Spaces:
Sleeping
Sleeping
File size: 5,540 Bytes
c97a5df 740bc6c c97a5df 740bc6c c97a5df 740bc6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
---
title: TVOG Analysis Dashboard
emoji: π’
colorFrom: purple
colorTo: yellow
sdk: gradio
sdk_version: 5.31.0
app_file: app.py
pinned: false
license: mit
short_description: 'TVOG pricing: Monte Carlo vs. Black-Scholes tools.'
---
# TVOG Analysis Dashboard π
An interactive dashboard for analyzing Time Value of Options and Guarantees (TVOG) in Variable Annuity products with Guaranteed Minimum Accumulation Benefits (GMAB).
[](https://huggingface.co/spaces/alidenewade/tvog-analysis-dashboard)
## π― Overview
This dashboard provides a comprehensive comparison between **Monte Carlo simulation** and **Black-Scholes-Merton analytical solutions** for pricing variable annuity guarantees. It's designed specifically for actuaries, finance professionals, economists, and academics working in insurance and financial risk management.
## β¨ Key Features
### π§ Interactive Controls
- **Monte Carlo Parameters**: Adjustable scenario counts (1K-50K), risk-free rates, volatility levels
- **Product Configuration**: Customizable sum assured, policy counts, and maturity periods
- **Model Point Analysis**: Flexible premium ranges with configurable test points
### π Four Analysis Modules
1. **TVOG Comparison**: Side-by-side Monte Carlo vs Black-Scholes results with convergence ratios
2. **Simulation Paths**: Account value trajectory visualization with guarantee levels
3. **Distribution Analysis**: Statistical distributions of final values and GMAB payouts
4. **Convergence Analysis**: Monte Carlo convergence validation against analytical solutions
### π Professional Output
- **Results Table**: Detailed numerical comparison data
- **Real-time Updates**: Dynamic recalculation with parameter changes
- **Statistical Overlays**: Theoretical distributions and error metrics
- **Export-Ready Visualizations**: High-quality plots for presentations
## π Getting Started
### Online Usage
Simply click the "Open in Spaces" badge above to access the live dashboard - no installation required!
### Local Installation
```bash
git clone https://huggingface.co/spaces/alidenewade/tvog-analysis-dashboard
cd tvog-analysis-dashboard
pip install -r requirements.txt
python app.py
```
## π¬ Technical Background
### Mathematical Foundation
The dashboard implements:
- **Geometric Brownian Motion** for account value simulation: `dS/S = rΒ·dt + Ο·Ρ·βdt`
- **Black-Scholes-Merton Formula** for European put option pricing
- **Risk-Neutral Valuation** with Monte Carlo scenarios
### Key Assumptions
- No policy decrements (mortality/lapse rates = 0)
- No management fees for clean comparison
- Constant risk-free rate environment
- Log-normal asset return distribution
## π₯ Target Audience
### Primary Users
- **Actuaries**: Pricing and reserving analysis for variable annuity products
- **Risk Managers**: Quantifying guarantee costs and capital requirements
- **Product Developers**: Designing and testing new guarantee features
- **Academics**: Teaching and researching financial guarantee valuation
### Use Cases
- **Product Pricing**: Determine fair value of GMAB guarantees
- **Model Validation**: Compare simulation results with analytical benchmarks
- **Sensitivity Analysis**: Test impact of parameter changes on guarantee costs
- **Educational Tool**: Demonstrate Monte Carlo vs analytical pricing methods
## π Methodology
### Monte Carlo Simulation
- Generates thousands of risk-neutral scenarios
- Simulates account value paths using geometric Brownian motion
- Calculates present value of guarantee payouts at maturity
- Provides statistical confidence through large sample sizes
### Black-Scholes-Merton Benchmark
- Analytical solution for European put option pricing
- Provides exact theoretical value for comparison
- Validates Monte Carlo convergence and accuracy
- Offers computational efficiency for sensitivity analysis
## ποΈ Parameter Guide
### Critical Parameters
- **Scenarios**: Higher counts improve accuracy but increase computation time
- **Volatility**: Key driver of option value - higher volatility increases TVOG
- **Risk-Free Rate**: Affects both drift and discounting of future payouts
- **Moneyness**: Initial account value relative to guarantee level
### Recommended Settings
- **For Quick Analysis**: 5,000-10,000 scenarios
- **For Production**: 50,000+ scenarios
- **For Presentations**: 10,000 scenarios (good balance of accuracy/speed)
## π Educational Value
This dashboard serves as an excellent educational tool for:
- **Understanding Monte Carlo Methods** in financial modeling
- **Comparing Simulation vs Analytical** approaches
- **Visualizing Financial Risk** through interactive plots
- **Learning Option Pricing Theory** in insurance contexts
## π€ Contributing
Found a bug or have suggestions? Feel free to:
- Open an issue on the repository
- Submit a pull request with improvements
- Share feedback through the Hugging Face community tab
## π License
This project is open source and available under the MIT License.
## π Acknowledgments
Based on the lifelib savings library example, which demonstrates advanced actuarial modeling techniques for variable annuity products.
---
**Built with β€οΈ for the actuarial and finance community**
*For technical support or collaboration opportunities, connect through Hugging Face!*
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference |