashboard compares Monte Carlo simulation results with Black-Scholes-Merton analytical solutions 
        for Variable Annuity products with Guaranteed Minimum Accumulation Benefits (GMAB).
        
        **Target Users:** Actuaries, Finance Professionals, Economists, and Academics
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("### Model Parameters")
                
                scenarios = gr.Slider(
                    minimum=1000, maximum=50000, step=1000, value=10000,
                    label="Number of Monte Carlo Scenarios"
                )
                
                risk_free_rate = gr.Slider(
                    minimum=0.001, maximum=0.1, step=0.001, value=0.02,
                    label="Risk-Free Rate (continuous)"
                )
                
                volatility = gr.Slider(
                    minimum=0.01, maximum=0.5, step=0.01, value=0.03,
                    label="Volatility (σ)"
                )
                
                maturity = gr.Slider(
                    minimum=1, maximum=30, step=1, value=10,
                    label="Maturity (years)"
                )
                
                with gr.Row():
                    sum_assured = gr.Number(
                        value=500000, label="Sum Assured per Policy"
                    )
                    policy_count = gr.Number(
                        value=100, label="Number of Policies"
                    )
                
                gr.Markdown("### Model Point Range")
                
                with gr.Row():
                    min_premium = gr.Number(
                        value=300000, label="Min Premium per Policy"
                    )
                    max_premium = gr.Number(
                        value=500000, label="Max Premium per Policy"
                    )
                
                num_points = gr.Slider(
                    minimum=3, maximum=20, step=1, value=9,
                    label="Number of Model Points"
                )
                
                calculate_btn = gr.Button("Run Analysis", variant="primary")
            
            with gr.Column(scale=2):
                gr.Markdown("### Results Summary")
                results_table = gr.Dataframe(
                    headers=["Premium per Policy", "Initial Account Value", "Monte Carlo TVOG", 
                            "Black-Scholes TVOG", "MC/BS Ratio", "Difference"],
                    label="TVOG Comparison Results"
                )
        
        with gr.Tabs():
            with gr.Tab("TVOG Comparison"):
                tvog_plot = gr.Plot(label="Monte Carlo vs Black-Scholes Analysis")
            
            with gr.Tab("Simulation Paths"):
                paths_plot = gr.Plot(label="Sample Account Value Trajectories")
            
            with gr.Tab("Distribution Analysis"):
                dist_plot = gr.Plot(label="Final Values & Payout Distributions")
            
            with gr.Tab("Convergence Analysis"):
                conv_plot = gr.Plot(label="Monte Carlo Convergence to Analytical Solution")
        
        # Event handlers
        calculate_btn.click(
            fn=update_analysis,
            inputs=[scenarios, risk_free_rate, volatility, maturity, 
                   sum_assured, policy_count, min_premium, max_premium, num_points],
            outputs=[results_table, tvog_plot, paths_plot, dist_plot, conv_plot]
        )
        
        # Initial calculation
        app.load(
            fn=update_analysis,
            inputs=[scenarios, risk_free_rate, volatility, maturity, 
                   sum_assured, policy_count, min_premium, max_premium, num_points],
            outputs=[results_table, tvog_plot, paths_plot, dist_plot, conv_plot]
        )
    
    return app

if __name__ == "__main__":
    app = create_dashboard()
    app.launch()