File size: 5,540 Bytes
c97a5df
740bc6c
c97a5df
 
 
 
 
 
 
 
740bc6c
c97a5df
 
740bc6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
title: TVOG Analysis Dashboard
emoji: 🐒
colorFrom: purple
colorTo: yellow
sdk: gradio
sdk_version: 5.31.0
app_file: app.py
pinned: false
license: mit
short_description: 'TVOG pricing: Monte Carlo vs. Black-Scholes tools.'
---

# TVOG Analysis Dashboard πŸ“Š

An interactive dashboard for analyzing Time Value of Options and Guarantees (TVOG) in Variable Annuity products with Guaranteed Minimum Accumulation Benefits (GMAB).

[![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg)](https://huggingface.co/spaces/alidenewade/tvog-analysis-dashboard)

## 🎯 Overview

This dashboard provides a comprehensive comparison between **Monte Carlo simulation** and **Black-Scholes-Merton analytical solutions** for pricing variable annuity guarantees. It's designed specifically for actuaries, finance professionals, economists, and academics working in insurance and financial risk management.

## ✨ Key Features

### πŸ”§ Interactive Controls
- **Monte Carlo Parameters**: Adjustable scenario counts (1K-50K), risk-free rates, volatility levels
- **Product Configuration**: Customizable sum assured, policy counts, and maturity periods  
- **Model Point Analysis**: Flexible premium ranges with configurable test points

### πŸ“ˆ Four Analysis Modules

1. **TVOG Comparison**: Side-by-side Monte Carlo vs Black-Scholes results with convergence ratios
2. **Simulation Paths**: Account value trajectory visualization with guarantee levels
3. **Distribution Analysis**: Statistical distributions of final values and GMAB payouts
4. **Convergence Analysis**: Monte Carlo convergence validation against analytical solutions

### πŸ“Š Professional Output
- **Results Table**: Detailed numerical comparison data
- **Real-time Updates**: Dynamic recalculation with parameter changes
- **Statistical Overlays**: Theoretical distributions and error metrics
- **Export-Ready Visualizations**: High-quality plots for presentations

## πŸš€ Getting Started

### Online Usage
Simply click the "Open in Spaces" badge above to access the live dashboard - no installation required!

### Local Installation
```bash
git clone https://huggingface.co/spaces/alidenewade/tvog-analysis-dashboard
cd tvog-analysis-dashboard
pip install -r requirements.txt
python app.py
```

## πŸ”¬ Technical Background

### Mathematical Foundation
The dashboard implements:
- **Geometric Brownian Motion** for account value simulation: `dS/S = rΒ·dt + ΟƒΒ·Ξ΅Β·βˆšdt`
- **Black-Scholes-Merton Formula** for European put option pricing
- **Risk-Neutral Valuation** with Monte Carlo scenarios

### Key Assumptions
- No policy decrements (mortality/lapse rates = 0)
- No management fees for clean comparison
- Constant risk-free rate environment
- Log-normal asset return distribution

## πŸ‘₯ Target Audience

### Primary Users
- **Actuaries**: Pricing and reserving analysis for variable annuity products
- **Risk Managers**: Quantifying guarantee costs and capital requirements
- **Product Developers**: Designing and testing new guarantee features
- **Academics**: Teaching and researching financial guarantee valuation

### Use Cases
- **Product Pricing**: Determine fair value of GMAB guarantees
- **Model Validation**: Compare simulation results with analytical benchmarks
- **Sensitivity Analysis**: Test impact of parameter changes on guarantee costs
- **Educational Tool**: Demonstrate Monte Carlo vs analytical pricing methods

## πŸ“š Methodology

### Monte Carlo Simulation
- Generates thousands of risk-neutral scenarios
- Simulates account value paths using geometric Brownian motion
- Calculates present value of guarantee payouts at maturity
- Provides statistical confidence through large sample sizes

### Black-Scholes-Merton Benchmark
- Analytical solution for European put option pricing
- Provides exact theoretical value for comparison
- Validates Monte Carlo convergence and accuracy
- Offers computational efficiency for sensitivity analysis

## πŸŽ›οΈ Parameter Guide

### Critical Parameters
- **Scenarios**: Higher counts improve accuracy but increase computation time
- **Volatility**: Key driver of option value - higher volatility increases TVOG
- **Risk-Free Rate**: Affects both drift and discounting of future payouts
- **Moneyness**: Initial account value relative to guarantee level

### Recommended Settings
- **For Quick Analysis**: 5,000-10,000 scenarios
- **For Production**: 50,000+ scenarios
- **For Presentations**: 10,000 scenarios (good balance of accuracy/speed)

## πŸ“– Educational Value

This dashboard serves as an excellent educational tool for:
- **Understanding Monte Carlo Methods** in financial modeling
- **Comparing Simulation vs Analytical** approaches
- **Visualizing Financial Risk** through interactive plots
- **Learning Option Pricing Theory** in insurance contexts

## 🀝 Contributing

Found a bug or have suggestions? Feel free to:
- Open an issue on the repository
- Submit a pull request with improvements
- Share feedback through the Hugging Face community tab

## πŸ“„ License

This project is open source and available under the MIT License.

## πŸ™ Acknowledgments

Based on the lifelib savings library example, which demonstrates advanced actuarial modeling techniques for variable annuity products.

---

**Built with ❀️ for the actuarial and finance community**

*For technical support or collaboration opportunities, connect through Hugging Face!*

Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference